JPH02117118A - Green sheet for laminated ceramic capacitor - Google Patents

Green sheet for laminated ceramic capacitor

Info

Publication number
JPH02117118A
JPH02117118A JP27115588A JP27115588A JPH02117118A JP H02117118 A JPH02117118 A JP H02117118A JP 27115588 A JP27115588 A JP 27115588A JP 27115588 A JP27115588 A JP 27115588A JP H02117118 A JPH02117118 A JP H02117118A
Authority
JP
Japan
Prior art keywords
dielectric layer
base film
sheet
green sheet
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27115588A
Other languages
Japanese (ja)
Inventor
Yasutaka Horibe
堀部 泰孝
Keiichi Nakao
恵一 中尾
Hikoharu Okuyama
彦治 奥山
Hideyuki Okinaka
秀行 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27115588A priority Critical patent/JPH02117118A/en
Publication of JPH02117118A publication Critical patent/JPH02117118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To decrease substantially the number of pin holes and to provide a very flat surface on which electrodes are printed, by putting a pair of base films together such that dielectric layers formed thereon are faced to each other and then transferring one of the dielectric layer to the other by thermocompression bonding. CONSTITUTION:A pair of base films are put together such that dielectric layers 11a and 11b formed thereon are faced to each other. A transfer roller 13 is applied to the base film 10a of one of the green sheets so that the dielectric layer 11a on the base film 10a is transferred to and integrated with the other dielectric layer 11b by thermocompression bonding. Then, the base film 10a is peeled off from the sheet so that inner electrodes are printed on the peeled surface 14 of the dielectric layer. According to such method, since flatness of the base film can be utilized as it is, the inner electrodes can be formed on the very flat surface. Accordingly, even if an inner electrode layer 17 is thin, it can be formed uniformly without disconnection due to unevenness of the sheet.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、積層磁器コンデンサの製造に使用する誘電体
グリーンシートに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to dielectric green sheets used in the manufacture of multilayer ceramic capacitors.

従来の技術 近年、ラジオ、マイクロカセットレコーダ、を子チュー
ナ、ビデオカメラ等の超小型、薄型軽量電子機器の発展
に伴い、回路素子として使用されるコンデンサの小型、
大容量化が強く要求される工うになってきた。これらの
要求を満足する部品として積層磁器コンデンサが知られ
ている。
Background of the Invention In recent years, with the development of ultra-compact, thin, and lightweight electronic devices such as radios, microcassette recorders, tuners, and video cameras, capacitors used as circuit elements have become smaller and smaller.
There is now a strong demand for higher capacity. A multilayer ceramic capacitor is known as a component that satisfies these requirements.

積層磁器コンデンサの製造方法としては、先ず第3図に
示すごとく誘電体粉末、バインダ、可塑剤および有機溶
剤からなるスラリーを用いてドクターブレード法により
ベースフィルム1上に厚さ数十μmの誘電体層2が形成
された誘電体グリーンシート3を作製する。次にこのグ
リーンシート3上に内部電極4全印刷したものを複数枚
、金型ダイス6中に積み重ねた後、圧着により積層成型
体を作製し、しかる後、チップ状に切断、焼成後。
As shown in Fig. 3, the method for manufacturing a multilayer ceramic capacitor is to first deposit a dielectric layer several tens of micrometers thick on a base film 1 using a doctor blade method using a slurry consisting of dielectric powder, a binder, a plasticizer, and an organic solvent. A dielectric green sheet 3 on which a layer 2 is formed is produced. Next, a plurality of green sheets 3 with all internal electrodes 4 printed thereon are stacked in a mold die 6, and a laminate molded body is produced by pressure bonding, and then cut into chips and fired.

外部電極eを形成して作製されるのが一般的である。(
「絶縁・誘電体セラミックスJ  CMC社発行 塩崎
忠監修 p211〜22了 196゜年刊) 一方さらに大容量化全達成するには誘電体層を薄くする
ことが望まれるが、ドクターブレード法では誘電体層2
の厚みに限度があることから、スラリー粘度をさらに小
さくしてリバースロール法により作製され友薄型シート
が最近提案されている。
It is generally manufactured by forming an external electrode e. (
"Insulating/Dielectric Ceramics J" Published by CMC, supervised by Tadashi Shiozaki, completed p. 211-22, published in 1962] On the other hand, in order to achieve even higher capacity, it is desirable to make the dielectric layer thinner, but in the doctor blade method, the dielectric layer 2
Since there is a limit to the thickness of the slurry, thin sheets have recently been proposed that are made by using a reverse roll method with an even lower slurry viscosity.

発明が解決しようとする課題 ところで、この積層凪器コンデンサに用いられる内部電
極4は、白金、パラジウム、銀−パラジウムなどのいわ
ゆる貴金属粉体である。従ってコスト的にも出来る限り
電極厚みを薄くすることが望ましい。しかしながら前述
のドクターブレード法あるいはリバースロール法により
作製された誘電体グリーンシート3の表面は、第4図に
示すようにかなり凹凸が犬であるため電極層を薄く印刷
しようとしても電極層にヒビ割れなどが生じ、コンデン
サとして実際に有効に働く電極面積が小さくなるなどの
問題がある。また、シート表面の凹凸が大きいと、この
シート表面上に電極ペーストを印刷しても、誘電体層2
と内部電極4層の間に空間が存在しやすくなる。従って
この電極4が印刷されたシートを複数枚積層し几積層成
型体内には、空気が残留しやすく、これを焼成しても誘
電体層2と電極4層間に剥離現象がおき、歩留りが悪い
ものとなるなどの問題点がある。
Problems to be Solved by the Invention By the way, the internal electrode 4 used in this multilayer quench capacitor is a so-called noble metal powder such as platinum, palladium, silver-palladium, etc. Therefore, it is desirable to make the electrode thickness as thin as possible in terms of cost. However, the surface of the dielectric green sheet 3 produced by the above-mentioned doctor blade method or reverse roll method is quite uneven as shown in Fig. 4, so even if an attempt is made to print a thin electrode layer, the electrode layer will crack. This causes problems such as the area of the electrode that actually works effectively as a capacitor becomes smaller. In addition, if the sheet surface has large irregularities, even if electrode paste is printed on the sheet surface, the dielectric layer 2
A space tends to exist between the inner electrode and the four internal electrode layers. Therefore, air tends to remain in the laminated product formed by laminating a plurality of sheets on which the electrode 4 is printed, and even if this is fired, a peeling phenomenon occurs between the dielectric layer 2 and the electrode 4 layer, resulting in a poor yield. There are problems such as becoming a thing.

本発明は上記問題点に鑑み、厚みの薄い電極層でもグリ
ーンシートの誘電体層に均一に密着性良く形成すること
が可能な積層磁器コンデンサ用グリーンシートを提供し
ようとするものである。
In view of the above-mentioned problems, the present invention aims to provide a green sheet for a multilayer ceramic capacitor, in which even a thin electrode layer can be formed uniformly and with good adhesion to the dielectric layer of the green sheet.

課題を解決するための手段 上記問題点を解決するための本発明のシートは次のよう
なものである。すなわちそれぞれ上面に誘電体層が設け
られたベースフィルムの誘電体層同士を互いに重ね合せ
た後、熱圧着により一方の誘電体層と他方の誘電体層を
一体化するものである。
Means for Solving the Problems The sheet of the present invention for solving the above problems is as follows. That is, after the dielectric layers of the base film each having a dielectric layer provided on its upper surface are superimposed on each other, one dielectric layer and the other dielectric layer are integrated by thermocompression bonding.

作用 本発明では、第1図に示すように互いの誘電体層11a
、11b同士が向い合うように重ね合せ友後いずれか一
力のベースフィルム面102L側から転写ローラ13を
用いた熱圧着により、上記ベースフィルム面1QIL上
の誘電体層111L’i他力の誘電体層11bに転写一
体化する。その後、ベースフィルム10!L’(i7剥
離した面を内部電極の印刷する面14として使用する。
Operation In the present invention, as shown in FIG.
, 11b are stacked so that they face each other, and then the dielectric layer 111L'i on the base film surface 1QIL is bonded by thermocompression using the transfer roller 13 from either one of the base film surfaces 102L side. It is transferred and integrated with the body layer 11b. After that, base film 10! L'(i7) The peeled surface is used as the surface 14 on which internal electrodes are printed.

これによりベースフィルム面の平滑性がそのまま利用で
きるため第2図に示すごとく内部電極の形成面は極めて
平担であり、薄い内部電極17層でもシートの凹凸によ
る切断がなく均一に形成することが可能となる。
As a result, the smoothness of the base film surface can be used as is, so the surface on which the internal electrodes are formed is extremely flat, as shown in Figure 2, and even the 17th layer of thin internal electrodes can be formed uniformly without cutting due to unevenness of the sheet. It becomes possible.

また、第3図に示す従来のドクターブレード法あるいは
リバースロール法でベースフィルム1面上に誘電体層2
が形成されたままのグリーンシート3では、シート3を
室温に放置しておくとシート3に含有されている溶剤な
どが蒸発することからシート3の厚み方向の組成が若干
ずれて特性のばらつきの原因ともなシ長期間シートを保
管するのが困難であυ、特別な環境下で保管する必要が
あった。しかしながら本発明のように2枚以上の誘電体
層11a、11b’j(熱圧着したあと、使用する直前
までベースフィルム101L、10bi張合わせたまま
であると、誘電体層111L、11bはベースフィルム
101.10b面に挾まれ友形の状態であシ、溶剤の蒸
発も阻止でき、長期間放置しておいても組成ずれなどが
起こらないなどの利点がある。また薄いシートの場合、
シート内に時々ピンホールが発生し内部電極17同士で
短絡し歩留りが悪くなるが、本発明では誘電体層11a
In addition, a dielectric layer 2 is coated on one side of the base film using the conventional doctor blade method or reverse roll method shown in FIG.
In the green sheet 3 that is still formed, if the sheet 3 is left at room temperature, the solvent contained in the sheet 3 will evaporate, and the composition in the thickness direction of the sheet 3 will shift slightly, resulting in variations in properties. For this reason, it was difficult to store the sheets for long periods of time, and they had to be stored under special environments. However, as in the present invention, if two or more dielectric layers 11a, 11b'j (after thermocompression bonding, the base films 101L, 10bi are left bonded together until just before use), the dielectric layers 111L, 11b are attached to the base film 101. It has the advantage that it is sandwiched between the .10b planes, prevents the evaporation of the solvent, and does not cause composition shifts even if left for a long time.In addition, in the case of thin sheets,
Pinholes sometimes occur in the sheet, causing short circuits between the internal electrodes 17 and deteriorating the yield. However, in the present invention, the dielectric layer 11a
.

11bの重ね型構造のため、ピンホールの発生率を著し
く低減することが可能となり、生産性の向上が期待出来
る。
Due to the stacked structure of 11b, it is possible to significantly reduce the incidence of pinholes, and an improvement in productivity can be expected.

実施例 以下本発明の実施例について詳しく説明する。Example Examples of the present invention will be described in detail below.

BaTi0 、を主成分とする誘電体粉末100重量部
例対しポリビニルブチラール樹脂22i量部、7タル酸
ジオクチル2重量部を配合し几後、溶剤にテトラヒドロ
フランを用いてボールミルで20時間混練し10〜15
 Cpsの粘度からなるスラリーを作製した。このスラ
リーを脱泡処理後、リバースロール法により厚み60μ
mのポリエステルフィルム上に厚さ16μmの誘電体層
を形成することにより、シートを作製した。かかるシー
トラ2枚用い、互いのシートの誘電体層同士が相対する
ように重ね合わせた後、いずれか一方のベースフィルム
面側から熱圧着を行い厚み30μmのシートを作製し、
これを積層磁器コンデンサ用のグリーンシートとした。
22 parts by weight of polyvinyl butyral resin and 2 parts by weight of dioctyl heptalate were blended with 100 parts by weight of dielectric powder mainly composed of BaTi0, and after cooling, the mixture was kneaded for 20 hours in a ball mill using tetrahydrofuran as a solvent.
A slurry having a viscosity of Cps was prepared. After degassing this slurry, it was rolled to a thickness of 60 μm using the reverse roll method.
A sheet was produced by forming a 16 μm thick dielectric layer on a 16 μm thick polyester film. Using two such sheets, after stacking them so that the dielectric layers of each sheet face each other, thermocompression bonding was performed from the base film side of one of them to produce a sheet with a thickness of 30 μm,
This was used as a green sheet for laminated ceramic capacitors.

なお熱圧着条件は熱ロールを用いて温度180℃、圧力
200Kg10IL”とした。
The thermocompression bonding conditions were a temperature of 180° C. and a pressure of 200 kg 10 IL” using a thermo roll.

かかるグリーンシートのベースフィルム面を剥離した後
、この剥離面に市販のPaペースト(昭栄化学(株)製
 商品名 ML−3724)を用いて、スクリーン印刷
法により3,5 X 1.Ommの形状からなる電極を
形成した。
After peeling off the base film surface of the green sheet, a 3.5×1. An electrode having a shape of 0 mm was formed.

次に、ドクターブレード法により作製したBaTi0 
を主成分とする粉末粒子、ポリビニルブチラール樹脂か
らなる厚み200μmの誘電体グリーンシート上に、前
述の電極を印刷したグリーンシートラ重ね合わせた後、
このグリーンシートのベースフィルム面側から熱ロール
により温度130°C1圧力200 Kg/crtの条
件下で2秒間加熱圧着し、グリーンシートの誘電体層を
転写した。しかる後、グリーンシートのベースフィルム
を剥離シた。次に、上記転写された誘電体層上に電極を
印刷した別のグリーンシート’を先程と同一条件で熱ロ
ールにエリ加熱圧着した後、ベースフィルムを剥離した
。なお内部電極の重なり部分、すなわち積層磁器コンデ
ンサとして有効に働く電極面積は1.4 X 1.Om
mとなるように積層成型した。この工程を10回繰返し
た後、前述の厚み200μmのドクターブレード法で作
製した誘電体グリーンシートを重ね合わせた。次にこの
積層体を、さらに金型プレスを用いて80℃で500K
g/afの条件で圧着した。しかる後、2.4 X 1
.6 mmのチップ形状に切断後、チップ成型体fZr
o2粉末中にまぶしながら1300℃で1時間焼成し友
。なお昇温。
Next, BaTi0 prepared by the doctor blade method
After superimposing a green sheet on which the above-mentioned electrodes were printed on a dielectric green sheet with a thickness of 200 μm consisting of powder particles mainly composed of and polyvinyl butyral resin,
This green sheet was heat-pressed from the base film side for 2 seconds at a temperature of 130° C. and a pressure of 200 kg/crt using a hot roll to transfer the dielectric layer of the green sheet. After that, the base film of the green sheet was peeled off. Next, another green sheet with electrodes printed on the transferred dielectric layer was heated and pressed onto a hot roll under the same conditions as before, and then the base film was peeled off. The overlapping portion of the internal electrodes, that is, the area of the electrodes that effectively function as a multilayer ceramic capacitor, is 1.4 x 1. Om
It was laminated and molded so that it became m. After repeating this process 10 times, the dielectric green sheets prepared by the doctor blade method and having a thickness of 200 μm described above were superimposed on each other. Next, this laminate was further heated to 500K at 80℃ using a mold press.
The pressure bonding was carried out under the conditions of g/af. After that, 2.4 x 1
.. After cutting into a 6 mm chip shape, the chip molded body fZr
Bake at 1300℃ for 1 hour while sprinkling in O2 powder. Furthermore, the temperature is increased.

降温速度は200’Q/hrとし、途中バインダ除去の
ため380℃で10時間保持した。
The temperature decreasing rate was 200'Q/hr, and the temperature was maintained at 380° C. for 10 hours to remove the binder during the process.

このようにして作製したコンデンサの容量全通常の方法
で測定すると共に焼結体の微細構造を走査型電子顕微鏡
で観察することによりデラミネーシg7の有無を確認し
た。なお測定試料数は100ケとした。下記の第1表に
n=100の平均容量、デラミネーションの発生率を示
す。また比較のために従来法として前述と全く同一組成
からなるBaTi0. f主成分とする誘電体粉末から
なる厚み30μmのグリーンシート?ドクタブレード法
を用いて作製し、かかるシーt’e第1図の製造プロセ
スに従い作製した積層磁器コンデンサの容量及びデラミ
ネーションの発生率も合せて第1表に示す。ここで電極
の種類、形状、積層数、焼成条件等は全て同一とした。
The capacitance of the capacitor thus produced was measured by a conventional method, and the presence or absence of delamination G7 was confirmed by observing the fine structure of the sintered body with a scanning electron microscope. The number of samples to be measured was 100. Table 1 below shows the average capacity and delamination incidence for n=100. For comparison, as a conventional method, BaTi0. A green sheet with a thickness of 30 μm consisting of dielectric powder as the main component? Table 1 also shows the capacitance and delamination incidence of a multilayer ceramic capacitor manufactured using the doctor blade method and according to the manufacturing process shown in FIG. Here, the type, shape, number of laminated layers, firing conditions, etc. of the electrodes were all the same.

また表面粗さ計を用いてグリーンシートの印刷面、及び
従来法すなわちドクターブレード法により作製したシー
トの印刷面の表面粗さを測定した。その結果も合せて第
1表に記す。さらにま九本発明及び従来法のシートのピ
ンホール発生率を測定するため10X10afのシート
面積内でのピンホール数を目視により測定した。その結
果も第1表に示す。
Furthermore, the surface roughness of the printed surface of the green sheet and the printed surface of the sheet produced by the conventional method, that is, the doctor blade method, was measured using a surface roughness meter. The results are also listed in Table 1. Furthermore, in order to measure the incidence of pinholes in the sheets of the present invention and the conventional method, the number of pinholes within a sheet area of 10×10af was visually measured. The results are also shown in Table 1.

第  1  表 以上の結果から明らかなように、本発明によるグリーン
シート’に用いて作製した積層磁器コンデンサは内部電
極を印刷する表面が平滑でおることから内部電極厚みが
薄くても電極切れがなくなりコンデンサとして実際に働
く有効な電極面積が犬きぐなる。従って、従来法に比較
して容量の大きなものが得られる。ま几シート表面が平
滑であることから、積層時におけるシート間の密着性が
良好で、かつ均一な積層が可能となり、デラミネーショ
ンの発生を抑制することが出来る。また本発明によるグ
リーンシートは従来法の7−トに比べてピンホール数が
少なくなり、信頼性も著しく向上する。
As is clear from the results in Table 1, the multilayer ceramic capacitor manufactured using the green sheet according to the present invention has a smooth surface on which the internal electrodes are printed, so even if the internal electrodes are thin, the electrodes do not break. The effective electrode area that actually works as a capacitor is important. Therefore, a larger capacity can be obtained compared to the conventional method. Since the surface of the matrix sheet is smooth, the adhesion between the sheets during lamination is good, and uniform lamination is possible, making it possible to suppress the occurrence of delamination. Furthermore, the green sheet according to the present invention has fewer pinholes than the conventional 7-sheet, and its reliability is significantly improved.

なお実施例ではBaTiO3に主成分とする誘電体粉末
を用いiが、5rTi03系、MgTi03− GaT
i03系などのいかなる誘電特性を有するセラミック粉
陣全用いても何らさしつかえない。また、誘電体層の転
写時に熱ロールを用いたが、ヒータを内蔵した熱盤を上
下に動かして熱圧着させても同様の効果が得られる。ま
た本実施例ではホットスタンプシートを2枚重ね念もの
全使用したが、さらに薄いホットスタンプシーt1作製
し、所望する厚みとなるまで複数枚積層したグリーンシ
ートを用いても良い。
In the examples, dielectric powder whose main component is BaTiO3 is used, and i is 5rTi03-based, MgTi03-GaT.
There is no problem in using all ceramic powders having any dielectric properties such as i03 series. Further, although a hot roll was used when transferring the dielectric layer, the same effect can be obtained by moving a hot plate containing a heater up and down for thermocompression bonding. Further, in this embodiment, two hot stamp sheets were used, but a thinner hot stamp sheet t1 may be prepared and a plurality of green sheets laminated until the desired thickness is obtained may be used.

発明の効果 以上述べてき友ように本発明によるグリーンシートは、
それぞれその上面に誘電体層が設けられ几ベースフィル
ムの、前記誘電体層同士を互いに重ね合せた後、熱圧着
により一方の誘電体層を他方の誘電体層上に積層させた
構造からなるものであるので、ピンホール数は大幅に減
少し、また電極印刷面は、ベースフィルムの剥離面を使
用するため極めて平滑である。そのため、内部電極層と
シート表面は均一でしかも密着性よく形成されることか
ら、これを用いた積層S器コンデンサは内部電極切れも
少なくなると共にデラミネーションの発生も抑制でき、
生産性の向上が可能となるなど、その工業的価値は極め
て大なるものがある。
Effects of the Invention As mentioned above, the green sheet according to the present invention has the following advantages:
A structure in which a dielectric layer is provided on the upper surface of each base film, and the dielectric layers are laminated on each other, and then one dielectric layer is laminated on the other dielectric layer by thermocompression bonding. Therefore, the number of pinholes is greatly reduced, and the electrode printing surface is extremely smooth because the peeling surface of the base film is used. Therefore, the internal electrode layer and the sheet surface are formed uniformly and with good adhesion, so a multilayer S-type capacitor using this can reduce internal electrode breakage and suppress the occurrence of delamination.
Its industrial value is extremely great, as it makes it possible to improve productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるグリーンシートの製造プロセスを
説明する図、第2図は本発明によるグリーンシートに電
極を形成した場合の断面図、第3図は従来の積層磁器コ
ンデンサの製造プロセスを説明する図、第4図は従来法
のグリーンシートに電極を形成した場合の断面図である
。 10!L 、 10b・−−−−・ベースフィルム、1
1a。 11b・・・・・・誘電体層、14・・・・・・内部電
極を印刷する面。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第3
Figure 1 is a diagram explaining the manufacturing process of a green sheet according to the present invention, Figure 2 is a cross-sectional view when electrodes are formed on the green sheet according to the present invention, and Figure 3 is a diagram explaining the manufacturing process of a conventional multilayer ceramic capacitor. FIG. 4 is a cross-sectional view of a conventional method in which electrodes are formed on a green sheet. 10! L, 10b・---・Base film, 1
1a. 11b... Dielectric layer, 14... Surface on which internal electrodes are printed. Name of agent: Patent attorney Shigetaka Awano and 1 other person No. 3
figure

Claims (1)

【特許請求の範囲】[Claims] それぞれ上面に、誘電体層が設けられた第1,第2のベ
ースフィルムの前記誘電体層同士を互いに相対するよう
に重ね合せた後、いずれか一方のベースフィルム面側か
ら熱圧着によりその誘電体層を、他の誘電体層に転写一
体化した積層磁器コンデンサ用グリーンシート。
After the dielectric layers of the first and second base films each having a dielectric layer on their upper surfaces are stacked so as to face each other, the dielectric layer is bonded by thermocompression from the side of one of the base films. A green sheet for multilayer ceramic capacitors in which the body layer is transferred and integrated with other dielectric layers.
JP27115588A 1988-10-27 1988-10-27 Green sheet for laminated ceramic capacitor Pending JPH02117118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27115588A JPH02117118A (en) 1988-10-27 1988-10-27 Green sheet for laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27115588A JPH02117118A (en) 1988-10-27 1988-10-27 Green sheet for laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH02117118A true JPH02117118A (en) 1990-05-01

Family

ID=17496103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27115588A Pending JPH02117118A (en) 1988-10-27 1988-10-27 Green sheet for laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH02117118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554413A (en) * 1991-02-28 1996-09-10 Kabushiki Kaisha Toshiba Method of manufacturing electronic device and apparatus for manufacturing the same
JP2799395B2 (en) * 1991-09-13 1998-09-17 ファラデイ・エナジー・ファンデーション・インコーポレーテッド Method of manufacturing motor winding
US6657849B1 (en) 2000-08-24 2003-12-02 Oak-Mitsui, Inc. Formation of an embedded capacitor plane using a thin dielectric

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554413A (en) * 1991-02-28 1996-09-10 Kabushiki Kaisha Toshiba Method of manufacturing electronic device and apparatus for manufacturing the same
JP2799395B2 (en) * 1991-09-13 1998-09-17 ファラデイ・エナジー・ファンデーション・インコーポレーテッド Method of manufacturing motor winding
US6657849B1 (en) 2000-08-24 2003-12-02 Oak-Mitsui, Inc. Formation of an embedded capacitor plane using a thin dielectric
SG115394A1 (en) * 2000-08-24 2005-10-28 Oak Mitsui Inc Formation of a embedded capacitor plane using a thin dielectric

Similar Documents

Publication Publication Date Title
JPH02117118A (en) Green sheet for laminated ceramic capacitor
JPH0396207A (en) Manufacture of laminated ceramic electronic part
JP2756745B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2615477B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH0374820A (en) Manufacture of laminated porcelain capacitor and manufacture of green sheet used therefor
JP3496184B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2615771B2 (en) Green sheets for laminated ceramic capacitors
JP2532626B2 (en) Green sheet for laminated porcelain capacitors
JPS63188926A (en) Manufacture of laminated porcelain capacitor
JPH05101969A (en) Manufacture of monolithic ceramic capacitor
JPS63188927A (en) Manufacture of laminated ceramic electronic component
JP3538308B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2532617B2 (en) Green sheet for laminated porcelain capacitors
JPH02117114A (en) Manufacture of laminated ceramic capacitor
JPH02208915A (en) Manufacture of laminated ceramic electronic part
JPH02117115A (en) Manufacture of laminated ceramic capacitor
JPH0574651A (en) Manufacture of laminated ceramic capacitor
JP2969673B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH0374821A (en) Manufacture of laminated porcelain capacitor, green sheet used therefor and its manufacture
JP2756746B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH0379007A (en) Green sheet for laminated ceramic capacitor and manufacture of laminated ceramic capacitor
JP2671445B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH02126619A (en) Green sheet for laminated porcelain capacitor
JPS63188924A (en) Method of forming electrode of laminated porcelain capacitor
JPH02126620A (en) Electrode sheet