JPH02116040A - Forming metallic mold for optical disk substrate - Google Patents

Forming metallic mold for optical disk substrate

Info

Publication number
JPH02116040A
JPH02116040A JP26813588A JP26813588A JPH02116040A JP H02116040 A JPH02116040 A JP H02116040A JP 26813588 A JP26813588 A JP 26813588A JP 26813588 A JP26813588 A JP 26813588A JP H02116040 A JPH02116040 A JP H02116040A
Authority
JP
Japan
Prior art keywords
stamper
mold
disk substrate
optical disk
active energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26813588A
Other languages
Japanese (ja)
Inventor
Hitoshi Kato
均 加藤
Hisafumi Sekiguchi
関口 尚史
Yoshinori Shimane
島根 義憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP26813588A priority Critical patent/JPH02116040A/en
Publication of JPH02116040A publication Critical patent/JPH02116040A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To improve the optical characteristics of an optical disk substrate to be formed by using a material having the heat conductivity and the linear expansion coefficient equal or approximate to those of a stamper to form a part or the whole of a metallic mold member. CONSTITUTION:The material having the heat conductivity equal or approximate to that of a stamper 2 or the material having the heat conductivity and the linear expansion coefficient equal or approximate to those of the stamper 2 is used to a part or all parts 5-7 and 1 of a metallic mold having a touch to the stamper 2 containing an information pattern. As a result, the resin (optical disk substrate 3) held in a cavity has a reduced degree of a temperature profile even though the temperature is controlled to heat up or cool the metallic mold. Furthermore the coefft. of contraction of the mold is reduced. Thus it is possible to improve the optical characteristics particularly the double refraction index of a disk substrate to be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、音声9画像、情報などを記録し、再生、保存
又は消去可能な光ディスク基板の型造方法であるインジ
ェクション法、コンデレッジ1ン法、イン・ゾエクーシ
1ンーコンデレッシ冒ン法、注型法を問わず、情報・や
ターン付スタンパをクランプする金型に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an injection method and a condensation method, which are methods for manufacturing optical disc substrates that can record, reproduce, store, or erase audio, images, information, etc. This product relates to a mold for clamping a stamper with a turn, regardless of whether it is a molding method or a casting method.

〔従来の技術〕[Conventional technology]

従来より光ディスク基板を製造する方法としては、情報
ノリーン付金属性スタンパを取り付けた金型内に、ポリ
カーゴネートやポリメチルメタクリレート等の熱可塑性
樹脂を射出(インジェクシ璽ン)成形する方法、圧縮(
コンデレッジ璽ン)成形する方法、更にけ両者の長所を
生がし次インジェクシ宵ンーコンデレッションの成形方
法がある。
Conventional methods for manufacturing optical disk substrates include injection molding of thermoplastic resins such as polycargonate and polymethyl methacrylate into a mold equipped with a metal stamper with information stamping, and compression molding.
There is also a method for molding conderesion, and a method for molding conderection that takes advantage of the advantages of both methods.

又、工4キシビニルエステル系の熱硬化性樹脂を用いる
場合には、活性エネルギー線を照射させ硬化させる方法
、加熱により硬化させる方法、更には両者を併用させる
−即ち活性エネルギー線−加熱併用方法等がある。
In addition, when using a polyvinyl ester-based thermosetting resin, a method of curing by irradiating active energy rays, a method of curing by heating, or a combination of both, that is, a method of combining active energy rays and heating. etc.

これらの従来成形法において用いられる金型のキャピテ
イ部には従来より、加工性がよく、耐食性の良いオース
テナイト系ステンレス鋼が用いられている。
Austenitic stainless steel, which has good workability and good corrosion resistance, has been used for the cavity portion of the mold used in these conventional molding methods.

上記オーステナイト系ステンレス鋼は、情報ノ臂ターン
付スタンノ母を固定、取付けする部分に使用する場合、
その適度な硬度(H!1=140〜180)と加工性か
ら精度良くクランプ用リングが製作でき、使用に嶺たっ
ても耐食性が良好な為、比較的好まれて使われる。
When the above austenitic stainless steel is used for the part where the information arm turn and stun mother is fixed and attached,
Due to its moderate hardness (H!1 = 140-180) and workability, clamp rings can be manufactured with high precision, and it has good corrosion resistance even after use, so it is relatively preferred.

しかしながら、光ディスク基板には成形品としての平面
度、粗度1寸法等機械的要求される以外に、複屈接等の
光学的特性が要求される。
However, in addition to mechanical requirements such as flatness and roughness as a molded product, optical disk substrates are also required to have optical properties such as birefringence.

成形用金型を用いて再現性の高い成形品を安定して成形
する際には通常金型の温度調節が必要となる。
In order to stably mold a molded product with high reproducibility using a molding die, it is usually necessary to adjust the temperature of the mold.

そして、前記したオーステナイト系ステンレス鋼製の金
型及びスタンツヤを位置決めし、固定する部材等ヘスタ
ン/IF、特に現在多用されているニッケル製のクラン
プ々を取り付は固定し、金型温度を調節した場合、ステ
ンレス鋼とニッケルの熱伝導率、線膨張係数が相違する
ため、ステンレス鋼とニッケルの両材質に接して構成さ
れるキャピテイ内の樹脂に熱が均一に伝達されない。
Then, the above-mentioned austenitic stainless steel mold and stand gloss were positioned, the fixing members such as Hestan/IF, especially the nickel clamps that are currently widely used, were fixed, and the mold temperature was adjusted. In this case, since the thermal conductivity and coefficient of linear expansion of stainless steel and nickel are different, heat is not uniformly transferred to the resin in the cavity that is in contact with both the stainless steel and nickel materials.

その結果、成形終了後の光ディスク基板には温度ムラに
よる収縮率変化が起り、特に複屈折率等の光学的特性に
好ましくない影響を与える。
As a result, shrinkage rate changes occur in the optical disk substrate after molding due to temperature unevenness, which has an unfavorable effect on optical properties, particularly birefringence.

又、脱型時に型冷却を行なった際、その熱伝導率、線膨
張係数の違いKより、ディスク基板が均一に剥離せず、
その為に基板に模様が生ずることがある。特忙スタンノ
Qの中央穴部が嵌合しスタンパを位置決め固定する念め
の部材がステンレス鋼であるとき忙は、スタンツヤと核
部とに収縮率の差によるブタが生じ、その結果スタンツ
ヤがわずかではあるが移動し、ディスク基板とスタンパ
との間に層間ズレを生ずる恐れがある又、その部分、す
なわちディスク基板の中央の穴部近辺に模様、中ズ、汚
れが生じ島<、光学的特性を悪化させる。
Also, when the mold is cooled during demolding, the disc substrate cannot be peeled off uniformly due to the difference in thermal conductivity and coefficient of linear expansion.
As a result, patterns may appear on the substrate. When the center hole of the Tokushu Stunno Q fits and the material used to position and fix the stamper is made of stainless steel, a difference in shrinkage rate occurs between the stamper and the core, resulting in a slight difference in the stamper's shine. However, the movement may cause interlayer misalignment between the disk substrate and the stamper.Also, patterns, cracks, and dirt may occur in that area, that is, near the center hole of the disk substrate, resulting in defects in optical characteristics. worsen.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

本発明は上記従来技術の問題点Kfiみ1元ディスク基
板め成形時における金型の加熱、冷却等の金型温度調節
を行なってても、キャビティ内の樹脂(光ディスク基板
)K温度ムラが生じ難く、又、金型の収縮率の差が少な
く光学的特性、特に複屈折率において良好な光ディスク
基板成形用金型を提供すること目的とする。
The present invention solves the above-mentioned problems of the prior art. Even if the temperature of the mold is controlled such as heating and cooling during molding of a single disk substrate, unevenness in the temperature of the resin (optical disk substrate) in the cavity occurs. It is an object of the present invention to provide a mold for molding an optical disk substrate that is difficult to use, has a small difference in mold shrinkage rate, and has good optical properties, particularly birefringence.

〔課題を解決する九めの手段〕[Ninth means to solve the problem]

上記課題を解決するための本発明は、情報パターン付ス
タンノ譬に接する金型の一部又は全部にスタンツヤの熱
伝導率と同じ、ないしは該部に近い値を有する材料を、
又、スタンツヤの熱伝導率及び線膨張係数と同じな込し
はそれに近い材料を適用し友金型を用いることを特徴と
する。
In order to solve the above problems, the present invention uses a material having a thermal conductivity equal to or close to the thermal conductivity of the stun gloss for part or all of the mold that is in contact with the information patterned stun gloss.
In addition, it is characterized by applying a material that has the same thermal conductivity and coefficient of linear expansion as Stantsuya, and using a friend mold.

例えば、クランプ4がニッケルである場合には、該スタ
ンツヤ忙接する金型の一部又は全部を銅−アルミ合金、
或いは工業用純鉄で構成する。
For example, when the clamp 4 is made of nickel, part or all of the mold that the clamp 4 contacts is made of a copper-aluminum alloy.
Alternatively, it is made of industrial pure iron.

なお、本発明にかいて、金型の一部を構成するとは、他
の材料の表面部をメツ中等による被覆、薄板を積層した
場合も含むものである。勿論位置的表部分をも含むもの
である。
Note that, in the present invention, forming a part of the mold includes cases where the surface portion of another material is coated with metal or the like, or where thin plates are laminated. Of course, it also includes a positional table part.

なお、工業用純鉄を用いる場合には、耐食性においては
他の炭素鋼に較べて良好であるが、硬度の面で問題があ
るが、表面処即、例えばメツキ処理すればよ−。
Note that when industrial pure iron is used, it has better corrosion resistance than other carbon steels, but there is a problem with hardness, but it can be treated by surface treatment, for example, plating.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す注型成形用金型の部分
断面図を示している。図に示す装置では、メタン” (
2)は垂直方向に設置され、キャピテイ内への活性エネ
ルギー硬化性樹脂の注入は図示しない上方の注入口より
行なう。このような構成は樹脂の内部に抱き込んだ気泡
を上方に集めることができ有利である。
FIG. 1 shows a partial sectional view of a cast molding die showing an embodiment of the present invention. In the apparatus shown in the figure, methane” (
2) is installed vertically, and the active energy curable resin is injected into the cavity through an upper injection port (not shown). Such a configuration is advantageous because air bubbles trapped inside the resin can be collected upward.

クランプ?(2)はスタンノQi17’レート(1)の
中央部に設けられ九外ブツシュ(5)の端部忙設けたス
タンパ々位置決め突部(9)に芯合せして装着されると
とも和、スタンパ保持プレート(1)K埋設した磁石(
図示せず)又はバキューム手段(同じく図示せず)Kよ
りて固定される。前記外プツシ、(5)の内方にはスラ
イド可能な中ブツシュ(6)が設けられ、外プツシ、(
5)と中プツシ&(6)の間に、N2等の不活性ガスの
ガス流路(10)が形成されている。このガス流路は後
記するディスク基板の離型の為に使用する。中ブツシュ
(6)の内方にはさらにセンターブツシュ(7)が中プ
ツシ、(6)とは独立してスライド可能に設けられてい
る。このセンターブツシュ(7)内には上記ガス流路(
10)とけ別系統のガス流路(11)が設けられている
。このガス流路も後記するディスク基板(3)の離型の
九めに使用するものである。
Clamp? (2) is installed in the center of the Stuno Qi17' plate (1), and is aligned with the stamper positioning protrusion (9) provided at the end of the outer bush (5). Holding plate (1) K embedded magnet (
(not shown) or vacuum means (also not shown) K. A slidable middle bush (6) is provided inside the outer pusher (5), and the outer pusher (5) is provided with a slidable middle bush (6).
A gas passage (10) for an inert gas such as N2 is formed between the inner pusher (5) and the inner pusher (6). This gas flow path is used for releasing the disk substrate from the mold, which will be described later. A center bush (7) is further provided inside the middle bush (6) so as to be slidable independently of the middle bush (6). Inside this center bush (7) is the gas flow path (
10) A separate gas flow path (11) is provided. This gas flow path is also used for releasing the disk substrate (3), which will be described later.

センターブツシュ(7)の端部は成形すべきディスク基
板(3)の中心部の穴の径を規定する径を持っていると
ともに、第2図で示する離型においてディスク基板(3
)とガラス平板(4)と剥離する几めに逆テーノ9部(
13)を有している。
The end of the center bush (7) has a diameter that defines the diameter of the hole in the center of the disk substrate (3) to be molded, and also has a diameter that defines the diameter of the hole in the center of the disk substrate (3) to be molded.
) and the glass plate (4) and the reverse teno part 9 (
13).

その隣接部には鍔部(12)が設けられ−デ・イスク基
板(3)とスタン、母(2)とを剥離するために設けら
れている。
A flange (12) is provided adjacent to the flange (12) for separating the disc substrate (3) from the stand and motherboard (2).

第2図は、第1図の状態から中ブツシュ(6)及びセン
タープツシ、(7)を図で左方にわずか移動した状態を
示しておシ、このとき、センターブツシュ(7)の端部
の逆チー/母部(13) (約5°)Kよりディスク基
板(3)の中央穴部の縁がひっかかりてセンターブツシ
ュの動きとともわずか左方に引っ張られ、その結果ガラ
ス平板(4)との間にすき間が生ずる。又、センターブ
ツシュの移動ととも、該ブツシュ内のガス流路(11)
から圧力ガス、例えばN2ガスが噴出されディスク基板
(3)とガラス平板(4)とを全面に亘って剥離する。
Figure 2 shows a state in which the middle bushing (6) and center bushing (7) have been moved slightly to the left in the figure from the state shown in Fig. 1. At this time, the end of the center bushing (7) The edge of the center hole of the disk substrate (3) is caught by the reverse chi/mother part (13) (approximately 5 degrees) and pulled slightly to the left with the movement of the center bushing, and as a result, the glass flat plate (4 ). Also, as the center bushing moves, the gas flow path (11) inside the bushing
Pressure gas, for example N2 gas, is ejected from the disk substrate (3) and the glass flat plate (4) to separate them over the entire surface.

第3図は、ガラス平板(4)を退避させた後。Figure 3 shows the view after the glass flat plate (4) has been evacuated.

センターブツシュ(7)のみを第1図の状態よりもやや
右方位置まで移動し、該ブツシュの鍔部(12)により
ディスク基板(3)の中心部を右方向へ押し出し、外プ
ツシ、(5)の端面とスタン、+ (2)の一部から剥
離する。このときガス流路(10)からN2f!スを上
記剥離によりて生じ九すき間に圧送し、ディスク基板(
3)をスタンパや(2)及び金型面から全面剥離する。
Move only the center bushing (7) to a position slightly to the right from the state shown in Fig. 1, push out the center of the disk substrate (3) to the right with the flange (12) of the bushing, and push the outer pushbutton ( 5) The end face and stand are peeled off from a part of + (2). At this time, N2f! from the gas flow path (10)! The disk substrate (
3) is completely peeled off from the stamper, (2) and the mold surface.

脱型したディスク基板(3)は吸着具(14)を持つ九
ロ?ットハンrル(図示せず)によシ他の場所へ移送す
る。
Is the demolded disk substrate (3) a nine-piece holding a suction tool (14)? It is then transported to another location using a manual (not shown).

第1図乃至第3図に示す金型において、スタンパ(2)
111ニツケル、外ブツシュ(5)、中ブツシュ(6)
及びセンターブツシュ(7)は銅−アルミニウム合金で
あるアルミ黄銅で、スタンパ保持プレート(1)は鉄系
の材料で製作されている。
In the mold shown in FIGS. 1 to 3, the stamper (2)
111 Nickel, outer bush (5), middle bush (6)
The center bush (7) is made of aluminum brass, which is a copper-aluminum alloy, and the stamper holding plate (1) is made of iron-based material.

アルミ黄銅はニッケルの熱伝導率(0,14〜0.20
C*l/an−8−’C) Ic近い値(0,14〜0
.16C*l/atrS−℃)を有し、又、ニッケルの
線膨張係数(12〜14 X 10−’/℃ンに近い値
(15〜17X10 ’/l:: )を有している為、
金型を温度調節したとき、キャビティ内の樹脂全体がほ
ぼ均一に加熱され、又冷却される為、成形され念ディス
ク基板の光学的特性は表−1に示すように良好なものと
なる。
Aluminum brass has a thermal conductivity of nickel (0.14 to 0.20
C*l/an-8-'C) Value close to Ic (0,14~0
.. 16C*l/atrS-°C), and has a linear expansion coefficient of nickel (12-14 x 10-'/°C) (15-17 x 10'/l:: ), which is close to that of nickel.
When the temperature of the mold is adjusted, the entire resin in the cavity is heated and cooled almost uniformly, so that the optical properties of the molded disc substrate are good as shown in Table 1.

〔比較例〕[Comparative example]

第4図は、第1図乃至第3図に示す、外ブツシュ(5)
、中ブツシュ(6)、センターブツシュ(7)及び図示
しない外周リングにオステナイト系ステンレスを用いた
場合の光学的特性の影響範囲を図式的に示した図であり
、上記各部材に直接的に接する部分の・みならずその他
の部分にまで影響が及ぶことを示したものである。この
比較例の特性は表−1に示す通シである。
Figure 4 shows the outer bush (5) shown in Figures 1 to 3.
, is a diagram schematically showing the range of influence of optical characteristics when austenitic stainless steel is used for the middle bushing (6), the center bushing (7), and the outer peripheral ring (not shown). This shows that it affects not only the areas in contact with each other, but also other areas. The characteristics of this comparative example are shown in Table 1.

表  −1 〔発明の効果〕 金型部材の一部又は全部をスタンパの有する熱伝導率、
線膨張係数と同じかそれに近い値を有する材質とするこ
とKより、成形し九光ディスク基板の光学的特性を著し
く向上させることができる。
Table 1 [Effect of the invention] Thermal conductivity of the stamper for part or all of the mold member,
By using a material having a coefficient of linear expansion that is the same as or close to it, the optical characteristics of the molded nine-optical disk substrate can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例を示す金型の要部を示す
部分断面図、第2図及び第3図は脱型の状態を示す図、
第4図はディスク基板の光学的特性の影響を図式的に説
明する図である。 1・・・スタン、*保持fレート、2・・・スタンパ、
3・・・ディスク基板、4・・・ガラス平板、5・・・
外ブツシュ、6・・・中ブツシュ、7・・・センターブ
ツシュ。 代理人 弁理士 高 橋 勝 利 第 図 11ガス流路 第 図 11  ガスRR 第 図 第 図 畠−スタンパの接する部
FIG. 1 is a partial cross-sectional view showing the main parts of a mold showing one embodiment of the present invention, FIGS. 2 and 3 are views showing the state of demolding,
FIG. 4 is a diagram schematically explaining the influence of the optical characteristics of the disk substrate. 1... Stun, *hold f rate, 2... Stamper,
3... Disk substrate, 4... Glass flat plate, 5...
Outer button, 6... middle button, 7... center button. Agent Patent Attorney Katsutoshi Takahashi Figure 11 Gas flow path Figure 11 Gas RR Figure Hatake-Stamper contact area

Claims (1)

【特許請求の範囲】 1、情報パターン付スタンパと活性エネルギー線透過性
平板との間に、活性エネルギー線硬化性樹脂を注入し、
これに活性エネルギー線を照射して光ディスク基板を製
造する装置の金型に於いて、情報パターン付スタンパに
接する金型の一部又は全部にスタンパの熱伝導率と同じ
、ないしはそれに近い値を有する材料を用いたことを特
徴とする光ディスク基板成形用金型。 2、スタンパの材料がニッケルであり、該スタンパに接
する金型の一部又は全部が銅−アルミ合金か純鉄である
ことを特徴とする特許請求の範囲第1項に記載の光ディ
スク基板成形用金型。 3、情報パターン付スタンパと活性エネルギー線透過性
平板との間に活性エネルギー線硬化性樹脂を注入し、こ
れに活性エネルギー線を照射して光ディスク基板を製造
する装置の金型に於いて、情報パターン付スタンパに接
する金型の一部又は全部にスタンパの熱伝導率、線膨張
係数が同じ、ないしはそれに近い値を有する材料を用い
たことを特徴とする光ディスク基板成形用金型。
[Claims] 1. An active energy ray-curable resin is injected between the information patterned stamper and the active energy ray-transparent flat plate;
In a mold for a device that manufactures an optical disk substrate by irradiating active energy rays, a part or all of the mold that is in contact with the information patterned stamper has a thermal conductivity that is the same as or close to that of the stamper. A mold for molding an optical disc substrate characterized by using the material. 2. The optical disc substrate molding according to claim 1, wherein the material of the stamper is nickel, and a part or all of the mold in contact with the stamper is made of copper-aluminum alloy or pure iron. Mold. 3. An active energy ray-curable resin is injected between a stamper with an information pattern and an active energy ray-transparent flat plate, and the resin is irradiated with active energy rays to form an optical disc substrate. A mold for molding an optical disk substrate, characterized in that part or all of the mold in contact with the patterned stamper is made of a material having the same thermal conductivity and coefficient of linear expansion as, or close to, those of the stamper.
JP26813588A 1988-10-26 1988-10-26 Forming metallic mold for optical disk substrate Pending JPH02116040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26813588A JPH02116040A (en) 1988-10-26 1988-10-26 Forming metallic mold for optical disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26813588A JPH02116040A (en) 1988-10-26 1988-10-26 Forming metallic mold for optical disk substrate

Publications (1)

Publication Number Publication Date
JPH02116040A true JPH02116040A (en) 1990-04-27

Family

ID=17454380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26813588A Pending JPH02116040A (en) 1988-10-26 1988-10-26 Forming metallic mold for optical disk substrate

Country Status (1)

Country Link
JP (1) JPH02116040A (en)

Similar Documents

Publication Publication Date Title
US6764737B2 (en) Method of producing information recording medium, production apparatus and information recording medium
KR100550711B1 (en) Structure and method for molding optical disks
JPH0457175B2 (en)
US4879082A (en) Method for molding plastic material into disk shaped sabstrate for an optical information record carrier
US20020186649A1 (en) Data storage media and method for producing the same
US5893998A (en) Boundary apparatus for optical component molding
JP2010188701A (en) Mold for molding resin stamper and method for producing resin stamper using the mold
JPH02116040A (en) Forming metallic mold for optical disk substrate
WO2004078446A1 (en) Die for molding disk substrate and method of manufacturing disk substrate
JP3550461B2 (en) Plastic molding method and optical disk manufacturing method
TW499677B (en) Optical recording medium and method of manufacture therefor
JP2001310358A (en) Mold for molding disk substrate
JP2000311397A (en) Metal mold for molding substrate and production of substrate
JP2610558B2 (en) Substrate molding method for disks
EP1308944A2 (en) Method of producing information recording medium, production apparatus and information recording medium
JP3888580B2 (en) Method of manufacturing substrate for recording medium and injection molding apparatus
JP2004195756A (en) Mold for optical disk substrate
JP2008302519A (en) Nanoimprint apparatus and nanoimprint method
JP4228801B2 (en) Recording medium substrate, recording medium, manufacturing method thereof, and recording medium substrate molding apparatus
JPH0345687B2 (en)
JP2001205585A (en) Disc carrying device
JP2005025874A (en) Stamper, molding method for optical information recording medium substrate using it and optical information recording medium substarate molded using it
JPS60151852A (en) Manufacture of digital signal recording and reproducing disk
JPH11291292A (en) Molding die
JPS63206911A (en) Metallic mold device for production of magnetic disk substrate