JPH0345687B2 - - Google Patents

Info

Publication number
JPH0345687B2
JPH0345687B2 JP60148364A JP14836485A JPH0345687B2 JP H0345687 B2 JPH0345687 B2 JP H0345687B2 JP 60148364 A JP60148364 A JP 60148364A JP 14836485 A JP14836485 A JP 14836485A JP H0345687 B2 JPH0345687 B2 JP H0345687B2
Authority
JP
Japan
Prior art keywords
mold
magnetic
thermoplastic resin
temperature
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60148364A
Other languages
Japanese (ja)
Other versions
JPS629921A (en
Inventor
Akihiro Wada
Yukinao Kawazoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP14836485A priority Critical patent/JPS629921A/en
Publication of JPS629921A publication Critical patent/JPS629921A/en
Publication of JPH0345687B2 publication Critical patent/JPH0345687B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、平面性と平滑性に優れたフイラー入
り熱可塑性樹脂射出成形体に関し、更に詳しくは
コンピユーターの外部記憶装置におけるプログラ
ムやデータの記録・保存に使用される硬質の磁
気、光・磁気記録媒体用の基板の用途に特に適し
た熱可塑性樹脂を用いた射出成形体に関する。 [従来の技術] 磁気記録媒体として、円盤状アルミニウム系基
板の両面に下地層を介して磁性層を設けたものが
いわゆるハード・デイスク(リジツド・デイス
ク、硬質磁気記録媒体)としてよく知られてい
る。 このようなハード・デイスクは3000〜3600rpm
といつた高速で回転し、稼動時はフライングヘツ
ドがハード・デイスクの表面を空気力学的に浮い
てハード・デイスクに接触しないがスタート時と
ストツプ時にフライングヘツドがデイスクに接触
する形式(コンタクト・スタート・ストツプ方
式)の他、ヘツドとデイスクに常時非接触である
形式や、ヘツドとデイスクが常時接触したままの
形式がある。これらのいずれの形式であつても、
磁気記録を正確に行なわせるためにはヘツドとデ
イスクとの距離あるいはヘツドとデイスクとの接
触状態を一定にする必要がある。そのためにはデ
イスクの表面に平滑性がなくてはならず、また、
デイスクにソリや波打つたりせず平面性が良好で
ある必要があつた。更に、コンタクト・スター
ト・ストツプ方式では稼動開始時(スタート時)
と稼動終了時(ストツプ時)には、フライングヘ
ツドとデイスクが接触するため、殊にストツプ時
の接触によるヘツドの衝撃、摩擦などにより、磁
性層が基板より摩耗あるいは剥離して磁気特製や
機械的強度の低下や可使用時間の短縮が往々にし
て起こり、そのために基板と磁性層との密着強度
が必要であつた。 そこで、前述の円盤状アルミニウム系基板より
得られるハード・デイスクについてみると、まず
このようなアルミニウム系基板を製造するには、
アルミニウム板からの打抜き、荒削り、焼戻し、
ダイヤモンド切削による鏡面研磨、洗浄、検査等
の非常に繁雑な工程を経なけれならず、いきおい
高価なものとならざるを得なかつた。 また、アルミニウム系基板を用いているために
重くなりデイスクを回転させるのにそれだけ強力
なモーターを使用しなければならなくなり装置の
小型化、コストの低減という点で問題があつた。 また、重量の大きい分だけスタート、ストツプ
時の衝撃も大きくなり、磁性層の剥離を招き易か
つた。 更に、アルミニウムまたはその合金の基板にメ
ツキやスパツタリングで磁性層を設けたデイスク
では、アルミニウム又はその合金よりなる基板
と、磁性層の界面あるいは基板と磁性層の下に設
けられた下地層との界面での腐食が起こり性能低
下につながり問題であつた。 上記のようにアルミニウム系の基板を用いるが
故に生ずる問題点、すなわち、繁雑な製造工程、
重さ、界面での腐食を解決する試みとして、ポリ
エーテルイミドを射出成形することによりデイス
ク基板を得る試みがなされている。 [発明が解決しようとする問題点] ところが、上記ポリエーテルイミド等の基板の
表面平滑性は良好であるが、平面性に多少問題が
あり、しかも、ポリエーテルイミドの熱膨張係数
が50〜60×10-6/℃とアルミニウムの20〜23×
10-6/℃よりもかなり大きく、そのため200℃を
超えない温度でスパツタリングにより金属磁性膜
をポリエーテルイミド基板上に形成せしめた場合
に磁性膜に亀裂が生じ、スパツタリングが適用し
難いという問題があつた。記録密度の大きい磁気
デイスクとするためには、スパツタリング、イオ
ンプレーテイング、真空蒸着などにより金属磁性
薄膜の層を形成させることが有利であるが、この
ようにスパツタリングのような薄膜形成技術が適
用し難いこととなると記録密度の増大は期待し得
ない。 [問題点を解決するための手段及び作用] 本発明は上記の点に鑑みなされたもので、本発
明によれば、0.7%以下の吸湿性、100℃以上の加
熱変形温度、50×10-6/℃以下の線膨張係数であ
る非晶性樹脂に5〜80重量%のフイラーを添加し
た樹脂からなり、平面性がスパン38mmあたり29μ
m以下、平滑性が0.2μm以下であることを特徴と
する熱可塑性樹脂の磁気、光・磁気記録媒体用基
板用途等に適した射出成形体が提供される。 本発明における平面性は板状成形体においては
基準寸法(スパン)38mmあたりの最大高さ(ソリ
やフクレ)を3次元寸法測定器を用いて測定した
もので評価した。 ドーナツ状円板にあつては該円板の円周上のう
ねり、(最大高さ)や中心より半径方向のうねり
(最大高さ)を測定し評価する。測定器としては
(株)小坂研究所製円周うねり測定器、PU−DP10型
等を使用しても良い。円周上のうねり(最大高
さ)測定時にあつては基準寸法(スパン)は特別
に円周上の距離ではなく中心と測定点の距離をい
うものとする。 そして、例えば、半径rmmのドーナツ状円板の
場合は、上記のようにして得られた最大高さ
Xnax(mm)を以下の式により半径38mmのドーナツ
状円板の大きさに換算して、スパン38mmあたりの
ソリ量を平面性を示す数値とするのである。 平面性=Xnax×38/r 半径38mmのドーナツ状円板の場合は当然のこと
ながら上記のようにして測定して得られた最大高
さがそのまま、スパン38mmあたりの平面性を示す
数値となる。 そして、本発明における平滑性とはJIS B
0601に従い、東京精密(株)社製サーフコム550Aを
使用し、触針先端2.5μmR、触針の測定力0.5g
f以下で測定して得られた最大高さ(Rmax)を
いう。 硬質磁気記録媒体用基板として用いた場合、平
面性と平滑性が良好な程磁気ヘツドと硬質磁気記
録媒体の磁性層との距離が一定に保たれ、磁気記
録が高精度に行なわれる。 本発明に係るフイラー入り熱可塑性樹脂射出成
形体は平面性がスパン38mmあたり29μm以下、好
ましくは18μm以下、更に好ましくは6μm以下で
あり、平滑性が0.2μm以下である。上記平面性が
25μmを越えると射出成形体を基板としこれに磁
性層を設て硬質磁気記録媒体として用い回転駆動
させた場合に上下方向の板面の揺れに基づく磁気
ヘツド−磁性層間の距離の変動が大きくなり高精
度の磁気記録が困難になる。また、上記平滑性が
0.2μmを越えると上記と同様の硬質磁気記録媒体
として回転駆動させた場合に板状体表面凹凸に基
づく磁気ヘツド−磁性層間の距離の変動が大きく
なり高精度の磁気記録が困難になる。 本発明の射出成形体に使用される熱可塑性樹脂
としては、金型寸法の成形品再現性が良い、低成
形収縮率であるといつた点より非晶性の樹脂が用
いられる。また、寸法安定性という観点から、吸
湿性、加熱変形温度、線膨張係数が特定の値であ
る樹脂が用いられる。吸湿性についてはASTM
D 570に於て、23℃、24時間の吸水量が0.7%以
下、好ましくは0.35%以下である。加熱変形温度
については、ASTM D 648に於て曲げ応力が
18.6Kg/cm2の時の測定値が100℃以上、好ましく
は140℃以上、より好ましくは170℃以上である。
線膨張係数としてはASTM D 696に従い測定
した値が50×10-6/℃以下、好ましくは15×
10-6/℃〜30×10-6/℃である。 本発明において好ましい熱可塑性樹脂の具体例
としては、ポリエーテルイミド、ポリエーテルス
ルホン、ポリフエニレンエーテル、ポリカーボネ
ート、アクリロニトリル−スチレン共重合体、
ABS樹脂等が挙げられる。 ポリエーテルイミドの一例としては、式 で示される構造単位を有するものが挙げられる。
また、ポリエーテルスルホンの一例としては、式 で示される構造単位を有するものが挙げられる。
また、ポリフエニレンエーテルの一例としては、
式() で示される構造単位を示すものが挙げられる。 本発明におけるフイラーとしては、粉末状、繊
維状、板状等種々の形状のものが適用できる。こ
こで、粉末状のフイラーには球状(ビーズ状)の
フイラーも含まれる。 粉末状フイラーとしては平均粒径50μm以下の
ものが好ましく、より好ましくは20μm以下、更
に好ましくは0.2μm以下である。繊維状フイラー
としては平均径1〜20μmφ、平均長0.1〜6mmの
ものが好ましい。 フイラーの具体例としては、ガラスビーズ、粉
末カーボン、酸化チタン、鉄粉、銅粉等の有機・
無機あるいは金属等の粉体;ガラス繊維、カーボ
ン繊維、銅線、アラミド繊維等の繊維;マイカ、
アルミ箔等の板状体等が挙げられる。これらのフ
イラーは1種あるいは2種以上を使用する。 射出成形体中のフイラーの含有量は5〜80重量
%である。この範囲内ではフイラー添加による効
果すなわち、平面性良好、スパツタリング等の高
温処理時の磁性層のワレの防止等の効果が好適に
発現される。 本発明の成形体は、塗布、メツキ、スパツタリ
ング、イオンプレーテイング、真空蒸着等の方法
により、磁性層を形成させ、更に必要に応じてそ
の上に保護層を設けることにより優れた磁気記録
媒体とすることができる。 本発明のフイラー入り熱可塑性樹脂射出成形体
は、射出成形品表面を形成させるべき金型表面を
予め熱可塑性樹脂の加熱変形温度以上に高周波誘
導加熱しておき射出成形する方法により製造する
ことができる。 金型の表面を熱可塑性樹脂の加熱変形温度以上
に保持したまま金型より離型することは不可能で
あり変形のない所望の成形品を得るためには金型
を冷却し成形品の温度が熱可塑性樹脂の加熱変形
温度より低温に冷却・固化させた状態で金型より
離型する必要がある。ところが射出成形金型は通
常の場合、成形品形状より重量的にはもちろん容
量的にも何倍も大きな鋼鉄製のものであり、加
熱・冷却に多くの熱量と時間を必要とする。そこ
で、加熱するにあたり高周波誘導加熱の原理を利
用すれば、金型の表層部を選択的に加熱すること
ができ、しかも金型表面を急加熱急冷却すること
も可能となる。この方法によれば、金型全体の熱
膨張、収縮等の影響がなくなり、外見上の斑もな
くなる。 ここでいう加熱変形温度とは、JIS K 6871に
規定された方法で測定したものであるが、金型表
面温度を規定する場合は特に曲げ応力が18.6Kg/
cm2になるように試験片に荷重を加えた場合の加熱
変形温度をいう。 ここで、従来の冷却した金型を用いる方法では
なぜ表面平滑な射出成形品が得られなかつたかを
説明する。 従来法では、一般的に熱可塑性樹脂成形品の射
出成形においては熱可塑性樹脂の可塑性を利用
し、換言すればスクリユー等を用いて熱可塑性樹
脂を加熱流動化賦形し、しかる後金型内で冷却固
化することにより成形品を得る事を基本原理とし
ている。すなわち、固化後成形品を金型より離型
して取り出すためには熱可塑性樹脂の加熱変形温
度より冷却し金型外に取り出す。そのため一般的
には金型は加熱変形温度より低く保持する。更に
生産性を挙げるために結露寸前の温度まで冷媒を
利用して金型を冷却することが行なわれている。
金型を冷却し、溶融樹脂の温度等で加熱、蓄熱す
る場合でもその原理上金型温度は熱可塑性樹脂の
加熱変形温度を上まわらないように制御し成形す
る。換言すると金型表面と熱可塑性樹脂が接触す
るとその接触面で熱可塑性樹脂が急速に冷却され
熱可塑性樹脂の流動性が著しく乏しくなるため金
型表面が鏡面状であつても、金型からの転写性が
悪く成形品表面の凹凸が激しい。また充填剤入り
の場合、充填剤と熱可塑性樹脂は総じて相溶性が
良くないため充填剤と熱可塑性樹脂の界面に微少
な空隙ができこれを射出成形した場合シルバース
トリークになると考えられる。すなわち、成形品
表面に充填剤が現出し凹凸が激しく、シルバース
トリーク等が有る、表面の平滑性の良くない成形
品しか得られない。 これに対し、金型表面温度を熱可塑性樹脂の加
熱変形温度以上とする方法によれば、可塑性を保
持したまま成形が可能となり、フローマークやシ
ルバーストリーク等を生じせしめることなく、転
写性良好なため金型鏡面を極めて良好に転写して
極めて平滑な表面を有する射出成形品を得ること
ができ、しかも高周波誘導加熱方法により金型表
面のみを加熱するため生産性を向上させることが
できるのである。この方法により得られる成形品
表面を観察すれば1〜100μmの熱可塑性樹脂表
皮層を形成している。 次にこの方法を図面をまじえて説明する。 まず、第1図に示すように固定側金型と移動側
金型の中間に高周波誘導加熱のインダクターを設
置する。移動側金型と固定側金型との間にインダ
クターをはさみこみ、はさみこまれた状態で高周
波を発振させたところ第2図に示すように、金型
表面(A点やB点)のみ急激に温度が上昇し、金
型内部(C点やD点)の温度は高周波誘導加熱に
よつては温度上昇がほとんどないことが確認でき
る。 第2図の例の場合は金型の冷却水による冷却は
行なつておらず、単純に高周波誘導加熱による金
型の温度分布の経時変化の例を示したものであ
る。しかる後に金型を一度開きインダクターを固
定側及び移動側の金型の間より抜き出し、再度金
型を閉じ、通常の射出成形と同じ要領で充填剤入
り熱可塑性樹脂を射出成形したところ、目的とす
る表面の平滑性が良好で、かつ平面性に優れた射
出成形品が得られた。 [実施例] 次に実施例を挙げて本発明をさらに詳細に説明
する。以下の実施例、比較例における試験方法を
以下に述べる。 平面性 平板状成形体にあつては、スパン38mmの間でフ
クレ、ソリ等の変形量を三次元寸法測定器(三豊
製作所社製AE 122 Micro cord)を使用して測
定した値。 円板状成形体にあつては、円周うねり測定器
((株)小坂研究所製円周うねり測定器PU−DP10型)
を使用し、前記の方法で測定した値(但し、スパ
ン38mmに換算)。いずれの場合も最大ソリ、うね
りをもつて平面性を評価する。 平滑性 JIS B 0601に従い、東京精密(株)社製サーフコ
ム550Aを使用し、触針先端2.5μmR、触針の測
定力0.1gfで得られた最大高さ(Rnax)。 吸湿性 ASTM D 570に置ける、23℃、24時間の吸
水量(%)。 加熱変形温度 ASTM D 648に於て、曲げ応力が18.6Kg/
cm2の時の測定値。 線膨張係数 ASTM D 696に従い測定した値。 実施例 1 平均粒径18μmのガラスビーズ20重量%を含有
するポリエーテルイミド樹脂〔前述の式()で
示される構造単位を有するGE社製ウルテムを通
常のいわゆるデイスク仕様の精密射出成形材で型
締力150トンであり、かつ射出シリンダーとスク
リユーは490℃まで昇温可能にした成形機を用い
て第3図に示す如き外径130mm、厚さ1.9mmで中央
に直径40mmの穴を有するドーナツ盤状の硬質磁気
記録媒体用基板を成形した。該金型の成形品を形
成すべき金型面の平滑性・Rnaxは0.02μmであつ
た。ゲートは、デイスクゲートである。 インダクターは8mm径の銅管を12mm間隔の渦巻
状にドーナツ盤形状にそわせ形づくり、それを3
cmの厚さになるようエポキシ樹脂で注型し、平板
状に固定固化して作製した。 射出成形条件は、前記ガラスビーズ添加ポリエ
ーテルイミド樹脂の温度が420℃になるようにシ
リンダー温度を設定した。前記ガラスビーズ添加
ポリエーテルイミド樹脂を金型に射出する前に上
述のインダクターを金型の間にはさみ、7kHz、
50kWの高周波発振器により、20秒間発振し、し
かる後金型を開きインダクターを金型間より抜き
出し、再度金型を閉じた。その間金型冷却水は金
型内を流れないようにしておく。しかる後通常の
射出成形と同様に金型内にガラスビーズ入りポリ
エーテルイミド樹脂を100Kg/cm2の射出圧で1秒
間射出し、次いで冷却水を通し、30秒間冷却後、
成形品を取り出した。全サイクル時間は80秒であ
つた。ここで得られたドーナツ盤状の成形体の平
面性、平滑性の値を次に示す。 また、他の物性については、金型を所定の試験
方法に適合する形状のものと置き換え、他は上記
ドーナツ盤状成形体の製造時の条件と同様にして
試験片を作成して試験を行なつた。 平面性:5.8μm 平滑性:0.1μm 吸湿性:0.27% 加熱変形温度:207℃ 線膨張係数:30×10-6/℃ また、上記で得られたドーナツ盤状の硬質磁気
記録媒体用基板を120℃、10分間真空容器中で吸
着水分をとり除いた後、クロムをターゲツトとし
て、1.5分間マグネトロンスパツタリングを行う
ことにより下地層付基板を得た。 次に、この下地層の上に、マグネトロンスパツ
タリングにより0.06μm厚のCo80Ni20磁性層を設
けた。このマグネトロンスパツタリングしたハー
ドデイスクの表面を走査型電子顕微鏡で観察した
ところ磁性層が均一に密着しておりキレツ等もな
かつた。さらに0.03μm厚のカーボン保護層を設
けた。 このようにして得た磁気デイスクを用いて、常
法に従い、コンタクト・スタート・ストツプ
(CSS)試験を行つた結果を以下に示す。 CSS回数 出力低下率(%) 10000 0 20000 0 30000 0 50000 0 80000 2 実施例 2、3 実施例1におけるポリエーテルイミド樹脂をポ
リエーテルスルホン樹脂(実施例2)、ポリフエ
ニレンエーテル樹脂(実施例3)に変えて、実施
例と同様にして成形体を得、試験した。結果を次
に示す。なお、マグネトロンスパツタリングした
ハード・デイスクの表面を走査型電子顕微鏡で観
察したところ磁性層が均一に密着しておりキレツ
等もなかつた。
[Industrial Application Field] The present invention relates to a filler-containing thermoplastic resin injection molded product having excellent flatness and smoothness, and more specifically to a hard material used for recording and storing programs and data in external storage devices of computers. The present invention relates to an injection molded article using a thermoplastic resin that is particularly suitable for use as a substrate for magnetic, optical, and magnetic recording media. [Prior Art] As a magnetic recording medium, one in which magnetic layers are provided on both sides of a disc-shaped aluminum substrate via an underlayer is well known as a so-called hard disk (rigid magnetic recording medium). . Such hard disks are 3000-3600rpm
During operation, the flying head aerodynamically floats on the surface of the hard disk and does not touch the hard disk, but when starting and stopping the flying head contacts the disk (contact start).・In addition to the stop type, there are also types in which the head and disk are not in contact with each other at all times, and types in which the head and disk are in constant contact. In any of these formats,
In order to perform magnetic recording accurately, it is necessary to keep the distance between the head and the disk or the state of contact between the head and the disk constant. For this purpose, the surface of the disk must be smooth, and
The disk needed to have good flatness without warping or waving. Furthermore, in the contact start/stop method, at the start of operation (at the start)
At the end of operation (when stopped), the flying head and disk come into contact, so the impact and friction of the head caused by contact, especially when stopped, can cause the magnetic layer to wear out or peel off from the substrate, resulting in damage to the magnetic or mechanical parts. Decrease in strength and shortening of usable life often occur, and for this reason, strong adhesion between the substrate and the magnetic layer is required. Therefore, looking at hard disks obtained from the aforementioned disc-shaped aluminum substrate, first of all, in order to manufacture such an aluminum substrate,
Punching from aluminum plate, rough cutting, tempering,
It had to go through extremely complicated processes such as mirror polishing using diamond cutting, cleaning, and inspection, making it extremely expensive. In addition, since an aluminum-based substrate is used, it is heavy, and a powerful motor must be used to rotate the disk, which poses problems in terms of miniaturization and cost reduction of the device. In addition, the greater the weight, the greater the impact upon starting and stopping, which tends to cause the magnetic layer to peel off. Furthermore, in a disk in which a magnetic layer is provided on a substrate made of aluminum or its alloy by plating or sputtering, the interface between the substrate made of aluminum or its alloy and the magnetic layer, or the interface between the substrate and the underlayer provided under the magnetic layer. This was a problem as corrosion occurred, leading to a decline in performance. As mentioned above, there are problems that arise due to the use of aluminum-based substrates, namely, complicated manufacturing processes,
In an attempt to solve the problems of weight and corrosion at interfaces, attempts have been made to obtain disk substrates by injection molding polyetherimide. [Problems to be Solved by the Invention] However, although the surface smoothness of the substrate made of polyetherimide and the like is good, there are some problems with the flatness, and furthermore, the coefficient of thermal expansion of polyetherimide is 50 to 60. ×10 -6 /℃ and 20 to 23 × of aluminum
10 -6 /°C, and therefore, when a metal magnetic film is formed on a polyetherimide substrate by sputtering at a temperature not exceeding 200°C, cracks occur in the magnetic film, making it difficult to apply sputtering. It was hot. In order to create a magnetic disk with a high recording density, it is advantageous to form a metal magnetic thin film layer by sputtering, ion plating, vacuum evaporation, etc.; If it becomes difficult, no increase in recording density can be expected. [Means and effects for solving the problems] The present invention has been made in view of the above points . It is made of an amorphous resin with a linear expansion coefficient of 6 /℃ or less and a filler of 5 to 80% by weight, and the flatness is 29μ per 38mm span.
Provided is an injection molded article of thermoplastic resin suitable for use as a substrate for magnetic, optical/magnetic recording media, etc., having a smoothness of 0.2 μm or less. Flatness in the present invention was evaluated by measuring the maximum height (warp or bulge) per standard dimension (span) of 38 mm in the plate-shaped molded product using a three-dimensional dimension measuring device. In the case of a donut-shaped disc, the waviness (maximum height) on the circumference of the disc and the waviness (maximum height) in the radial direction from the center are measured and evaluated. As a measuring device
A circumferential undulation measuring device manufactured by Kosaka Laboratory Co., Ltd., model PU-DP10, etc. may be used. When measuring the undulation (maximum height) on the circumference, the reference dimension (span) is not the distance on the circumference but the distance between the center and the measurement point. For example, in the case of a donut-shaped disk with a radius of rmm, the maximum height obtained as above is
X nax (mm) is converted to the size of a donut-shaped disk with a radius of 38 mm using the following formula, and the amount of warpage per span of 38 mm is used as a value indicating flatness. Flatness = X nax ×38/r In the case of a donut-shaped disk with a radius of 38 mm, the maximum height obtained by measuring as above is, of course, the value indicating the flatness around the span of 38 mm. Become. The smoothness in the present invention is defined by JIS B
0601, using Surfcom 550A manufactured by Tokyo Seimitsu Co., Ltd., stylus tip 2.5 μm R, stylus measuring force 0.5 g.
It refers to the maximum height (Rmax) obtained by measuring at f or less. When used as a substrate for a hard magnetic recording medium, the better the planarity and smoothness, the more the distance between the magnetic head and the magnetic layer of the hard magnetic recording medium can be kept constant, and the more accurately magnetic recording can be performed. The filled thermoplastic resin injection molded article according to the present invention has a flatness of 29 μm or less per 38 mm span, preferably 18 μm or less, more preferably 6 μm or less, and a smoothness of 0.2 μm or less. The above flatness
If the thickness exceeds 25 μm, when the injection molded product is used as a substrate and a magnetic layer is provided on it as a hard magnetic recording medium and rotated, the fluctuation in the distance between the magnetic head and the magnetic layer due to the vibration of the plate surface in the vertical direction becomes large. High-precision magnetic recording becomes difficult. In addition, the above smoothness
If it exceeds 0.2 .mu.m, when the same hard magnetic recording medium as mentioned above is driven in rotation, the distance between the magnetic head and the magnetic layer will vary greatly due to the unevenness of the surface of the plate, making it difficult to perform high-precision magnetic recording. As the thermoplastic resin used in the injection molded article of the present invention, an amorphous resin is used because it has good reproducibility of the molded product in mold dimensions and has a low molding shrinkage rate. Furthermore, from the viewpoint of dimensional stability, a resin having specific values for hygroscopicity, heating deformation temperature, and linear expansion coefficient is used. ASTM for hygroscopicity
At D570, water absorption at 23°C for 24 hours is 0.7% or less, preferably 0.35% or less. Regarding heating deformation temperature, ASTM D 648 states that bending stress is
The measured value at 18.6 Kg/cm 2 is 100°C or higher, preferably 140°C or higher, more preferably 170°C or higher.
The coefficient of linear expansion measured according to ASTM D 696 is 50×10 -6 /°C or less, preferably 15×
10 -6 /°C to 30×10 -6 /°C. Specific examples of thermoplastic resins preferred in the present invention include polyetherimide, polyether sulfone, polyphenylene ether, polycarbonate, acrylonitrile-styrene copolymer,
Examples include ABS resin. An example of polyetherimide is the formula Examples include those having a structural unit shown in the following.
In addition, as an example of polyether sulfone, the formula Examples include those having a structural unit shown in the following.
In addition, as an example of polyphenylene ether,
formula() Examples include structural units represented by the following. The filler in the present invention can be in various shapes such as powder, fiber, and plate. Here, the powdered filler also includes spherical (bead-shaped) filler. The powder filler preferably has an average particle diameter of 50 μm or less, more preferably 20 μm or less, and still more preferably 0.2 μm or less. The fibrous filler preferably has an average diameter of 1 to 20 μmφ and an average length of 0.1 to 6 mm. Specific examples of fillers include organic fillers such as glass beads, powdered carbon, titanium oxide, iron powder, and copper powder.
Inorganic or metal powder; fibers such as glass fiber, carbon fiber, copper wire, aramid fiber; mica,
Examples include plate-shaped bodies such as aluminum foil. These fillers may be used alone or in combination of two or more. The content of filler in the injection molded body is from 5 to 80% by weight. Within this range, the effects of adding the filler, such as good flatness and prevention of cracking of the magnetic layer during high-temperature processing such as sputtering, can be suitably achieved. The molded article of the present invention can be made into an excellent magnetic recording medium by forming a magnetic layer by a method such as coating, plating, sputtering, ion plating, or vacuum evaporation, and further providing a protective layer thereon as necessary. can do. The filler-containing thermoplastic resin injection molded article of the present invention can be manufactured by a method in which the surface of the mold in which the surface of the injection molded article is to be formed is previously heated by high-frequency induction to a temperature higher than the heating deformation temperature of the thermoplastic resin, and then injection molded. can. It is impossible to release the mold from the mold while keeping the surface of the thermoplastic resin at a temperature higher than the heat deformation temperature of the thermoplastic resin.In order to obtain the desired molded product without deformation, the mold must be cooled and the temperature of the molded product must be lowered. It is necessary to cool and solidify the resin to a temperature lower than the heating deformation temperature of the thermoplastic resin before releasing it from the mold. However, injection molds are usually made of steel and are many times larger in weight and capacity than the shape of the molded product, and require a large amount of heat and time for heating and cooling. Therefore, if the principle of high-frequency induction heating is used for heating, it is possible to selectively heat the surface layer of the mold, and it is also possible to rapidly heat and cool the mold surface. According to this method, the influence of thermal expansion, contraction, etc. on the entire mold is eliminated, and there is no appearance of unevenness. The heating deformation temperature referred to here is measured by the method specified in JIS K 6871, but when specifying the mold surface temperature, the bending stress is 18.6 kg/
This is the heating deformation temperature when a load is applied to a test piece so that the temperature becomes cm 2 . Here, we will explain why an injection molded product with a smooth surface could not be obtained using the conventional method using a cooled mold. In the conventional method, the plasticity of the thermoplastic resin is generally used in injection molding of thermoplastic resin molded products. In other words, the thermoplastic resin is heated and fluidized using a screw, etc., and then molded into a mold. The basic principle is to obtain molded products by cooling and solidifying. That is, in order to release and take out the molded product from the mold after solidification, it is cooled below the heating deformation temperature of the thermoplastic resin and taken out from the mold. Therefore, the mold is generally maintained at a temperature lower than the heating deformation temperature. Furthermore, in order to increase productivity, the mold is cooled to a temperature on the verge of condensation using a refrigerant.
Even when the mold is cooled and heated and stored at the temperature of the molten resin, in principle the mold temperature is controlled so as not to exceed the heating deformation temperature of the thermoplastic resin. In other words, when the mold surface and thermoplastic resin come into contact, the thermoplastic resin is rapidly cooled at the contact surface, and the fluidity of the thermoplastic resin becomes extremely poor. Transferability is poor and the surface of the molded product is extremely uneven. In addition, in the case of a filler, the filler and thermoplastic resin generally have poor compatibility, so it is thought that minute voids are created at the interface between the filler and the thermoplastic resin, resulting in silver streaks when injection molded. That is, the filler appears on the surface of the molded product, resulting in severe unevenness, silver streaks, etc., and a molded product with poor surface smoothness. On the other hand, according to a method in which the mold surface temperature is higher than the heating deformation temperature of the thermoplastic resin, molding can be performed while retaining the plasticity, and good transferability is achieved without causing flow marks or silver streaks. Therefore, it is possible to transfer the mirror surface of the mold extremely well and obtain an injection molded product with an extremely smooth surface.In addition, since only the mold surface is heated using the high-frequency induction heating method, productivity can be improved. . Observation of the surface of the molded product obtained by this method reveals that a thermoplastic resin skin layer of 1 to 100 μm is formed. Next, this method will be explained with reference to the drawings. First, as shown in FIG. 1, a high-frequency induction heating inductor is installed between the stationary mold and the movable mold. When an inductor was sandwiched between the movable mold and the stationary mold, and a high frequency was oscillated while the inductor was sandwiched, as shown in Figure 2, only the mold surface (points A and B) suddenly changed. It can be confirmed that the temperature increases, and the temperature inside the mold (point C and point D) hardly increases due to high frequency induction heating. In the case of the example shown in FIG. 2, the mold is not cooled with cooling water, but simply shows an example of the change over time in the temperature distribution of the mold due to high-frequency induction heating. After that, the mold was opened, the inductor was extracted from between the fixed and movable molds, the mold was closed again, and the filled thermoplastic resin was injection molded in the same manner as normal injection molding. An injection molded product with good surface smoothness and excellent flatness was obtained. [Example] Next, the present invention will be explained in more detail by giving examples. Test methods in the following Examples and Comparative Examples will be described below. Flatness: For flat molded products, the amount of deformation such as blistering and warping is measured over a span of 38 mm using a three-dimensional dimension measuring device (AE 122 Micro cord manufactured by Mitoyo Seisakusho Co., Ltd.). For disc-shaped compacts, use a circumferential waviness measuring device (Circumferential waviness measuring device PU-DP10 model manufactured by Kosaka Institute Co., Ltd.)
Values measured using the method described above (converted to a span of 38 mm). In either case, flatness is evaluated using maximum warp and waviness. Smoothness Maximum height (R nax ) obtained using Surfcom 550A manufactured by Tokyo Seimitsu Co., Ltd., with a stylus tip of 2.5 μm R and a stylus measuring force of 0.1 gf according to JIS B 0601. Hygroscopicity Water absorption (%) at 23°C for 24 hours under ASTM D 570. At heating deformation temperature ASTM D 648, bending stress is 18.6Kg/
Measured value in cm 2 . Linear expansion coefficient Value measured according to ASTM D 696. Example 1 A polyetherimide resin containing 20% by weight of glass beads with an average particle size of 18 μm [Ultem manufactured by GE, which has a structural unit represented by the above formula (), was molded using a conventional so-called disc specification precision injection molding material. Using a molding machine with a clamping force of 150 tons and an injection cylinder and screw capable of heating up to 490℃, we produced a donut with an outer diameter of 130 mm, a thickness of 1.9 mm, and a hole of 40 mm in diameter in the center, as shown in Figure 3. A disk-shaped hard magnetic recording medium substrate was molded. The smoothness R nax of the surface of the mold on which the molded product was to be formed was 0.02 μm. The gate is a disk gate. The inductor is made by spirally forming an 8mm diameter copper tube into a donut shape at 12mm intervals.
It was made by casting with epoxy resin to a thickness of 1 cm and solidifying it into a flat plate. As for the injection molding conditions, the cylinder temperature was set so that the temperature of the glass bead-added polyetherimide resin was 420°C. Before injecting the glass bead-added polyetherimide resin into the mold, the above-mentioned inductor was sandwiched between the molds, and a 7kHz,
A 50 kW high frequency oscillator oscillated for 20 seconds, then the mold was opened, the inductor was pulled out from between the molds, and the mold was closed again. During this time, make sure that the mold cooling water does not flow inside the mold. Then, as with normal injection molding, polyetherimide resin containing glass beads is injected into the mold for 1 second at an injection pressure of 100 kg/ cm2 , then cooling water is passed through it, and after cooling for 30 seconds,
I took out the molded product. The total cycle time was 80 seconds. The flatness and smoothness values of the donut disc-shaped molded product obtained here are shown below. In addition, for other physical properties, the mold was replaced with one that conformed to the prescribed test method, and other conditions were the same as those used for producing the donut disc-shaped molded product, and test pieces were prepared and tested. Summer. Flatness: 5.8μm Smoothness: 0.1μm Hygroscopicity: 0.27% Heating deformation temperature: 207℃ Linear expansion coefficient: 30×10 -6 /℃ In addition, the donut disk-shaped hard magnetic recording medium substrate obtained above was used. After removing the adsorbed moisture in a vacuum container at 120° C. for 10 minutes, magnetron sputtering was performed for 1.5 minutes using chromium as a target to obtain a substrate with an underlayer. Next, a 0.06 μm thick Co 80 Ni 20 magnetic layer was provided on this underlayer by magnetron sputtering. When the surface of this hard disk subjected to magnetron sputtering was observed using a scanning electron microscope, it was found that the magnetic layer was uniformly adhered to the hard disk, with no cracks or the like. Furthermore, a carbon protective layer with a thickness of 0.03 μm was provided. Using the magnetic disk thus obtained, a contact start stop (CSS) test was conducted according to a conventional method.The results are shown below. CSS frequency output reduction rate (%) 10000 0 20000 0 30000 0 50000 0 80000 2 Examples 2, 3 The polyetherimide resin in Example 1 was replaced with polyether sulfone resin (Example 2), polyphenylene ether resin (Example 3), a molded article was obtained and tested in the same manner as in the example. The results are shown below. When the surface of the hard disk subjected to magnetron sputtering was observed using a scanning electron microscope, it was found that the magnetic layer was evenly adhered to the hard disk, with no cracks or the like.

【表】 実施例 4、5、6 フイラーの種類及び添加量を下記のようにした
以外は実施例1と同様に成形体を得、試験をし
た。結果を以下に示す。
[Table] Examples 4, 5, 6 Molded bodies were obtained and tested in the same manner as in Example 1, except that the type and amount of filler added were changed as shown below. The results are shown below.

【表】 比較例 1 実施例1と同一寸法のアルミニウム−マグネシ
ウム合金(AA 5086)のドーナツ盤状の基板に
クロムをターゲツトとして1.5分間マグネトロン
スパツタリングを行うことにより下地層付基板を
得た。 次に、この下地層の上に、マグネトロンスパツ
タリングにより0.06μm厚のCo78Ni22磁性層を設
け、さらに0.02μm厚のカーボン保護層を設ける
ことにより磁気デイスクを製造した。この磁気デ
イスクのCSS試験の結果を以下に示す。 CSS回数 出力低下率(%) 10000 0 20000 0 30000 7 50000 15 比較例 2 実施例1で用いのと同じポリエーテルイミドを
用い、フイラーを全く添加せず、実施例1と同一
成形機、金型を使用し、樹脂温度400℃、金型温
度100℃、冷却2秒、全成形サイクル45秒、射出
圧100Kg/cm2で成形し成形体を得た。物性を以下
に示す。 平面性:32μm 平滑性:0.1μm 吸湿性:0.26% 加熱変形温度:200℃ 線膨張係数:56×10-6/℃ また、該成形体に実施例1と同条件で磁性層を
つけ電子顕微鏡で観察した結果磁性層にミクロク
ラツクが発生している事を確認した。 CSS回数 出力低下率(%) 10000 0 20000 0 30000 5 50000 14 比較例 3 実施例5で用いたのと同じポリエーテルイミ
ド、フイラーの種類及び添加量の樹脂を用い同一
形成材、金型を使用し、樹脂温度450℃、金型温
度を180℃、冷却80秒、全成形サイクル100秒で成
形し、成形体を得た。 その時の成形体の物性は 平面性 5.5μm 平滑性 6μm であつた。外観は通常のガラス繊維添加ポリエー
テルイミド成形品よりはキレイで平滑ではあるが
平滑性が不足するため、ハードデイスク・ドライ
ブ装置にかけても正確な記録信号の出・入れには
不都合であつた。 [発明の効果] 本発明に係る熱可塑性樹脂射出成形体は、平面
性及び平滑性に優れるため、殊に磁気記録媒体用
の基板の用途に適し、この射出成形体に磁性層を
形成せしめた場合には、基板の平面性、平滑性に
基づき、高精度の磁気記録が可能となる。
[Table] Comparative Example 1 A donut-shaped substrate of an aluminum-magnesium alloy (AA 5086) having the same dimensions as in Example 1 was subjected to magnetron sputtering for 1.5 minutes using chromium as a target to obtain a substrate with an underlayer. Next, a 0.06 μm thick Co 78 Ni 22 magnetic layer was provided on this underlayer by magnetron sputtering, and a 0.02 μm thick carbon protective layer was further provided to produce a magnetic disk. The results of the CSS test for this magnetic disk are shown below. CSS number output reduction rate (%) 10000 0 20000 0 30000 7 50000 15 Comparative example 2 The same polyetherimide used in Example 1 was used, no filler was added, and the same molding machine and mold as Example 1 were used. A molded product was obtained by molding at a resin temperature of 400°C, a mold temperature of 100°C, cooling for 2 seconds, a total molding cycle of 45 seconds, and an injection pressure of 100 kg/cm 2 . The physical properties are shown below. Flatness: 32 μm Smoothness: 0.1 μm Hygroscopicity: 0.26% Heating deformation temperature: 200°C Linear expansion coefficient: 56×10 -6 /°C In addition, a magnetic layer was applied to the molded product under the same conditions as in Example 1, and it was examined under an electron microscope. As a result of observation, it was confirmed that microcracks had occurred in the magnetic layer. CSS frequency output reduction rate (%) 10000 0 20000 0 30000 5 50000 14 Comparative example 3 Using the same polyetherimide, filler type and additive amount of resin as used in Example 5, and the same forming material and mold. The molded product was then molded at a resin temperature of 450°C, a mold temperature of 180°C, a cooling time of 80 seconds, and a total molding cycle of 100 seconds. The physical properties of the molded article at that time were flatness of 5.5 μm and smoothness of 6 μm. Although the appearance is nicer and smoother than ordinary glass fiber-added polyetherimide molded products, the lack of smoothness makes it difficult to accurately input and output recorded signals even when used in hard disk drives. [Effects of the Invention] The thermoplastic resin injection molded article according to the present invention has excellent planarity and smoothness, and is therefore particularly suitable for use as a substrate for magnetic recording media. In some cases, highly accurate magnetic recording is possible based on the flatness and smoothness of the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のフイラー入り熱可塑性樹脂射
出成形体を製造する場合の一製造方法に使用され
る装置の一概念図である。第2図は、第1図に示
す装置での金型の温度分布の一例を示すグラフで
ある。第3図は本発明の成形体の一例としての硬
質磁気記録媒体用基板を示す平面図である。 1は金型における固定側金型、2は移動側金
型、3は高周波発生装置におけるインダクターで
ある。A点、B点は金型の表面、C点、D点は金
型の内部を示す。そして4は基板、5は穴部であ
る。
FIG. 1 is a conceptual diagram of an apparatus used in a manufacturing method for manufacturing a filled thermoplastic resin injection molded article of the present invention. FIG. 2 is a graph showing an example of the temperature distribution of the mold in the apparatus shown in FIG. FIG. 3 is a plan view showing a substrate for a hard magnetic recording medium as an example of the molded article of the present invention. Reference numeral 1 designates a stationary mold, 2 a movable mold, and 3 an inductor in a high frequency generator. Points A and B indicate the surface of the mold, and points C and D indicate the inside of the mold. 4 is a substrate, and 5 is a hole.

Claims (1)

【特許請求の範囲】 1 0.7%以下の吸湿性、100℃以上の加熱変形温
度、5×10-6/℃以下の線膨張係数である非晶性
樹脂に5〜80重量%のフイラーを添加した樹脂か
らなり、平面性がスパン38mmあたり29μm以下、
平滑性が0.2μm以下であることを特徴とする磁
気、光・磁気記録媒体用基板用途に適した熱可塑
性樹脂の射出成形体。 2 フイラーが有機・無機あるいは金属の粉体、
繊維又は板状体の1種又は2種以上の組合せより
なる特許請求の範囲第1項記載の射出成形体。
[Claims] 1. Addition of 5 to 80% by weight of filler to an amorphous resin having a hygroscopicity of 0.7% or less, a heat distortion temperature of 100°C or more, and a linear expansion coefficient of 5×10 -6 /°C or less The flatness is 29 μm or less per 38 mm span.
An injection molded thermoplastic resin body suitable for use as a substrate for magnetic, optical, and magnetic recording media, characterized by a smoothness of 0.2 μm or less. 2 Filler is organic, inorganic or metal powder,
The injection molded article according to claim 1, which is made of one type or a combination of two or more types of fibers or plate-like bodies.
JP14836485A 1985-07-08 1985-07-08 Filler-filled resin injection-molded material whose surface is smooth Granted JPS629921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14836485A JPS629921A (en) 1985-07-08 1985-07-08 Filler-filled resin injection-molded material whose surface is smooth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14836485A JPS629921A (en) 1985-07-08 1985-07-08 Filler-filled resin injection-molded material whose surface is smooth

Publications (2)

Publication Number Publication Date
JPS629921A JPS629921A (en) 1987-01-17
JPH0345687B2 true JPH0345687B2 (en) 1991-07-11

Family

ID=15451110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14836485A Granted JPS629921A (en) 1985-07-08 1985-07-08 Filler-filled resin injection-molded material whose surface is smooth

Country Status (1)

Country Link
JP (1) JPS629921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508896A (en) * 2012-12-31 2016-03-24 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Metallization and surface coating solutions on glass filled high performance amorphous polymer compositions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815822B2 (en) * 2005-03-03 2011-11-16 小野産業株式会社 Method for producing composite thermoplastic resin plated molded article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140226A (en) * 1982-02-15 1983-08-19 Aron Kasei Co Ltd Injection molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140226A (en) * 1982-02-15 1983-08-19 Aron Kasei Co Ltd Injection molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508896A (en) * 2012-12-31 2016-03-24 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Metallization and surface coating solutions on glass filled high performance amorphous polymer compositions

Also Published As

Publication number Publication date
JPS629921A (en) 1987-01-17

Similar Documents

Publication Publication Date Title
JP3066254B2 (en) Heat-insulating mold structure for optical disk injection molding
JPH0241090B2 (en)
KR100550711B1 (en) Structure and method for molding optical disks
JP2008174401A (en) Die for molding glass substrate, method of manufacturing glass substrate, method of manufacturing glass substrate for information recording medium, and method of manufacturing information recording medium
JPH0311005B2 (en)
JPH0345687B2 (en)
JP2000135718A (en) Composite stamper
JP2610558B2 (en) Substrate molding method for disks
JP2525161B2 (en) Glass-like carbon composite material and method for producing the same
JPS62234232A (en) Magnetic disk substrate and its production
JP3807607B2 (en) Manufacturing method and manufacturing apparatus for magnetic recording medium substrate
JPH0370849B2 (en)
JPS63255816A (en) Production of substrate for magnetic disk
JP2594532B2 (en) Magnetic disk and method of manufacturing the same
JPH0546974A (en) Substrate for magnetic disk
JPH0814890B2 (en) Method for manufacturing magnetic disk substrate
JP2001287006A (en) Injection apparatus and method for producing disk base plate
JPH02116040A (en) Forming metallic mold for optical disk substrate
JPH07105043B2 (en) Method for manufacturing magnetic disk substrate
JPH06236544A (en) Substrate of magnetic recording medium, its production and magnetic recording medium
JPH03122006A (en) Carbonaceous material
JPH0366732B2 (en)
US20050003236A1 (en) Magnetic recording medium
JP2003340877A (en) Method for manufacturing recording-medium substrate, recording-medium substrate, recording medium and injection molding device
JPH02189718A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees