JPH0457175B2 - - Google Patents

Info

Publication number
JPH0457175B2
JPH0457175B2 JP61225103A JP22510386A JPH0457175B2 JP H0457175 B2 JPH0457175 B2 JP H0457175B2 JP 61225103 A JP61225103 A JP 61225103A JP 22510386 A JP22510386 A JP 22510386A JP H0457175 B2 JPH0457175 B2 JP H0457175B2
Authority
JP
Japan
Prior art keywords
heat insulating
molding
heating plate
resin
molded part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61225103A
Other languages
Japanese (ja)
Other versions
JPS6378720A (en
Inventor
Eiki Nakamura
Hiroya Fujinawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP61225103A priority Critical patent/JPS6378720A/en
Publication of JPS6378720A publication Critical patent/JPS6378720A/en
Publication of JPH0457175B2 publication Critical patent/JPH0457175B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/06Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using radiation, e.g. electro-magnetic waves, induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/041Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using liquids
    • B29C2035/042Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using liquids other than water
    • B29C2035/043Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using liquids other than water oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0811Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7368Heating or cooling of the mould combining a heating or cooling fluid and non-fluid means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7393Heating or cooling of the mould alternately heating and cooling

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気デイスク用基板等の精密成形
品の製造に使用される成形金型に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a molding die used for manufacturing precision molded products such as magnetic disk substrates.

(従来の技術) 一般に、磁気デイスクや光デイスク用の基板に
は極めて精度の高い表示平滑性が要求される。そ
のため、これらの基板を射出成形により製造する
場合には、キヤビテイ内に樹脂を射出する際に固
定型及び可動型を加熱して成形面を樹脂固化温度
以上に熱しておき、樹脂がキヤビテイ内に充分に
行き渡つた後、各型を冷却して樹脂を固化させ離
型するようにしている。
(Prior Art) Generally, extremely high precision display smoothness is required for substrates for magnetic disks and optical disks. Therefore, when manufacturing these substrates by injection molding, when injecting the resin into the cavity, the fixed mold and the movable mold are heated to heat the molding surface above the resin solidification temperature to prevent the resin from entering the cavity. After the resin is sufficiently distributed, each mold is cooled to solidify the resin and then released from the mold.

上記型の加熱方法の一つに、特開昭57−4748号
公報に開示されているような誘導加熱を応用した
ものがある。上記公報には二種類の方法が開示さ
れている。即ち、第一の方法は、樹脂を射出する
前に、高周波発振装置に接続されたコイルを有す
る金属体(以下、インダクタという。)を可動型
と固定型とで挾み、上記コイルに高周波電流を流
して高周波誘導加熱により成形部を加熱した後、
型開きしてインダクタを除去し、再び型閉じして
キヤビテイ内に樹脂を射出する方法であり、第二
の方法は、可動型と固定型の成形部の背部にそれ
ぞれ上記インダクタを埋め込んでおき、型閉じ状
態において高周波誘導加熱により各成形面を加熱
し、キヤビテイ内に樹脂を射出する方法である。
One of the above-mentioned heating methods uses induction heating as disclosed in Japanese Unexamined Patent Publication No. 57-4748. The above publication discloses two types of methods. That is, in the first method, before injecting the resin, a metal body (hereinafter referred to as an inductor) having a coil connected to a high-frequency oscillator is sandwiched between a movable mold and a fixed mold, and a high-frequency current is applied to the coil. After heating the molding part by high-frequency induction heating,
The method is to open the mold, remove the inductor, close the mold again, and inject the resin into the cavity.The second method is to embed the inductor in the back of the molding part of the movable mold and the fixed mold, respectively. In this method, each molding surface is heated by high-frequency induction heating while the mold is closed, and resin is injected into the cavity.

(発明が解決しようとする問題点) しかしながら、上記誘導加熱方法においてはそ
れぞれ次のような問題があつた。
(Problems to be Solved by the Invention) However, each of the above induction heating methods has the following problems.

第一の方法にあつては、樹脂を射出する前にイ
ンダクタを取り付けたり取り外したりする作業が
必要となつて煩雑であり、又、インダクタを取り
外した後樹脂を射出する間に、加熱した成形部が
冷却されるという欠点があつた。
In the first method, the work of attaching and removing the inductor is necessary before injecting the resin, which is complicated, and the heated molding part is heated while injecting the resin after removing the inductor. The disadvantage was that it was cooled.

第二の方法にあつては、インダクタが成形部に
直接に接触しているので、誘導加熱されるのは各
型の成形部のみならずインダクタにも及ぶので、
熱容量が大きくなり、加熱、冷却に長時間を要し
生産性が悪かつた。
In the second method, since the inductor is in direct contact with the molded part, induction heating is applied not only to the molded part of each mold but also to the inductor.
The heat capacity was large, and heating and cooling took a long time, resulting in poor productivity.

(問題点を解決するための手段) この発明は上記問題点を解消するためになされ
たもので、その要旨は、キヤビテイを構成する金
属製の成形部を有し、成形部の背部に非金属製の
断熱部が形成され、断熱部の成形部側に冷却通路
が設けられ、断熱部の背部に誘導加熱用コイルが
配置されていることを特徴とする成形金型にあ
る。
(Means for Solving the Problems) This invention has been made to solve the above problems, and its gist is to have a molded part made of metal constituting the cavity, and a non-metallic molded part on the back of the molded part. The molding die is characterized in that a heat insulating part made of aluminum is formed, a cooling passage is provided on the molding part side of the heat insulating part, and an induction heating coil is arranged at the back of the heat insulating part.

(作用) 誘導加熱用コイルに高周波電流を流すと成形部
に誘導電流が生じ、成形部は誘導加熱される。コ
イルと成形部の間に介在する断熱部は非金属製で
あるので誘導電流は生じず加熱されない。そし
て、この断熱部によつて断熱部よりも背部への熱
の伝達が遮断される。したがつて成形部だけが効
率的に短時間で加熱される。
(Function) When a high frequency current is passed through the induction heating coil, an induced current is generated in the molded part, and the molded part is heated by induction. Since the heat insulating part interposed between the coil and the molded part is made of nonmetallic material, no induced current is generated and the heat insulating part is not heated. This heat insulating part blocks heat transfer to the back part more than the heat insulating part. Therefore, only the molded part is efficiently heated in a short time.

又、上記加熱状態においてキヤビテイ内に樹脂
を射出した後、誘導加熱を停止し、冷却通路内に
冷媒を流通させて成形部を冷却し、キヤビテイ内
の樹脂を冷却する。この時、冷媒はほぼ直接的に
成形部に接触するので、成形部及び樹脂は速やか
に冷却される。
Further, after the resin is injected into the cavity in the heated state, the induction heating is stopped, and the molded part is cooled by circulating a refrigerant in the cooling passage, thereby cooling the resin in the cavity. At this time, since the refrigerant almost directly contacts the molded part, the molded part and the resin are quickly cooled.

したがつて、成形部の加熱、冷却サイクルの所
要時間を短縮することができ、生産性が向上す
る。
Therefore, the time required for heating and cooling cycles of the molding section can be shortened, and productivity is improved.

(実施例) 以下、この発明の一実施例を第1図から第3図
までの図面に基づいて説明する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described based on the drawings from FIG. 1 to FIG. 3.

第1図において、符号20は成形金型の成形部
ユニツトであり、成形部ユニツト20は金属製の
円筒状リングコア1を有している。リングコア1
の外周端部には段差部1aが形成され、この段差
部1aと同じ側に中心方向に突出する突起部1b
が形成されている。
In FIG. 1, reference numeral 20 denotes a molding unit of a molding die, and the molding unit 20 has a cylindrical ring core 1 made of metal. ring core 1
A step portion 1a is formed at the outer peripheral end of the step portion 1a, and a protrusion portion 1b protrudes toward the center on the same side as the step portion 1a.
is formed.

上記リングコア1の突起部1bの中心側には加
熱板2が嵌着されている。加熱板2は金属製であ
り、円盤状をなし、厚さは上記突起部1bよりも
厚く、中央には孔2aが形成されている。
A heating plate 2 is fitted onto the center side of the projection 1b of the ring core 1. The heating plate 2 is made of metal, has a disk shape, is thicker than the projection 1b, and has a hole 2a formed in the center.

上記リングコア1と加熱板2は第1図において
右側表面を面一にされ、各右側表面は鏡面仕上げ
にされていて、極めて精度の高い平滑性を有して
いる。
The ring core 1 and the heating plate 2 have their right surfaces flush with each other in FIG. 1, and each right surface has a mirror finish and has extremely high precision smoothness.

尚、上記リングコア1と加熱板2により成形部
が構成され、リングコア1と加熱板2の上記右側
表面が成形面3となる。
The ring core 1 and the heating plate 2 constitute a molding section, and the right surfaces of the ring core 1 and the heating plate 2 serve as the molding surface 3.

又、リングコア1の内部であつて加熱板2の背
部(第1図中、加熱板2の左側)にはセラミツク
ス製(SiC)の断熱部材4(断熱部)が配置さ
れ、等配分された四本のボルト5により加熱板2
に固定されている。
Furthermore, inside the ring core 1, on the back of the heating plate 2 (on the left side of the heating plate 2 in FIG. Heating plate 2 by bolt 5
is fixed.

上記断熱部材4の素材であるセラミツクス
(SiC)は機械的強度、耐衝撃性、耐熱衝性に優
れ、高周波吸収性が低く、更に低伝熱性、高絶縁
性、快削性を有している。
Ceramics (SiC), which is the material of the heat insulating member 4, has excellent mechanical strength, impact resistance, and thermal shock resistance, low high frequency absorption, and furthermore, has low heat conductivity, high insulation properties, and free machinability. .

上記断熱部材4は円盤状をなし、中央には上記
加熱板2の孔2aと同径の孔4aが形成されてい
る。断熱部材4には加熱板2と接する側に、断面
U字形をなす内側溝6aと外側溝6bが同心状に
形成されている。上記外側溝6bは、第2図に示
すように、図中上部及び下部において左右に分離
されていて、又、内側溝6aは図中下部において
左右に分離されている。そして、左右の下部にお
いて、それぞれ外側溝6bと内側溝6aとが接続
されている。
The heat insulating member 4 has a disk shape, and a hole 4a having the same diameter as the hole 2a of the heating plate 2 is formed in the center. In the heat insulating member 4, an inner groove 6a and an outer groove 6b having a U-shaped cross section are formed concentrically on the side in contact with the heating plate 2. As shown in FIG. 2, the outer groove 6b is separated into left and right parts at the upper and lower parts of the figure, and the inner groove 6a is separated into left and right parts at the lower part of the figure. The outer groove 6b and the inner groove 6a are connected to each other at the left and right lower portions.

上記内側溝6aと外側溝6bは加熱板2によつ
て閉断面とされ、その内部は冷却通路7となる。
The inner groove 6a and the outer groove 6b are made into a closed cross section by the heating plate 2, and the inside thereof becomes a cooling passage 7.

又、リングコア1及び断熱部材4には、第2図
に示すように、リングコア1の上部外周面から中
心方向に向かつて、外側溝6bの左右の上部終端
に至る冷媒入口通路8aと冷媒出口通路8bが形
成されている。この冷媒入口通路8aと冷媒出口
通路8bは冷媒供給装置(図示しない)に接続さ
れており、上記冷却通路7を流通する冷媒は温度
制御装置(図示しない)によつて所望の温度に制
御される。
Furthermore, as shown in FIG. 2, the ring core 1 and the heat insulating member 4 have a refrigerant inlet passage 8a and a refrigerant outlet passage extending from the upper outer circumferential surface of the ring core 1 toward the center and reaching the left and right upper ends of the outer groove 6b. 8b is formed. The refrigerant inlet passage 8a and the refrigerant outlet passage 8b are connected to a refrigerant supply device (not shown), and the refrigerant flowing through the cooling path 7 is controlled to a desired temperature by a temperature control device (not shown). .

断熱部材4には、加熱板2の内端に対向する部
分と外端に対向する部分に、Oリング溝4b,4
cが形成され各Oリング溝4b,4cにはOリン
グ9a,9bが装着され、上記冷却通路7を流通
する冷媒をシールしている。
The heat insulating member 4 has O-ring grooves 4b, 4 in a portion facing the inner end of the heating plate 2 and a portion facing the outer end.
O-rings 9a and 9b are attached to the respective O-ring grooves 4b and 4c to seal the refrigerant flowing through the cooling passage 7.

更に、リングコア1の内部であつて、上記断熱
部材4の背部(第1図中、断熱部材4の左側)に
は、誘導加熱用コイルとしての銅パイプ10が螺
旋状に配置され、この銅パイプ10の一番外側の
一端10aと一番内側の一端10bは図示しない
高周波発振装置に接続されている。銅パイプ10
の背部(第1図中、銅パイプ10の左側)及び上
下部には絶縁部材11が固定されており、絶縁部
材11の中央も加熱板2の孔2aと同径の孔11
aが形成されている。
Furthermore, inside the ring core 1, on the back of the heat insulating member 4 (on the left side of the heat insulating member 4 in FIG. 1), a copper pipe 10 serving as an induction heating coil is arranged in a spiral shape. One end 10a on the outermost side and one end 10b on the innermost side of 10 are connected to a high frequency oscillator (not shown). copper pipe 10
An insulating member 11 is fixed to the back (the left side of the copper pipe 10 in FIG. 1) and the upper and lower parts of the insulating member 11, and the center of the insulating member 11 also has a hole 11 having the same diameter as the hole 2a of the heating plate 2.
a is formed.

上記成形部ユニツト20を一対用意し、成形面
3を互いに対向させて、それぞれ固定型と可動型
の基台(いずれも図示しない)に固定する。
A pair of molding unit units 20 are prepared and fixed to fixed and movable bases (none of which are shown) with their molding surfaces 3 facing each other.

尚、上記固定型の成形部ユニツト20の加熱板
2及び断熱部材4及び絶縁部材11の孔2a,4
a,11aにはスプルブツシユ(図示しない)が
挿入固定され、可動型の成形部ユニツト20の加
熱板2及び断熱部材4及び絶縁部材11の各孔2
a,4a,11aにはセンタコア(図示しない)
が挿入固定されている。
Note that the heating plate 2, the heat insulating member 4, and the holes 2a, 4 in the insulating member 11 of the fixed molding unit 20 are
A sprue bush (not shown) is inserted and fixed in a and 11a, and each hole 2 of the heating plate 2, the heat insulating member 4, and the insulating member 11 of the movable molding unit 20
a, 4a, 11a have center cores (not shown)
The insertion has been fixed.

そして、固定型と可動型とが閉じた状態におい
て、両成形部ユニツト20の成形面3の間にキヤ
ビテイ(図示しない)が形成される。
When the fixed mold and the movable mold are closed, a cavity (not shown) is formed between the molding surfaces 3 of both molding unit units 20.

上述構成において、磁気デイスク用基板を成形
した場合について説明する。
A case will be described in which a magnetic disk substrate is molded in the above configuration.

固定型と可動型を閉じてキヤビテイを形成し、
冷却通路7内に冷媒としての油を流通させ、各成
形部ユニツト20の成形面3が130℃になるよう
に加熱する。この時、油は加熱板2に直接接触し
ているので、冷媒と加熱板2との間の熱伝達は極
めてスピーデイに行なわれる。又、加熱板2とリ
ングコア1との接触面を介してリングコア1へも
熱伝達される。一方、断熱部材4は熱伝達率の低
いセラミツクス製であるので、断熱部材4よりも
背部へ熱が拡散することがない。
Close the fixed mold and movable mold to form a cavity.
Oil as a refrigerant is passed through the cooling passage 7, and the molding surface 3 of each molding unit 20 is heated to 130°C. At this time, since the oil is in direct contact with the heating plate 2, heat transfer between the refrigerant and the heating plate 2 occurs extremely quickly. Heat is also transferred to the ring core 1 via the contact surface between the heating plate 2 and the ring core 1. On the other hand, since the heat insulating member 4 is made of ceramics having a low heat transfer coefficient, heat does not diffuse further to the back than the heat insulating member 4.

次に、油の流通を停止して、高周波発振装置に
より銅パイプ10に出力15Kw,400kHzの高周波
電流を流し、リングコア1及び加熱板2に誘導電
流を生じさせ、各成形面3が200℃になるように
誘導加熱する。この時、非金属のセラミツクス製
である断熱部材4及び冷却通路7内の油には誘導
電流が生ぜず、断熱部材4及び油が誘導加熱され
ることはない。即ち、誘導加熱されるのはリング
コア1と加熱板2という限られた部分だけである
ので、スピーデイに加熱することができる。しか
も断熱部材4の存在により、リングコア1と加熱
板2よりも背部側に熱が拡散するのが防止され
る。
Next, the flow of oil is stopped, and a high-frequency current with an output of 15 Kw and 400 kHz is passed through the copper pipe 10 using a high-frequency oscillator to generate an induced current in the ring core 1 and the heating plate 2, so that each molding surface 3 reaches 200°C. Induction heating is performed to achieve this. At this time, no induced current is generated in the heat insulating member 4 made of nonmetallic ceramics and the oil in the cooling passage 7, and the insulating member 4 and the oil are not heated by induction. That is, since only a limited portion of the ring core 1 and the heating plate 2 are heated by induction, heating can be performed quickly. Furthermore, the presence of the heat insulating member 4 prevents heat from diffusing toward the back side of the ring core 1 and the heating plate 2.

尚、この実施例においては、成形面3の温度を
130℃から200℃に昇温するための所要時間は5秒
であつた。
In this example, the temperature of the molding surface 3 is
The time required to raise the temperature from 130°C to 200°C was 5 seconds.

そして、誘導加熱により成形面3を200℃に維
持したまま、キヤビテイ内に樹脂を射出する。こ
の時、成形面3が樹脂固化温度以上の極めて高温
になつているので、樹脂は高流動性が維持されて
キヤビテイ内の隅々に流れ、成形面3に密に接す
る。
Then, resin is injected into the cavity while the molding surface 3 is maintained at 200° C. by induction heating. At this time, since the molding surface 3 is at an extremely high temperature higher than the resin solidification temperature, the resin maintains high fluidity and flows to every corner of the cavity, coming into close contact with the molding surface 3.

この後、銅パイプ10への高周波電流の流れを
停止するとともに、冷却通路7内に油を流通させ
て、各成形面3を再び130℃に冷却する。この冷
却によつて樹脂は固化する。
Thereafter, the flow of high frequency current to the copper pipe 10 is stopped, and oil is made to flow in the cooling passage 7 to cool each molding surface 3 to 130° C. again. This cooling solidifies the resin.

そして、固定型と可動型を開き、キヤビテイ内
で固化された製品を取り出す。
Then, the fixed mold and the movable mold are opened and the solidified product inside the cavity is taken out.

尚、この実施例において、誘導加熱による加熱
開始から製品取り出しまでの所要時間は約60秒で
あつた。
In this example, the time required from the start of induction heating to the time of product removal was approximately 60 seconds.

このようにして成形された磁気デイスク用基板
は、表面が極めて平滑で、そりや変形等の歪みが
極めて少ないものであつた。
The magnetic disk substrate formed in this manner had an extremely smooth surface and had extremely little distortion such as warping or deformation.

尚、第3図のグラフは上記実施例における成形
面3の経時的な温度推移を示したもので、縦軸に
成形面3の温度をとり、横軸に時間をとつてい
る。図中、A点は誘導加熱開始点であり、B点は
樹脂射出開始点であり、C点は製品取り出し点で
ある。
The graph in FIG. 3 shows the temperature change over time of the molding surface 3 in the above example, and the vertical axis represents the temperature of the molding surface 3, and the horizontal axis represents time. In the figure, point A is the starting point of induction heating, point B is the starting point of resin injection, and point C is the point of product removal.

この発明は上記実施例に制約されず種々の態様
が可能である。
This invention is not limited to the above-mentioned embodiments, and various embodiments are possible.

例えば、断熱部はAl2O3,SiN,C等のセラミ
ツクス製であつてもよいし、更に、セラミツクス
製ではなく、プラスチツクス製であつてもよい
し、又、セラミツクスとプラスチツクスとの層状
複合材であつてもよい。
For example, the heat insulating part may be made of ceramics such as Al 2 O 3 , SiN, C, etc., it may also be made of plastics instead of ceramics, or it may be made of a layered structure of ceramics and plastics. It may also be a composite material.

又、断熱部の表面に、蒸着又はスパツタリング
又はイオンプレーテイング等の方法により5μ〜
20mmの厚さの金属製薄膜を形成し、この金属製薄
膜を成形部としてもよい。この場合には、冷却通
路は断熱部の内部において可能な限り金属製薄膜
近くにトンネル状に設ければよい。
In addition, on the surface of the heat insulating part, a layer of 5 μm or more is applied by vapor deposition, sputtering, ion plating, etc.
A thin metal film having a thickness of 20 mm may be formed and this thin metal film may be used as the molded part. In this case, the cooling passage may be provided in the form of a tunnel as close as possible to the metal thin film inside the heat insulating section.

更に、冷却通路内を流通させる冷媒は水や水蒸
気であつてもよい。
Furthermore, the refrigerant flowing through the cooling passage may be water or steam.

(発明の効果) 以上説明したように、この発明によれば、金属
製の成形部と誘導加熱用コイルとの間に非金属製
の断熱部を形成したので、誘導加熱の対象となる
成形部を極めて小さくすることができ、その結
果、熱容量を小さくすることができる。更に、断
熱部により背部への熱の拡散が防止できる。した
がつて、成形部の加熱を極めて効率的に短時間で
行うことができる。
(Effects of the Invention) As explained above, according to the present invention, since the non-metallic heat insulating part is formed between the metal molded part and the induction heating coil, the molded part to be subjected to induction heating is can be made extremely small, and as a result, the heat capacity can be made small. Furthermore, the heat insulating portion can prevent heat from dispersing to the back. Therefore, the molding part can be heated extremely efficiently and in a short time.

又、断熱部の成形部側に冷却通路が設けられて
いて、冷媒が成形部にほぼ直接的に接触するの
で、成形部の冷却を極めて効率的に短時間に行う
ことができる。
Further, since the cooling passage is provided on the molding part side of the heat insulating part and the refrigerant comes into almost direct contact with the molding part, the molding part can be cooled extremely efficiently and in a short time.

その結果、成形部の加熱、冷却サイクルの所要
時間を短縮でき、生産性を向上させることができ
る。
As a result, the time required for heating and cooling cycles of the molding section can be shortened, and productivity can be improved.

又、キヤビテイ内に樹脂を射出する際に、成形
部の温度を樹脂固化温度以上に維持することがで
きるので、極めて高品質の製品を成形することが
できる。
Further, when injecting the resin into the cavity, the temperature of the molding part can be maintained at a temperature higher than the resin solidification temperature, so that extremely high quality products can be molded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図までの図面はこの発明の一実
施例を示すものであり、第1図は第2図−断
面図、第2図は成形金型の要部正面図、第3図は
成形部の温度推移を示すグラフである。 1……リングコア(成形部)、2……加熱板
(成形部)、4……断面部、7……冷却通路、10
……誘導加熱用コイル。
The drawings from FIG. 1 to FIG. 3 show one embodiment of the present invention, and FIG. 1 is a cross-sectional view of FIG. 2, FIG. 2 is a front view of the main part of the mold, and FIG. is a graph showing the temperature transition of the molded part. DESCRIPTION OF SYMBOLS 1...Ring core (molded part), 2...Heating plate (molded part), 4...Cross section, 7...Cooling passage, 10
...Induction heating coil.

Claims (1)

【特許請求の範囲】 1 キヤビテイを構成する金属製の成形部を有
し、成形部の背部に非金属製の断熱部が形成さ
れ、断熱部の成形部側に冷却通路が設けられ、断
熱部の背部に誘導加熱用コイルが配置されている
ことを特徴とする成形金型。 2 上記断熱部がセラミツクス製であることを特
徴とする特許請求の範囲第1項記載の成形金型。 3 上記断熱部がプラスチツクス製であることを
特徴とする特許請求の範囲第1項記載の成形金
型。 4 上記断熱部がセラミツクスとプラスチツクス
の層状複合材からなることを特徴とする特許請求
の範囲第1項記載の成形金型。
[Scope of Claims] 1 It has a metal molded part constituting the cavity, a non-metallic heat insulating part is formed on the back of the molded part, a cooling passage is provided on the molded part side of the heat insulating part, and the heat insulating part A molding die characterized in that an induction heating coil is placed on the back of the mold. 2. The molding die according to claim 1, wherein the heat insulating part is made of ceramics. 3. The molding die according to claim 1, wherein the heat insulating part is made of plastic. 4. The molding die according to claim 1, wherein the heat insulating portion is made of a layered composite material of ceramics and plastics.
JP61225103A 1986-09-24 1986-09-24 Molding die Granted JPS6378720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61225103A JPS6378720A (en) 1986-09-24 1986-09-24 Molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61225103A JPS6378720A (en) 1986-09-24 1986-09-24 Molding die

Publications (2)

Publication Number Publication Date
JPS6378720A JPS6378720A (en) 1988-04-08
JPH0457175B2 true JPH0457175B2 (en) 1992-09-10

Family

ID=16824028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61225103A Granted JPS6378720A (en) 1986-09-24 1986-09-24 Molding die

Country Status (1)

Country Link
JP (1) JPS6378720A (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176839A (en) * 1991-03-28 1993-01-05 General Electric Company Multilayered mold structure for hot surface molding in a short cycle time
JP2581982Y2 (en) * 1992-07-21 1998-09-24 株式会社アーレスティ Mold
DE19929731A1 (en) * 1999-06-29 2001-01-04 Zumtobel Staff Gmbh Heating injection molds
JP2001150506A (en) * 1999-11-25 2001-06-05 Ge Plastics Japan Ltd Method for obtaining injection-molded article of thermoplastic resin having high quality appearance
FR2816237B1 (en) * 2000-11-08 2003-09-19 Roctool MOLDS FOR PROCESSING PLASTICS AND COMPOSITES AND ASSOCIATED PROCESSING METHOD
KR100542728B1 (en) * 2001-07-31 2006-01-11 에스케이케미칼주식회사 Method and mold for molding of plastic articles
DE10221558B4 (en) * 2002-05-15 2005-07-21 Krauss-Maffei Kunststofftechnik Gmbh Mold part, mold and method for injection molding plastic articles
DE10337685B4 (en) * 2003-08-16 2008-02-28 Kraussmaffei Technologies Gmbh Heatable tool
JP4832735B2 (en) * 2004-07-27 2011-12-07 フィーサ株式会社 Thermosetting foamed urethane rubber injection molding method and injection molding device
KR100644920B1 (en) * 2005-03-24 2006-11-10 김동학 Mold for injection molding machine
FR2887739B1 (en) * 2005-06-22 2007-08-31 Roctool Soc Par Actions Simpli INDUCTION HEATING DEVICE AND METHOD FOR MANUFACTURING PARTS USING SUCH A DEVICE
KR20080026607A (en) * 2005-07-12 2008-03-25 스미도모쥬기가이고교 가부시키가이샤 Molding apparatus, method of manufacturing the same and method of molding
KR100644926B1 (en) * 2005-08-30 2006-11-10 강명호 Injection molding apparatus having separation type mold and controlling method thereof
EP1800822A1 (en) * 2005-12-22 2007-06-27 Thermal Cyclic Technologies TCT Tech i Stockholm Injection mould with spirally formed cooling ducts and corresponding injection moulding method.
ATE421416T1 (en) * 2005-12-22 2009-02-15 Thermal Cyclic Technologies Tc INJECTION MOLDING TOOL WITH INDUCTION HEATING AND INJECTION MOLDING PROCESS WITH AN INDUCTION HEATING STEP
EP1800829A1 (en) 2005-12-22 2007-06-27 Thermal Cyclic Technologies TCTech i Stockholm AB Injection mould with induction heating means and method of injection moulding including an induction heating step.
EP1800823A1 (en) * 2005-12-22 2007-06-27 Thermal Cyclic Technologies TCTech i Stockholm AB Injection mould with variable coolant flow rate, the corresponding method and injection mould with a venting ring
JP4786620B2 (en) * 2006-09-21 2011-10-05 株式会社神戸製鋼所 Heating unit and tire heating device
KR101006299B1 (en) 2006-09-21 2011-01-06 가부시키가이샤 고베 세이코쇼 Heating unit, tire heating device, and tire mold modifying method
GB0623048D0 (en) * 2006-11-18 2006-12-27 Bentley Motors Ltd Improvements in or relating to ceramic tooling
US8021135B2 (en) 2007-06-08 2011-09-20 Sabic Innovative Plastics Ip B.V. Mold apparatus for forming polymer and method
CN101909839B (en) * 2007-10-26 2013-08-14 沙伯基础创新塑料知识产权有限公司 System and method for forming polymer
JP5905959B2 (en) * 2011-06-28 2016-04-20 テーセェーテク スウェーデン アクチエボラグTCTech Sweden AB Apparatus and method for heating a mold or mold
JP5776977B2 (en) * 2011-08-30 2015-09-09 高周波熱錬株式会社 Resin mold with heating coil
CN104412705B (en) * 2012-06-19 2016-09-14 罗图公司 Quickly heating and the mould of cooling
CN106457617A (en) 2014-06-27 2017-02-22 沙特基础工业全球技术有限公司 Induction heated mold apparatus with multimaterial core and method of using the same
DE102017221152A1 (en) * 2017-11-27 2019-05-29 Rampf Holding Gmbh & Co. Kg A molding apparatus, a forming tool having a part to be formed, and a method of heating a molding surface of a molding half-shell or a part to be formed
CN109454783B (en) * 2018-12-07 2021-02-12 安徽金月节能科技有限公司 Vulcanize constant temperature heating platform

Also Published As

Publication number Publication date
JPS6378720A (en) 1988-04-08

Similar Documents

Publication Publication Date Title
JPH0457175B2 (en)
US7445743B2 (en) Molding tool, and method of making plastic articles
US5176839A (en) Multilayered mold structure for hot surface molding in a short cycle time
JPH0768614A (en) Injection molding die and injection molding method for optical element
JP2001113580A (en) Injection molding machine
JP2000127175A (en) Molding machine
JP2000246769A (en) Mold for molding and method for molding
JP2009113423A (en) Mold for injection molding
JP3305736B2 (en) Mold for molding and method of manufacturing the same
JP2000000865A (en) Method for injection molding plastic
JP2002264191A (en) Injection mold
JPH0596576A (en) Mold
JPH06328537A (en) Hot runner mold for injection molding
JPH11115013A (en) Plastic injection molding method
JPS6391216A (en) Molding mold
JPS613716A (en) Injection molding method and mold therefor
JP2828161B2 (en) Plastic molding equipment
JP4033573B2 (en) Hot runner mold
JPH0523169B2 (en)
JPH08156028A (en) Injection mold and injection molding method
JPH0712635B2 (en) Injection molding method for cylindrical molded products
JPH03193322A (en) Mold for plastic lens
JPS61182918A (en) Injection compression mold
JPH05200793A (en) Mold and manufacture of in-mold transfer board
JPS61290024A (en) Mold for molding plastic lens