JPS6378720A - Molding die - Google Patents

Molding die

Info

Publication number
JPS6378720A
JPS6378720A JP61225103A JP22510386A JPS6378720A JP S6378720 A JPS6378720 A JP S6378720A JP 61225103 A JP61225103 A JP 61225103A JP 22510386 A JP22510386 A JP 22510386A JP S6378720 A JPS6378720 A JP S6378720A
Authority
JP
Japan
Prior art keywords
molding
heat insulating
oil
cooling passage
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61225103A
Other languages
Japanese (ja)
Other versions
JPH0457175B2 (en
Inventor
Eiki Nakamura
仲村 栄基
Hiroya Fujinawa
藤縄 比呂也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP61225103A priority Critical patent/JPS6378720A/en
Publication of JPS6378720A publication Critical patent/JPS6378720A/en
Publication of JPH0457175B2 publication Critical patent/JPH0457175B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/06Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using radiation, e.g. electro-magnetic waves, induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/041Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using liquids
    • B29C2035/042Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using liquids other than water
    • B29C2035/043Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using liquids other than water oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0811Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7368Heating or cooling of the mould combining a heating or cooling fluid and non-fluid means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7393Heating or cooling of the mould alternately heating and cooling

Abstract

PURPOSE:To make it possible to shorten the required time of the heating and cooling cycle of a molding part and consequently improve the productivity by a structure wherein metallic molding parts consisting of a cavity are provided in such a manner that a non-metallic heat insulating part, on the molding part of which a cooling passage is provided and on the rear part of which an induction heating coil is arranged, is formed on the rear part of the molding parts. CONSTITUTION:A cavity is formed by closing a fixed mold and a movable mold. In addition, molding surfaces 3 are heated by flowing oil through cooling passage 7. At this time, the heat transfer between the coil and a heating plate 2 is done speedily. In addition, no heat dissipates beyond a ceramic heat insulating mamber 4 to its rear part. After the stopping of the circulation of the oil, high frequency current is passed through a copper pipe 10 so as to generate induction current in a ring core 1 and the heating plate 2 in order to heat the respective molding surfaces 3 up to 200 deg.C. No induction current generates in the heat insulating member 4 and in the oil in the cooling passage 7 and neither the member nor the oil are heated. By injecting resin in the cavity under the condition that the molding surfaces 3 are held at 200 deg.C, the resin keeps its high fluidity and closely contacts with the molding surfaces 3. Finally, the high frequency current is stopped and oil is circulated through the cooling passage 7 so as to cool the respective molding surfaces 3 in order to solidify the resin.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気ディスク用基板等の精密成形品のs3
造に使用され7.虎形金響に間する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention is directed to the manufacture of precision molded products such as substrates for magnetic disks.
7. Used for construction. Between the Toragata Kinkyo.

(従来の技術) 一般に、磁気ディスクや光デイスク用の基板には極めて
精度の高い表面平滑性が要求される。そのため、これら
の基板を射出成形により製造する場合には、キャビティ
内に樹脂を射出する際に固定型及び可動型を加熱して成
形面を樹脂固化温度以上に熱しておき、樹脂がキャビテ
ィ内に充分に行き渡った後、各型を冷却して樹脂を固化
させ離型するようにしている。
(Prior Art) Generally, extremely high precision surface smoothness is required for substrates for magnetic disks and optical disks. Therefore, when manufacturing these substrates by injection molding, when injecting the resin into the cavity, the fixed mold and the movable mold are heated to heat the molding surface to a temperature higher than the resin solidification temperature to prevent the resin from entering the cavity. After the resin is sufficiently spread, each mold is cooled to solidify the resin and then released from the mold.

上記型の加熱方法の一つに、特開昭57−4748号公
報に開示されているような誘導加熱を応用したものがあ
る。上記公報には二種類の方法が開示されている。即ち
、第一の方法は、樹脂を射出する前に、高周波発振装置
に接続されたコイルを有する金属体(以下、インダクタ
という。)を可動型と固定型とで挾み、上記コイルに高
周波電流を流して高周波誘導加熱によ1)成形部を加熱
した後、型開きしてインダクタを除去し、再び型閉じし
てキャビティ内に樹脂を射出する方法であり、第二の方
法は、可動型と固定型の成形部の背部にそれぞれ上記イ
ンダクタを埋め込んでお外、型閉じ状態において高周波
誘導加熱により各成形面を加熱し、キャビティ内に樹脂
を射出する方法である。
One of the above-mentioned heating methods uses induction heating as disclosed in Japanese Unexamined Patent Publication No. 57-4748. The above publication discloses two types of methods. That is, in the first method, before injecting the resin, a metal body (hereinafter referred to as an inductor) having a coil connected to a high-frequency oscillator is sandwiched between a movable mold and a fixed mold, and a high-frequency current is applied to the coil. 1) After heating the molded part by high-frequency induction heating, the mold is opened, the inductor is removed, the mold is closed again, and the resin is injected into the cavity.The second method is to use a movable mold. In this method, the inductors are embedded in the backs of molding parts of fixed molds, and each molding surface is heated by high-frequency induction heating when the molds are closed, and resin is injected into the cavities.

(発明が解決しようとする問題点) しかしながら、上記誘導加熱方法においてはそれぞれ次
のような問題があった。
(Problems to be Solved by the Invention) However, each of the above induction heating methods has the following problems.

第一の方法にあっては、樹脂を射出する前にインダクタ
を取り付けたり取り外したりする作業が必要となって煩
雑であり、又、インダクタを取り外した後樹脂を射出す
る間に、加熱した成形部が冷却されるという欠点があっ
た。
In the first method, the work of attaching and removing the inductor is necessary before injecting the resin, which is complicated, and the heated molding part is The disadvantage was that it was cooled.

第二の方法にあっては、インダクタが成形部に直接に接
触しているので、誘導加熱されるのは各型の成形部のみ
ならずインダクタにも及ぶので、熱容量が大きくなり、
加熱、冷却に長時間を要し生産性が悪かった。
In the second method, since the inductor is in direct contact with the molding part, induction heating is applied not only to the molding part of each mold but also to the inductor, which increases the heat capacity.
Heating and cooling took a long time, resulting in poor productivity.

(問題点を解決するための手段) この発明は上記問題点を解消するためになされたもので
、その要皆は、キャビティを構成する金属製の成形部を
有し、成形部の背部に非金属製の断熱部が形成され、断
熱部の成形部側に冷却通路が設けられ、断熱部の背部に
誘導加熱用コイルが配置されていることを特徴とする成
形金型にある。
(Means for Solving the Problems) This invention has been made to solve the above problems, and its main feature is that it has a molded part made of metal that forms a cavity, and has a molded part on the back of the molded part. The molding die is characterized in that a metal heat insulating part is formed, a cooling passage is provided on the molding part side of the heat insulating part, and an induction heating coil is arranged at the back of the heat insulating part.

(作用) 誘導加熱用コイルに高周波電流を流すと成形部に誘導電
流が生じ、成形部は誘導加熱される。コイルと成形部の
開に介在する断熱部は非金属製であるので誘導電流は生
じず加熱されない。そして、この断熱部によって断熱部
よりも背部への熱の伝達が遮断される。したがって成形
部だけが効率的に短時間で加熱される。
(Function) When a high frequency current is passed through the induction heating coil, an induced current is generated in the molded part, and the molded part is heated by induction. Since the heat insulating part interposed between the coil and the molded part is made of non-metallic material, no induced current is generated and no heating occurs. This heat insulating section blocks the transmission of heat to the back rather than the heat insulating section. Therefore, only the molded part is efficiently heated in a short time.

又、上記加熱状態においてキャビティ内に樹脂を射出し
た後、誘導加熱を停止し、冷却通路内に冷媒を流通させ
て成形部を冷却し、キャビティ内の樹脂を冷却する。こ
の時、冷媒はほぼ直接的に成形部に接触するので、成形
部及び樹脂は速やかに冷却される。
Further, after the resin is injected into the cavity in the heated state, the induction heating is stopped, and the molded part is cooled by circulating a refrigerant in the cooling passage, thereby cooling the resin in the cavity. At this time, since the refrigerant almost directly contacts the molded part, the molded part and the resin are quickly cooled.

したがって、成形部の加熱、冷却サイクルの所要時間を
短縮することができ、生産性が向上する。
Therefore, the time required for heating and cooling cycles of the molding section can be shortened, and productivity is improved.

(実施例) 以下、この発明の一実施例を第1図から第3図までの図
面に基づいて説明する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described based on the drawings from FIG. 1 to FIG. 3.

第1図において、符号20は成形金型の成形部ユニット
であり、成形部ユニット20は金属製の円筒状リングコ
ア1を有している。リングコア1の外周端部には段差部
1aが形成され、この段差部1aと同じ側に中心方向に
突出する突起部1bが形成されている。
In FIG. 1, reference numeral 20 denotes a molding unit of a molding die, and the molding unit 20 has a cylindrical ring core 1 made of metal. A step portion 1a is formed at the outer peripheral end of the ring core 1, and a protrusion portion 1b protruding toward the center is formed on the same side as the step portion 1a.

上記リングコア1の突起部1bの中心側には加熱板2が
嵌着されている。加熱板2は金属製であり、円盤状をな
し、厚さは上記突起部1bよりも厚く、中央には孔2a
が形成されている。
A heating plate 2 is fitted onto the center side of the projection 1b of the ring core 1. The heating plate 2 is made of metal, has a disc shape, is thicker than the projection 1b, and has a hole 2a in the center.
is formed.

上記リングコア1と加熱板2は第1図において右側表面
を面一にされ、各右側表面は鏡面仕上げにされていて、
極めて精度の高い平滑性を有している。
The ring core 1 and the heating plate 2 have their right surfaces flush with each other in FIG. 1, and each right surface has a mirror finish.
It has extremely precise smoothness.

尚、上記リングコア1と加熱板2により成形部が構成さ
れ、リングコア1と加熱板2の上記右側表面が成形面3
となる。
The ring core 1 and the heating plate 2 constitute a molding section, and the right surfaces of the ring core 1 and the heating plate 2 form the molding surface 3.
becomes.

又、リングコア1の内部であって加熱板2の背部(第1
図中、加熱板2の左側)にはセラミックス製(SiC)
の断熱部材4(断熱部)が配置され、等配分された四本
のボルト5により加熱板2に固定されている。
Also, inside the ring core 1, the back of the heating plate 2 (the first
In the figure, the left side of the heating plate 2) is made of ceramics (SiC).
A heat insulating member 4 (heat insulating part) is arranged and fixed to the heating plate 2 with four equally distributed bolts 5.

上記断熱部材4の素材であるセラミックス(SiC)は
機械的強度、耐衝撃性、耐熱衝性に優れ、高周波吸収性
が低く、更に低伝熱性、高絶縁性、快削性を有している
Ceramics (SiC), which is the material of the heat insulating member 4, has excellent mechanical strength, impact resistance, and thermal shock resistance, low high frequency absorption, and furthermore, has low heat conductivity, high insulation properties, and free machinability. .

上記断熱部材4は円盤状をなし、中央には上記加熱板2
の孔2aと同径の孔4aが形成されている。
The heat insulating member 4 has a disc shape, and the heating plate 2 is located in the center.
A hole 4a having the same diameter as the hole 2a is formed.

断熱部材4には加熱板2と接する側に、断面U字形をな
す内側溝6aと外側溝6bが同心状に形成されている。
In the heat insulating member 4, an inner groove 6a and an outer groove 6b having a U-shaped cross section are formed concentrically on the side in contact with the heating plate 2.

上記外側溝6bは、第2図に示すように、図中上部及び
下部において左右に分離されていて、又、内側溝6aは
図中下部において左右に分離されている。そして、左右
の下部において、それぞれ外側溝6bと内側溝6aとが
接続されている。
As shown in FIG. 2, the outer groove 6b is separated into left and right parts at the upper and lower parts of the figure, and the inner groove 6a is separated into left and right parts at the lower part of the figure. The outer groove 6b and the inner groove 6a are connected to each other at the left and right lower portions.

上記内側溝6aと外側溝6bは加熱板2によって閉断面
とされ、その内部は冷却通路7どなる。
The inner groove 6a and the outer groove 6b are made into a closed cross section by the heating plate 2, and a cooling passage 7 is formed inside the inner groove 6a and the outer groove 6b.

又、リングコア1及び断熱部材4には、第2図に示すよ
うに、リングコア1の上部外周面から中心方向に向かっ
て、外側溝6bの左右の上部終端に至る冷媒入口通路8
aと冷媒出口通路8bが形成されている。この冷媒入口
通路8aと冷媒出口通路8bは冷媒供給装置(図示しな
い)に接続されており、上記冷却通路7を流通する冷媒
は温度制御装置(図示しない)によって所望の温度に制
御される。
Further, as shown in FIG. 2, the ring core 1 and the heat insulating member 4 have a refrigerant inlet passage 8 extending from the upper outer circumferential surface of the ring core 1 toward the center and reaching the left and right upper ends of the outer groove 6b.
a and a refrigerant outlet passage 8b are formed. The refrigerant inlet passage 8a and the refrigerant outlet passage 8b are connected to a refrigerant supply device (not shown), and the refrigerant flowing through the cooling passage 7 is controlled to a desired temperature by a temperature control device (not shown).

断熱部材4には、加熱板2の内端に対向する部分と外端
に対向する部分に、0リング溝4 b、 4 cが形成
され、各Oリング溝4 b、 4 cにはOリング9 
a、 9 bが装着され、上記冷却通路7を流通する冷
媒をシールしている。
O-ring grooves 4 b and 4 c are formed in the heat insulating member 4 at a portion facing the inner end of the heating plate 2 and at a portion facing the outer end, and each O-ring groove 4 b and 4 c is provided with an O-ring groove. 9
a, 9b are attached to seal the refrigerant flowing through the cooling passage 7.

更に、リングコア1の内部であって、上記断熱部材4の
背部(第1図中、画然部材4の左側)には、誘導加熱用
コイルとしての銅パイプ10が螺旋状に配置され、この
銅パイプ10の一番外側の一端10aと一番内側の一端
10bは図示しない高周波発振装置に接続されている。
Furthermore, inside the ring core 1, on the back of the heat insulating member 4 (on the left side of the heat insulating member 4 in FIG. 1), a copper pipe 10 as an induction heating coil is arranged in a spiral shape. The outermost end 10a and the innermost end 10b of the pipe 10 are connected to a high frequency oscillator (not shown).

銅パイプ10の背部(第1図中、銅パイプ10の左側)
及び上下部には絶縁部材11が固定されており、絶縁部
材11の中央も加熱板2の孔2aと同径の孔11aが形
成されている。
Back of copper pipe 10 (left side of copper pipe 10 in Figure 1)
An insulating member 11 is fixed to the upper and lower portions, and a hole 11a having the same diameter as the hole 2a of the heating plate 2 is formed in the center of the insulating member 11.

上記成形部ユニット20を一対用意し、成形面3を互い
に対向させて、それぞれ固定型と可動型の基台(いずれ
も図示しない)に固定する。
A pair of molding unit units 20 are prepared and fixed to fixed and movable bases (both not shown) with their molding surfaces 3 facing each other.

尚、上記固定型の成形部ユニット20の加熱板2及び断
熱部材4及び絶縁部材11の孔2 at 4 a。
Note that the holes 2 at 4 a in the heating plate 2, the heat insulating member 4, and the insulating member 11 of the fixed molding unit 20 are the same.

11aにはスプルブツシュ(図示しない)が挿入固定さ
れ、可動型の成形部ユニッ)20の加熱板2及び断熱部
材4及び絶縁部材11の6孔2 at 4 a。
A sprue bush (not shown) is inserted and fixed in 11a, and the heating plate 2 of the movable molding unit 20, the heat insulating member 4, and the six holes 2 at 4 a of the insulating member 11.

11aにはセンタコア(図示しない)が挿入固定されて
いる。
A center core (not shown) is inserted and fixed in 11a.

そして、固定型と可動型とが閉じた状態において、画成
形部ユニット20の成形面3の間にキャビティ(図示し
ない)が形成される。
Then, in a state where the fixed mold and the movable mold are closed, a cavity (not shown) is formed between the molding surface 3 of the image forming unit 20.

上述構成において、磁気ディスク用基板を成形した場合
について説明する。
A case will be described in which a magnetic disk substrate is molded in the above configuration.

固定型と可動型を閉じてキャビティを形成し、冷却通路
7内に冷媒としての油を流通させ、各成形部ユニツ)2
0の成形面3が130℃になるように加熱する。この時
、油は加熱板2に直接接触しているので、冷媒と加熱板
2との間の熱伝達は極めてスピーディに行なわれる。又
、加熱板2とリングコア1との接触面を介してリングコ
ア1へも熱伝達される。一方、断熱部材4は熱伝達率の
低いセラミックス製であるので、断熱部材4よりも背部
へ熱が拡散することがない。
A fixed mold and a movable mold are closed to form a cavity, and oil as a refrigerant is circulated in the cooling passage 7, and each molding part unit) 2
Heat the molding surface 3 of No. 0 to 130°C. At this time, since the oil is in direct contact with the heating plate 2, heat transfer between the refrigerant and the heating plate 2 occurs extremely quickly. Heat is also transferred to the ring core 1 via the contact surface between the heating plate 2 and the ring core 1. On the other hand, since the heat insulating member 4 is made of ceramics having a low heat transfer coefficient, heat does not diffuse further to the back than the heat insulating member 4 does.

次に、油の流通を停止して、高周波発振装置により銅バ
イブ10に出力15kw、400kHzの高周波電流を
流し、リングコア1及び加熱板2に誘導電流を生じさせ
、各成形面3が200℃になるように誘導加熱する。こ
の時、非金属のセラミックス製である断熱部材4及び冷
却通路7内の油には誘導電流が生ぜず、断熱部材4及び
油が誘導加熱されることはない。即ち、誘導加熱される
のはリングコア1と加熱板2という限られた部分だけで
あるので、スピーディに加熱することができる。しかも
断熱部材4の存在により、リングコア1と加熱板2より
も背部側に熱が拡散するのが防止される。
Next, the flow of oil is stopped, and a high-frequency current with an output of 15 kW and 400 kHz is passed through the copper vibrator 10 using a high-frequency oscillator to generate an induced current in the ring core 1 and heating plate 2, and each molding surface 3 is heated to 200°C. Induction heating is performed to achieve this. At this time, no induced current is generated in the heat insulating member 4 made of non-metallic ceramics and the oil in the cooling passage 7, and the insulating member 4 and the oil are not heated by induction. That is, since only the limited portions of the ring core 1 and the heating plate 2 are heated by induction, the heating can be performed quickly. Furthermore, the presence of the heat insulating member 4 prevents heat from diffusing toward the back side of the ring core 1 and the heating plate 2.

尚、この実施例においては、成形面3の温度を130℃
から200℃に昇温するための所要時間は5秒であった
In this example, the temperature of the molding surface 3 was set to 130°C.
The time required to raise the temperature from 200° C. to 200° C. was 5 seconds.

そして、誘導加熱により成形面3を200℃に維持した
まま、キャビティ内に樹脂を射出する。この時、成形面
3が樹脂固化温度以上の極めて高温になっているので、
樹脂は高流動性が維持されてキャビティ内の隅々に流れ
、成形面3に密に接する。
Then, resin is injected into the cavity while the molding surface 3 is maintained at 200° C. by induction heating. At this time, the molding surface 3 is at an extremely high temperature that is higher than the resin solidification temperature.
The resin maintains high fluidity and flows to every corner within the cavity, coming into close contact with the molding surface 3.

この後、銅パイプ10への高周波電流の流れを停止する
とともに、冷却通路7内に油を流通させて、各成形面3
を再び130℃に冷却する。この冷却によって樹脂は固
化する。
After that, the flow of high-frequency current to the copper pipe 10 is stopped, and oil is circulated in the cooling passage 7, and each molding surface 3
is cooled again to 130°C. This cooling solidifies the resin.

そして、固定型と可動型を開ぎ、キャビティ内で固化さ
れた製品を取り出す。
Then, the fixed mold and the movable mold are opened and the solidified product inside the cavity is taken out.

尚、この実施例において、誘導加熱による加熱開始から
製品取り出しまでの所要時間は約60秒であった。
In this example, the time required from the start of induction heating until the product was taken out was about 60 seconds.

このようにして成形された磁気ディスク用基板は、表面
が極めて平滑で、そりや変形等の歪みが極めて少ないも
のであった。
The magnetic disk substrate formed in this way had an extremely smooth surface and had extremely little distortion such as warping or deformation.

尚、第3図のグラフは上記実施例における成形面3の経
時的な温度推移を示したもので、縦軸に成形面3の温度
をとり、横軸に時間をとっている。
The graph in FIG. 3 shows the temperature change over time of the molding surface 3 in the above example, and the vertical axis represents the temperature of the molding surface 3, and the horizontal axis represents time.

図中、A点は誘導加熱開始点であり、B点は樹脂射出開
始点であり、0点は製品取り出し点である。
In the figure, point A is the starting point of induction heating, point B is the starting point of resin injection, and point 0 is the point of product removal.

この発明は上記実施例に制約されず種々の態様が可能で
ある。
This invention is not limited to the above-mentioned embodiments, and various embodiments are possible.

例えば、断熱部はA1□O=、SiN、C等のセラミッ
クス製であってもよいし、更に、セラミックス製−では
なく、プラスチックス製であってもよいし、又、セラミ
ックスとプラスチックスとの層状複合材であってもよい
For example, the heat insulating part may be made of ceramics such as A1□O=, SiN, C, etc., or it may be made of plastics instead of ceramics, or it may be made of ceramics and plastics. It may also be a layered composite material.

又、断熱部の表面に、蒸着又はスパッタリング又はイオ
ンブレーティング等の方法により5μ〜20mmの厚さ
の金属製薄膜を形成し、この金属?!薄膜を成形部とし
てもよい。この場合には、冷却通路は断熱部の内部にお
いて可能な限り金属製薄膜近くにトンネル状に設ければ
よい。
Further, a thin metal film having a thickness of 5 μm to 20 mm is formed on the surface of the heat insulating portion by a method such as vapor deposition, sputtering, or ion blating, and this metal ? ! A thin film may be used as the molded part. In this case, the cooling passage may be provided in the form of a tunnel as close as possible to the metal thin film inside the heat insulating section.

更に、冷却通路内を流通させる冷媒は水や水蒸気であっ
てもよい。
Furthermore, the refrigerant flowing through the cooling passage may be water or steam.

(発明の効果) 以上説明したように、この発明によれば、金属製の成形
部と誘導加熱用コイルとの間に非金属製の断熱部を形成
したので、誘導加熱の対象となる成形部を極めて小さく
することができ、その結果、熱容量を小さくすることが
できる。更に、断熱部により背部への熱の拡散が防止で
きる。したがって、成形部の加熱を極めて効率的に短時
間で行うことができる。
(Effects of the Invention) As explained above, according to the present invention, since the non-metallic heat insulating part is formed between the metal molded part and the induction heating coil, the molded part to be subjected to induction heating is can be made extremely small, and as a result, the heat capacity can be made small. Furthermore, the heat insulating portion can prevent heat from dispersing to the back. Therefore, the molding part can be heated extremely efficiently and in a short time.

又、断熱部の成形部側に冷却通路が設けられていて、冷
媒が成形部にほぼ直接的に接触するので、成形部の冷却
を極めて効率的に短時間で行うことができる。
Further, since the cooling passage is provided on the molding part side of the heat insulating part and the refrigerant comes into almost direct contact with the molding part, the molding part can be cooled extremely efficiently and in a short time.

その結果、成形部の加熱、冷却サイクルの所要時間を短
縮でき、生産性を向上させることができる。
As a result, the time required for heating and cooling cycles of the molding section can be shortened, and productivity can be improved.

又、キャビティ内に樹脂を射出する際に、成形部の温度
を樹脂固化温度以上に維持することができるので、極め
て高品質の製品を成形することができる。
Further, when injecting the resin into the cavity, the temperature of the molding section can be maintained at or above the resin solidification temperature, so it is possible to mold extremely high quality products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図までの図面はこの発明の一実施例を示
すものであり、第1図は第2図1−1断面図、第2図は
成形金型の要部正面図、第3図は成形部の温度推移を示
すグラフである。 1・・・リングコア(成形部)、 2・・・加熱板(成形部)、  4・・・断面部、7・
・・冷却通路、  10・・・誘導加熱用フィル。
The drawings from FIG. 1 to FIG. 3 show one embodiment of the present invention, and FIG. 1 is a sectional view taken along line 1-1 of FIG. 2, and FIG. FIG. 3 is a graph showing the temperature transition of the molded part. DESCRIPTION OF SYMBOLS 1... Ring core (molding part), 2... Heating plate (molding part), 4... Cross-sectional part, 7...
...Cooling passage, 10...Induction heating filter.

Claims (4)

【特許請求の範囲】[Claims] (1)キャビティを構成する金属製の成形部を有し、成
形部の背部に非金属製の断熱部が形成され、断熱部の成
形部側に冷却通路が設けられ、断熱部の背部に誘導加熱
用コイルが配置されていることを特徴とする成形金型。
(1) It has a metal molded part that forms the cavity, a non-metallic heat insulating part is formed on the back of the molded part, a cooling passage is provided on the molded part side of the heat insulating part, and it is guided to the back of the heat insulating part. A molding die characterized by having a heating coil arranged therein.
(2)上記断熱部がセラミックス製であることを特徴と
する特許請求の範囲第1項記載の成形金型。
(2) The molding die according to claim 1, wherein the heat insulating portion is made of ceramics.
(3)上記断熱部がプラスチックス製であることを特徴
とする特許請求の範囲第1項記載の成形金型。
(3) The molding die according to claim 1, wherein the heat insulating portion is made of plastic.
(4)上記断熱部がセラミックスとプラスチックスの層
状複合材からなることを特徴とする特許請求の範囲第1
項記載の成形金型。
(4) Claim 1, wherein the heat insulating portion is made of a layered composite material of ceramics and plastics.
Molding mold described in section.
JP61225103A 1986-09-24 1986-09-24 Molding die Granted JPS6378720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61225103A JPS6378720A (en) 1986-09-24 1986-09-24 Molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61225103A JPS6378720A (en) 1986-09-24 1986-09-24 Molding die

Publications (2)

Publication Number Publication Date
JPS6378720A true JPS6378720A (en) 1988-04-08
JPH0457175B2 JPH0457175B2 (en) 1992-09-10

Family

ID=16824028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61225103A Granted JPS6378720A (en) 1986-09-24 1986-09-24 Molding die

Country Status (1)

Country Link
JP (1) JPS6378720A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176839A (en) * 1991-03-28 1993-01-05 General Electric Company Multilayered mold structure for hot surface molding in a short cycle time
JPH069743U (en) * 1992-07-21 1994-02-08 株式会社アーレスティ Mold
EP1065037A2 (en) * 1999-06-29 2001-01-03 Zumtobel Staff GmbH Heating of injection moulds
WO2001038062A3 (en) * 1999-11-25 2001-11-08 Gen Electric A method for obtaining a thermoplastic resin injection-molded product having a high-quality appearance
FR2816237A1 (en) * 2000-11-08 2002-05-10 Roctool Mould for transforming plastic and composite materials, uses direct heating of molded material
WO2003097328A1 (en) * 2002-05-15 2003-11-27 Krauss-Maffei Kunststofftechnik Gmbh Forming tool and method for producing plastic articles
WO2003011550A3 (en) * 2001-07-31 2003-12-11 Sk Chemicals Co Ltd Method for molding a product and a mold used therein
WO2005018908A3 (en) * 2003-08-16 2005-06-16 Krauss Maffei Kunststofftech Heatable tool
JP2006035617A (en) * 2004-07-27 2006-02-09 Fuiisa Kk Injection molding method and injection molding equipment for heat curable foamed urethane rubber
WO2006112571A1 (en) 2005-03-24 2006-10-26 Myung-Ho Kang Mold for injection molding machine
WO2007007779A1 (en) * 2005-07-12 2007-01-18 Sumitomo Heavy Industries, Ltd. Molding apparatus, method of manufacturing the same and method of molding
EP1800823A1 (en) * 2005-12-22 2007-06-27 Thermal Cyclic Technologies TCTech i Stockholm AB Injection mould with variable coolant flow rate, the corresponding method and injection mould with a venting ring
EP1800828A1 (en) 2005-12-22 2007-06-27 Thermal Cyclic Technologies TCTech i Stockholm AB Injection mould with induction heating means and method of injection moulding including an induction heating step
EP1800822A1 (en) * 2005-12-22 2007-06-27 Thermal Cyclic Technologies TCT Tech i Stockholm Injection mould with spirally formed cooling ducts and corresponding injection moulding method.
WO2008035783A1 (en) * 2006-09-21 2008-03-27 Kabushiki Kaisha Kobe Seiko Sho Heating unit, tire heating device, and tire mold modifying method
JP2008100513A (en) * 2006-09-21 2008-05-01 Kobe Steel Ltd Heating unit, tire heater, and remodeling method of tire mold
EP1919686A1 (en) * 2005-08-30 2008-05-14 Myung-Ho Kang Injection molding apparatus having separation type mold and controlling method thereof
JP2008546570A (en) * 2005-06-22 2008-12-25 ロックツール Induction heating device and method of making a part using the same
WO2009055787A1 (en) * 2007-10-26 2009-04-30 Sabic Innovative Plastics Ip B.V. System and method for forming polymer
JP2010510153A (en) * 2006-11-18 2010-04-02 ベントレー モーターズ リミテッド Improvement of ceramic tools and improvements related to ceramic tools
US7981350B2 (en) 2005-12-22 2011-07-19 Thermal Cyclic Technologies Tctech I Stockholm Ab Method and apparatus for injection molding having an inductive coil heater
US8021135B2 (en) 2007-06-08 2011-09-20 Sabic Innovative Plastics Ip B.V. Mold apparatus for forming polymer and method
JP2013049154A (en) * 2011-08-30 2013-03-14 Neturen Co Ltd Resin mold provided with heating coil
WO2013190020A1 (en) * 2012-06-19 2013-12-27 Roctool Quick heating and cooling mould
EP2726263A4 (en) * 2011-06-28 2016-01-27 Tctech Sweden Ab Device and method for heating a mould or tool
CN109454783A (en) * 2018-12-07 2019-03-12 安徽金月节能科技有限公司 A kind of vulcanization heated at constant temperature platform
WO2019101684A1 (en) * 2017-11-27 2019-05-31 Rampf Holding Gmbh & Co. Kg Shaping device, shaping mould with a part to be formed and method for heating a shaping surface of a shaping half-shell or of a part to be formed
US10427329B2 (en) 2014-06-27 2019-10-01 Sabic Global Technologies B.V. Induction heated mold apparatus with multimaterial core and method of using the same

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176839A (en) * 1991-03-28 1993-01-05 General Electric Company Multilayered mold structure for hot surface molding in a short cycle time
JPH069743U (en) * 1992-07-21 1994-02-08 株式会社アーレスティ Mold
EP1065037A3 (en) * 1999-06-29 2002-12-18 Zumtobel Staff GmbH Heating of injection moulds
EP1065037A2 (en) * 1999-06-29 2001-01-03 Zumtobel Staff GmbH Heating of injection moulds
WO2001038062A3 (en) * 1999-11-25 2001-11-08 Gen Electric A method for obtaining a thermoplastic resin injection-molded product having a high-quality appearance
WO2002038355A1 (en) * 2000-11-08 2002-05-16 Roctool Moulds for transforming plastic and composite materials and related transformation method
FR2816237A1 (en) * 2000-11-08 2002-05-10 Roctool Mould for transforming plastic and composite materials, uses direct heating of molded material
US7419631B2 (en) 2000-11-08 2008-09-02 Roctool Moulds for transforming plastic and composite materials and related transformation method
WO2003011550A3 (en) * 2001-07-31 2003-12-11 Sk Chemicals Co Ltd Method for molding a product and a mold used therein
KR100542728B1 (en) * 2001-07-31 2006-01-11 에스케이케미칼주식회사 Method and mold for molding of plastic articles
WO2003097328A1 (en) * 2002-05-15 2003-11-27 Krauss-Maffei Kunststofftechnik Gmbh Forming tool and method for producing plastic articles
CN100445071C (en) * 2002-05-15 2008-12-24 卡劳斯-马菲塑料工业股份公司 Forming tool and method for producing plastic articles
US7445743B2 (en) 2002-05-15 2008-11-04 Krauss-Maffei Kunststofftechnik Gmbh Molding tool, and method of making plastic articles
US7118372B2 (en) 2002-05-15 2006-10-10 Krauss-Maffei Kunststofftechnik Gmbh Molding tool having a heating and cooling medium
EP1736296A1 (en) * 2003-08-16 2006-12-27 Krauss-Maffei Kunststofftechnik GmbH Heatable mould
WO2005018908A3 (en) * 2003-08-16 2005-06-16 Krauss Maffei Kunststofftech Heatable tool
JP2006035617A (en) * 2004-07-27 2006-02-09 Fuiisa Kk Injection molding method and injection molding equipment for heat curable foamed urethane rubber
WO2006112571A1 (en) 2005-03-24 2006-10-26 Myung-Ho Kang Mold for injection molding machine
EP1861235A4 (en) * 2005-03-24 2009-07-08 Myung-Ho Kang Mold for injection molding machine
EP1861235A1 (en) * 2005-03-24 2007-12-05 Myung-Ho Kang Mold for injection molding machine
JP2008546570A (en) * 2005-06-22 2008-12-25 ロックツール Induction heating device and method of making a part using the same
WO2007007779A1 (en) * 2005-07-12 2007-01-18 Sumitomo Heavy Industries, Ltd. Molding apparatus, method of manufacturing the same and method of molding
EP1919686A4 (en) * 2005-08-30 2009-09-02 Myung-Ho Kang Injection molding apparatus having separation type mold and controlling method thereof
EP1919686A1 (en) * 2005-08-30 2008-05-14 Myung-Ho Kang Injection molding apparatus having separation type mold and controlling method thereof
US7981350B2 (en) 2005-12-22 2011-07-19 Thermal Cyclic Technologies Tctech I Stockholm Ab Method and apparatus for injection molding having an inductive coil heater
WO2007073292A1 (en) * 2005-12-22 2007-06-28 Thermal Cyclic Technologies Tctech I Stockholm Ab Moulding device and method
EP1800822A1 (en) * 2005-12-22 2007-06-27 Thermal Cyclic Technologies TCT Tech i Stockholm Injection mould with spirally formed cooling ducts and corresponding injection moulding method.
EP1800828A1 (en) 2005-12-22 2007-06-27 Thermal Cyclic Technologies TCTech i Stockholm AB Injection mould with induction heating means and method of injection moulding including an induction heating step
EP1800823A1 (en) * 2005-12-22 2007-06-27 Thermal Cyclic Technologies TCTech i Stockholm AB Injection mould with variable coolant flow rate, the corresponding method and injection mould with a venting ring
JP2008100513A (en) * 2006-09-21 2008-05-01 Kobe Steel Ltd Heating unit, tire heater, and remodeling method of tire mold
WO2008035783A1 (en) * 2006-09-21 2008-03-27 Kabushiki Kaisha Kobe Seiko Sho Heating unit, tire heating device, and tire mold modifying method
US8941036B2 (en) 2006-09-21 2015-01-27 Kobe Steel, Ltd. Heating unit, tire heating apparatus, and method for remodeling tire mold
JP2010510153A (en) * 2006-11-18 2010-04-02 ベントレー モーターズ リミテッド Improvement of ceramic tools and improvements related to ceramic tools
US20100294912A1 (en) * 2006-11-18 2010-11-25 Bentley Motors Limited Ceramic tool having a material applied to the surface
US8840386B2 (en) 2007-06-08 2014-09-23 Sabic Innovative Plastics Ip B.V. Mold apparatus for forming polymer and method
US8021135B2 (en) 2007-06-08 2011-09-20 Sabic Innovative Plastics Ip B.V. Mold apparatus for forming polymer and method
WO2009055787A1 (en) * 2007-10-26 2009-04-30 Sabic Innovative Plastics Ip B.V. System and method for forming polymer
US9096009B2 (en) 2007-10-26 2015-08-04 Sabic Global Technologies B.V. Method for forming a polymer part
KR20190052152A (en) * 2011-06-28 2019-05-15 티씨테크 스웨덴 에이비 Device and method for heating a mould or tool
EP3326772A1 (en) * 2011-06-28 2018-05-30 TCTECH Sweden AB (publ) Device and method for heating a tool
EP2726263A4 (en) * 2011-06-28 2016-01-27 Tctech Sweden Ab Device and method for heating a mould or tool
US9962861B2 (en) 2011-06-28 2018-05-08 Tctech Sweden Ab Device and method for heating a mould or tool
JP2013049154A (en) * 2011-08-30 2013-03-14 Neturen Co Ltd Resin mold provided with heating coil
RU2630256C2 (en) * 2012-06-19 2017-09-06 Роктул Die mould with flash heating and cooling
US9248598B2 (en) 2012-06-19 2016-02-02 Roctool Quick heating and cooling mold
CN104412705A (en) * 2012-06-19 2015-03-11 罗图公司 Quick heating and cooling mould
US10052803B2 (en) 2012-06-19 2018-08-21 Roctool Quick heating and cooling mold
WO2013190020A1 (en) * 2012-06-19 2013-12-27 Roctool Quick heating and cooling mould
US10427329B2 (en) 2014-06-27 2019-10-01 Sabic Global Technologies B.V. Induction heated mold apparatus with multimaterial core and method of using the same
WO2019101684A1 (en) * 2017-11-27 2019-05-31 Rampf Holding Gmbh & Co. Kg Shaping device, shaping mould with a part to be formed and method for heating a shaping surface of a shaping half-shell or of a part to be formed
CN109454783A (en) * 2018-12-07 2019-03-12 安徽金月节能科技有限公司 A kind of vulcanization heated at constant temperature platform
CN109454783B (en) * 2018-12-07 2021-02-12 安徽金月节能科技有限公司 Vulcanize constant temperature heating platform

Also Published As

Publication number Publication date
JPH0457175B2 (en) 1992-09-10

Similar Documents

Publication Publication Date Title
JPS6378720A (en) Molding die
US7118372B2 (en) Molding tool having a heating and cooling medium
JP4784948B2 (en) Non-contact high frequency induction heating device for plastic injection nozzle
JPH0596548A (en) Multi-layer metal die structure short in cycle time for molding high temperature surface
JPH0768614A (en) Injection molding die and injection molding method for optical element
JP2001113580A (en) Injection molding machine
JP2000127175A (en) Molding machine
JP2009113423A (en) Mold for injection molding
JPH06328537A (en) Hot runner mold for injection molding
JP2002264191A (en) Injection mold
JP3936651B2 (en) Mold for molding disk substrate
JPS6391216A (en) Molding mold
JPH0523169B2 (en)
JPH08156028A (en) Injection mold and injection molding method
JP2828161B2 (en) Plastic molding equipment
JPS61290024A (en) Mold for molding plastic lens
JPH03193322A (en) Mold for plastic lens
JPH0712635B2 (en) Injection molding method for cylindrical molded products
JP2001353761A (en) Method for injection molding and mold used therefor
JPH0566245B2 (en)
JPH10202663A (en) Molding die and its manufacture
JPH07232262A (en) Production of intake manifold
JPS63239026A (en) Molding die
JPH0759375B2 (en) Mold for plastic lens
JP2557805Y2 (en) Mold structure with cooling function