JPH0210799B2 - - Google Patents
Info
- Publication number
- JPH0210799B2 JPH0210799B2 JP59216654A JP21665484A JPH0210799B2 JP H0210799 B2 JPH0210799 B2 JP H0210799B2 JP 59216654 A JP59216654 A JP 59216654A JP 21665484 A JP21665484 A JP 21665484A JP H0210799 B2 JPH0210799 B2 JP H0210799B2
- Authority
- JP
- Japan
- Prior art keywords
- growth
- solution
- substrate
- time
- liquid phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000758 substrate Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 18
- 239000007791 liquid phase Substances 0.000 claims description 17
- 239000010409 thin film Substances 0.000 claims description 4
- 238000007796 conventional method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 4
- 238000004781 supercooling Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/06—Reaction chambers; Boats for supporting the melt; Substrate holders
- C30B19/063—Sliding boat system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02392—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
- H01L21/02507—Alternating layers, e.g. superlattice
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02543—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02625—Liquid deposition using melted materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02628—Liquid deposition using solutions
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、液相成長法において、特に極薄膜エ
ピタキシヤル成長層を作製する際に用いられる成
長方法に関するものである。
ピタキシヤル成長層を作製する際に用いられる成
長方法に関するものである。
従来例の構成とその問題点
これまで液相成長法は、GaAs、InPなどの
−族化合物半導体を中心にエピタキシヤル成長
技術の根幹として用いられて来た。この成長法の
特徴は、簡便で高品質の結晶が得られるというこ
とであるが、欠点として500Å以下の極薄膜成長
は原理的に困難といわれて来た。その理由は、本
来液相成長法では成長速度がはやいため成長時間
が短く成長層厚を制御することが難しいことによ
るものである。そのため上記のような極薄いエピ
膜の成長に対しては、成長速度の遅い分子線エピ
タキシヤル成長法(MBE)や気相成長法
(VPE、MOCVD)で行なわれているのが現状で
ある。しかしこれらの方法は、液相成長法に比べ
装置が高価で結晶性も劣ることが一般に知られて
いる。
−族化合物半導体を中心にエピタキシヤル成長
技術の根幹として用いられて来た。この成長法の
特徴は、簡便で高品質の結晶が得られるというこ
とであるが、欠点として500Å以下の極薄膜成長
は原理的に困難といわれて来た。その理由は、本
来液相成長法では成長速度がはやいため成長時間
が短く成長層厚を制御することが難しいことによ
るものである。そのため上記のような極薄いエピ
膜の成長に対しては、成長速度の遅い分子線エピ
タキシヤル成長法(MBE)や気相成長法
(VPE、MOCVD)で行なわれているのが現状で
ある。しかしこれらの方法は、液相成長法に比べ
装置が高価で結晶性も劣ることが一般に知られて
いる。
ここで従来の液相成長法による結晶の作製方法
について述べる。第1図は通常用いられている成
長ボートの概略図である。1は基板、2は溶液、
3は摺動板、4は溶液ホルダー、5は基台であ
る。成長は、溶媒に溶質を溶かし込んだ溶液2
を、摺動板3を摺動させて基板1上に停止させ、
その保持時間で成長層厚を制御している。このと
き例えばInPの液相成長において成長速度は、成
長温度が600℃で過飽和度が5℃、過冷却速度0.7
℃/分の過冷却法で成長を行なう場合、約0.5μ
m/分程度である。もちろん成長層厚dと成長時
間tgの関係はd∝√gで表わされる。したがつて
この場合、成長層厚500Å成長させる時間は1秒
以下になる。そうすると従来法ではこのような短
時間の成長時間の制御は非常に困難になる。
について述べる。第1図は通常用いられている成
長ボートの概略図である。1は基板、2は溶液、
3は摺動板、4は溶液ホルダー、5は基台であ
る。成長は、溶媒に溶質を溶かし込んだ溶液2
を、摺動板3を摺動させて基板1上に停止させ、
その保持時間で成長層厚を制御している。このと
き例えばInPの液相成長において成長速度は、成
長温度が600℃で過飽和度が5℃、過冷却速度0.7
℃/分の過冷却法で成長を行なう場合、約0.5μ
m/分程度である。もちろん成長層厚dと成長時
間tgの関係はd∝√gで表わされる。したがつて
この場合、成長層厚500Å成長させる時間は1秒
以下になる。そうすると従来法ではこのような短
時間の成長時間の制御は非常に困難になる。
この従来法の欠点の原因について、第2図を用
いて具体的に説明する。第2図は液相成長を行な
う際の図を示す。基板1上に溶液2を接触させて
成長を行なう工程において、第2図aは、基板1
を摺動して該基板1を溶液2と接触させて保持す
るまでの工程を示す図で、第2図bは、基板1と
溶液2とを接触保持させた状態からワイプオフす
るまでの工程を示す図である。
いて具体的に説明する。第2図は液相成長を行な
う際の図を示す。基板1上に溶液2を接触させて
成長を行なう工程において、第2図aは、基板1
を摺動して該基板1を溶液2と接触させて保持す
るまでの工程を示す図で、第2図bは、基板1と
溶液2とを接触保持させた状態からワイプオフす
るまでの工程を示す図である。
従来の基板1と溶液2を一定時間接触保持させ
る方法では、第2図aに示す工程の基板1を摺動
させて1′の位置に保持させるまでの時間をt1、
接触保持時間をt2及び第2図bに示す工程の基板
1を1′から摺動させて溶液2からワイプオフさ
せる時間をt3とすると、基板1を摺動中にも基板
1と溶液2とが接触しているため成長が行なわ
れ、実効的な成長時間を正確に規定することは不
可能である。したがつて短時間の成長は成長時間
を制御出来ないため、極薄い成長層の厚みを再現
性良く得ることは非常に困難となつている。
る方法では、第2図aに示す工程の基板1を摺動
させて1′の位置に保持させるまでの時間をt1、
接触保持時間をt2及び第2図bに示す工程の基板
1を1′から摺動させて溶液2からワイプオフさ
せる時間をt3とすると、基板1を摺動中にも基板
1と溶液2とが接触しているため成長が行なわ
れ、実効的な成長時間を正確に規定することは不
可能である。したがつて短時間の成長は成長時間
を制御出来ないため、極薄い成長層の厚みを再現
性良く得ることは非常に困難となつている。
第3図に従来の成長方法によるInPの成長層厚
と成長時間の関係の我々の実験データを示す。第
3図を見てわかるように成長時間が1秒以下にお
いて、成長時間に関係なく成長層厚が約500Åで
飽和化し、またバラツキも起きていることがわか
る。
と成長時間の関係の我々の実験データを示す。第
3図を見てわかるように成長時間が1秒以下にお
いて、成長時間に関係なく成長層厚が約500Åで
飽和化し、またバラツキも起きていることがわか
る。
発明の目的
本発明は上記欠点に鑑み、液相成長において極
薄膜を再現性良く形成することが出来る成長方法
を提供するものである。
薄膜を再現性良く形成することが出来る成長方法
を提供するものである。
発明の構成
本発明は、基板を具備した摺動板と溶液を収納
した溶液ホルダーからなる成長ボートを用いた液
相成長において、極薄膜のエピタキシヤル膜を作
製する際、前記摺動板を停止することなく摺動さ
せて前記溶液と接触させ、前記摺動時における溶
液と基板の接触時間で成長時間を制御したエピタ
キシヤル成長を行なうことを特徴とする液相成長
方法である。
した溶液ホルダーからなる成長ボートを用いた液
相成長において、極薄膜のエピタキシヤル膜を作
製する際、前記摺動板を停止することなく摺動さ
せて前記溶液と接触させ、前記摺動時における溶
液と基板の接触時間で成長時間を制御したエピタ
キシヤル成長を行なうことを特徴とする液相成長
方法である。
実施例の説明
以下本発明の実施例について説明する。極薄膜
のエピタキシヤル膜を形成する場合、従来の方法
では基板を摺動させて溶液と完全に接触させるま
での時間t1と基板を摺動させて溶液を完全にワイ
プオフさせるまでの時間t3の和が、基板と溶液と
が停止して保持される時間t2と同程度か長い場
合、成長時間を規定出来ず成長層厚を制御出来な
いという欠点を有している。そこで本発明におい
ては、上記の欠点を除くため溶液と接触させる間
は基板を停止させることなく基板を摺動させた状
態にして成長を行なうことにある。また成長時間
は摺動板3の摺動速度を一定にして、溶液2と基
板1との接触時間を算出することにより精度良く
制御できる。具体的にいえば成長時間tgは摺動方
向における溶液2の長さlと基板1の摺動速度v
の比l/vで算出される。このような本実施例の
方法を用いたInPの液相成長の実験結果を第4図
に示す。ここで溶液2の長さlは5mmであり、し
たがつて例えば成長時間tg=0.2秒のとき摺動速
度Vは10mm/秒である。
のエピタキシヤル膜を形成する場合、従来の方法
では基板を摺動させて溶液と完全に接触させるま
での時間t1と基板を摺動させて溶液を完全にワイ
プオフさせるまでの時間t3の和が、基板と溶液と
が停止して保持される時間t2と同程度か長い場
合、成長時間を規定出来ず成長層厚を制御出来な
いという欠点を有している。そこで本発明におい
ては、上記の欠点を除くため溶液と接触させる間
は基板を停止させることなく基板を摺動させた状
態にして成長を行なうことにある。また成長時間
は摺動板3の摺動速度を一定にして、溶液2と基
板1との接触時間を算出することにより精度良く
制御できる。具体的にいえば成長時間tgは摺動方
向における溶液2の長さlと基板1の摺動速度v
の比l/vで算出される。このような本実施例の
方法を用いたInPの液相成長の実験結果を第4図
に示す。ここで溶液2の長さlは5mmであり、し
たがつて例えば成長時間tg=0.2秒のとき摺動速
度Vは10mm/秒である。
従来例との比較のため成長条件を同じにした。
いわゆる成長温度が600℃、過飽和度が5℃、過
冷却度0.7℃/分の過冷却法で行なつた。第4図
を見てわかるように10分の1秒台の短い成長時間
に対しても成長層厚が理論直線にのつており従来
法の第3図のような成長層厚が飽和化することが
起きず、制御性良く膜厚制御が可能になつている
ことがわかる。
いわゆる成長温度が600℃、過飽和度が5℃、過
冷却度0.7℃/分の過冷却法で行なつた。第4図
を見てわかるように10分の1秒台の短い成長時間
に対しても成長層厚が理論直線にのつており従来
法の第3図のような成長層厚が飽和化することが
起きず、制御性良く膜厚制御が可能になつている
ことがわかる。
なお、実施例において、基板1を摺動させて溶
液2と接触させるとしたが、成長ボートの構造を
変更して溶液2を摺動させて基板1と接触させる
方法をとつても同様の効果が得られることはいう
までもない。
液2と接触させるとしたが、成長ボートの構造を
変更して溶液2を摺動させて基板1と接触させる
方法をとつても同様の効果が得られることはいう
までもない。
発明の効果
以上のように、本発明によれば、基板を停止す
ることなく摺動させた状態で溶液を接触させて液
相成長を行なうことにより短い成長時間の制御が
精度良く行なうことが出来、極薄膜の成長層を得
ることが可能となる。
ることなく摺動させた状態で溶液を接触させて液
相成長を行なうことにより短い成長時間の制御が
精度良く行なうことが出来、極薄膜の成長層を得
ることが可能となる。
第1図は従来より用いられている液相成長ボー
トの構造図、第2図a,bは従来の成長過程を示
す図、第3図は従来法によるInP液相成長の成長
レート図、第4図は本発明の実施例におけるInP
液相成長の成長レート図である。 1……基板、2……溶液、3……摺動板、4…
…溶液ホルダー。
トの構造図、第2図a,bは従来の成長過程を示
す図、第3図は従来法によるInP液相成長の成長
レート図、第4図は本発明の実施例におけるInP
液相成長の成長レート図である。 1……基板、2……溶液、3……摺動板、4…
…溶液ホルダー。
Claims (1)
- 1 基板を具備した摺動板と溶液を収納した溶液
ホルダーを有する成長ボートを用いた液相成長に
おいて、500Å以下の極薄膜の厚みを有する成長
層を作製する際、前記摺動板又は前記溶液ホルダ
ーを一定速度で摺動して、前記基板と前記溶液が
接触している時間を制御することにより、前記成
長層の厚みを制御することを特徴とする液相成長
方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59216654A JPS6197189A (ja) | 1984-10-16 | 1984-10-16 | 液相成長方法 |
US06/787,369 US4702781A (en) | 1984-10-16 | 1985-10-15 | Liquid phase epitaxial growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59216654A JPS6197189A (ja) | 1984-10-16 | 1984-10-16 | 液相成長方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6197189A JPS6197189A (ja) | 1986-05-15 |
JPH0210799B2 true JPH0210799B2 (ja) | 1990-03-09 |
Family
ID=16691838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59216654A Granted JPS6197189A (ja) | 1984-10-16 | 1984-10-16 | 液相成長方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US4702781A (ja) |
JP (1) | JPS6197189A (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2917913B2 (ja) * | 1996-06-10 | 1999-07-12 | 日本電気株式会社 | 半導体光素子の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3664294A (en) * | 1970-01-29 | 1972-05-23 | Fairchild Camera Instr Co | Push-pull structure for solution epitaxial growth of iii{14 v compounds |
JPS51111476A (en) * | 1975-03-26 | 1976-10-01 | Sumitomo Electric Ind Ltd | Method of liquid phase epitaxial crystal growth |
US4052252A (en) * | 1975-04-04 | 1977-10-04 | Rca Corporation | Liquid phase epitaxial growth with interfacial temperature difference |
JPS5726487A (en) * | 1980-07-23 | 1982-02-12 | Hitachi Ltd | Semiconductor laser device |
US4578127A (en) * | 1982-08-13 | 1986-03-25 | At&T Bell Laboratories | Method of making an improved group III-V semiconductor device utilizing a getter-smoothing layer |
US4566171A (en) * | 1983-06-20 | 1986-01-28 | At&T Bell Laboratories | Elimination of mask undercutting in the fabrication of InP/InGaAsP BH devices |
-
1984
- 1984-10-16 JP JP59216654A patent/JPS6197189A/ja active Granted
-
1985
- 1985-10-15 US US06/787,369 patent/US4702781A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US4702781A (en) | 1987-10-27 |
JPS6197189A (ja) | 1986-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0210799B2 (ja) | ||
EP0160701B1 (en) | Lpe growth on group iii-v compound semiconductor substrates containing phosphorus | |
Rode et al. | Growth of AlGaAs-GaAs heterostructures from step-cooled solutions | |
GB1473485A (en) | Method for growing crystals of iii-v compound semicon ductors | |
JP2687445B2 (ja) | ヘテロエピタキシャル成長方法 | |
JPH0684805A (ja) | 化合物半導体結晶成長方法 | |
JPS589796B2 (ja) | 分子線結晶成長方法 | |
JPS6020509A (ja) | 液相エピタキシヤル成長方法 | |
JPS62219614A (ja) | 化合物半導体の成長方法 | |
JPS626338B2 (ja) | ||
JP3101753B2 (ja) | 気相成長方法 | |
Iida et al. | GaAs‐WHISKER CRYSTALS CONTAINING GERMANIUM CORE | |
JP3167350B2 (ja) | 素子の製造法 | |
JPH0779087B2 (ja) | GaAs(111)A面基板の表面処理方法 | |
JPS5812325A (ja) | 混晶半導体の成長方法 | |
JPS636834A (ja) | 選択エピタキシヤル成長方法 | |
JPH04290423A (ja) | 半導体基板の製造方法および半導体装置 | |
JPH0684796A (ja) | 半導体結晶成長方法 | |
JPH0334848B2 (ja) | ||
JPS626336B2 (ja) | ||
JPH04307926A (ja) | 化合物半導体薄膜単結晶の成長方法 | |
JPS58190895A (ja) | 液相エピタキシヤル成長方法 | |
JPS62202893A (ja) | 液相エピタキシヤル成長方法 | |
JPH02219216A (ja) | Mocvd法による結晶成長方法 | |
JPH04299525A (ja) | 素子の製造法 |