JPH0155238B2 - - Google Patents

Info

Publication number
JPH0155238B2
JPH0155238B2 JP59017597A JP1759784A JPH0155238B2 JP H0155238 B2 JPH0155238 B2 JP H0155238B2 JP 59017597 A JP59017597 A JP 59017597A JP 1759784 A JP1759784 A JP 1759784A JP H0155238 B2 JPH0155238 B2 JP H0155238B2
Authority
JP
Japan
Prior art keywords
tin oxide
copper
solvent
single crystal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59017597A
Other languages
Japanese (ja)
Other versions
JPS60161387A (en
Inventor
Hidenori Sakauchi
Kenji Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP59017597A priority Critical patent/JPS60161387A/en
Publication of JPS60161387A publication Critical patent/JPS60161387A/en
Publication of JPH0155238B2 publication Critical patent/JPH0155238B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Description

【発明の詳細な説明】 本発明は酸化錫単結晶の製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing a tin oxide single crystal.

酸化錫は透明で導電性を有するため、その単結
晶は電子部品の材料や赤外線吸収材としての応用
が期待されている。
Since tin oxide is transparent and conductive, its single crystals are expected to be used as materials for electronic components and infrared absorbing materials.

従来の酸化錫単結晶の製造は気相法によつて行
われている。この方法によると、結晶の成長速度
が遅く、また得られる結晶は板状または針状のも
のとなり、実用に供し得るような単結晶が得にく
い問題点があつた。
Conventionally, tin oxide single crystals are produced by a gas phase method. According to this method, the crystal growth rate is slow, and the crystals obtained are plate-shaped or needle-shaped, making it difficult to obtain a single crystal that can be used in practice.

本発明の目的は前記問題点を解消しようとする
ものであり、大きな酸化錫単結晶を容易に製造す
る方法を提供するにある。
An object of the present invention is to solve the above-mentioned problems, and to provide a method for easily producing large tin oxide single crystals.

本発明者は前記目的を達成すべく研究の結果、
溶媒として、銅または銅の融点を降下させる金属
と銅との合金を使用して、導電性を増すための金
属あるいはその酸化物を添加した酸化錫を結晶と
して析出育成させると、大きな単結晶が容易に得
られることを究明し得た。この知見に基づいて本
発明を完成した。
As a result of research to achieve the above object, the present inventor has
If copper or an alloy of copper and a metal that lowers the melting point of copper is used as a solvent, and tin oxide to which a metal or its oxide is added to increase conductivity is precipitated and grown as a crystal, a large single crystal will be formed. We have found that it can be easily obtained. The present invention was completed based on this knowledge.

本発明の要旨は、導電性を増すための金属、あ
るいはその酸化物を加えた酸化錫を溶質とし、銅
または銅と銅の融点を降下させる金属との合金を
溶媒として使用し、その溶媒から導電性を増すた
めの金属あるいはその酸化物を添加した酸化錫を
単結晶として析出育成させる方法にある。
The gist of the present invention is to use tin oxide containing a metal or its oxide to increase conductivity as a solute, and use copper or an alloy of copper and a metal that lowers the melting point of copper as a solvent. The method involves precipitating and growing tin oxide as a single crystal to which a metal or its oxide is added to increase conductivity.

溶質の酸化錫に加える導電性を増すための物質
としては、例えばアンチモン、インジユウムなど
が挙げられる。溶質と溶媒の割合は、酸化錫を銅
の溶解量以下あるいは以上のいずれでもよい。し
かしながら、単結晶析出育成後、固化した溶融物
から単結晶を分離する際、酸、アルカリ等で溶媒
を溶解する等の処理を行うので、溶媒量は余り過
剰でないことが好ましい。好ましい範囲は、酸化
錫:銅が5:95〜1:99の範囲である。
Examples of the substance added to the solute tin oxide to increase conductivity include antimony and indium. The ratio of the solute to the solvent may be either lower than or higher than the amount of tin oxide dissolved in copper. However, when separating the single crystal from the solidified melt after single crystal precipitation and growth, treatment such as dissolving the solvent with acid, alkali, etc. is performed, so it is preferable that the amount of the solvent is not too excessive. A preferred range is a tin oxide:copper ratio of 5:95 to 1:99.

酸化錫と銅との混合物をるつぼに入れ、不活性
ガス雰囲気、あるいは溶媒が酸化されない程度の
酸素分圧下で加熱溶融させる。これを溶媒の融点
より高い温度、好ましくは1300〜1500℃に温度を
あげ、直ちに、あるいは数時間保持した後冷却を
開始する。冷却速度は速すぎると結晶性が悪くな
るので、毎時100℃以下とし、好ましくは毎時20
〜1℃である。溶融物が固化した後、室温附近ま
で徐冷する。固化したものを取出し、これを酸ま
たはアルカリ例えば王水、硝酸、アンモニア水で
溶媒を溶解すると酸化錫単結晶が得られる。
A mixture of tin oxide and copper is placed in a crucible and heated and melted in an inert gas atmosphere or under an oxygen partial pressure that does not oxidize the solvent. The temperature is raised to a temperature higher than the melting point of the solvent, preferably 1300 to 1500°C, and cooling is started immediately or after being maintained for several hours. If the cooling rate is too fast, the crystallinity will deteriorate, so the cooling rate should be 100°C or less per hour, preferably 20°C per hour.
~1°C. After the melt solidifies, it is gradually cooled to around room temperature. When the solidified material is taken out and the solvent is dissolved in an acid or alkali such as aqua regia, nitric acid, or aqueous ammonia, a tin oxide single crystal is obtained.

より低い温度で酸化錫単結晶の析出を行なうに
は、銅と銅の融点を降下させる金属との合金を使
用することによつて行うことができる。銅の融点
を降下させる金属としては、例えば、錫、亜鉛が
挙げられる。しかし、これらの金属に限定される
ものではなく、融点を降下させる金属であればよ
い。これらの金属は予め銅との合金として添加す
ることを必要とせず、溶媒中にこれらの金属を添
加すればよい。加える金属の種類及び量によつて
融点を調整することができる。錫を使用すると融
点を400℃以下にもすることもできる。
Precipitation of tin oxide single crystals at lower temperatures can be achieved by using an alloy of copper and a metal that lowers the melting point of copper. Examples of metals that lower the melting point of copper include tin and zinc. However, the material is not limited to these metals, and any metal that lowers the melting point may be used. It is not necessary to add these metals in advance as an alloy with copper, but it is sufficient to add these metals to the solvent. The melting point can be adjusted by the type and amount of metal added. If tin is used, the melting point can be lowered to below 400°C.

このような銅合金を溶媒として使用する場合
も、その溶融温度が相違するのみで、前記と同様
にして酸化錫単結晶を析出育成し得られる。
When such a copper alloy is used as a solvent, a tin oxide single crystal can be precipitated and grown in the same manner as described above, with the only difference being the melting temperature.

実施例 1 99.99%の酸化錫2gと、99.99%の酸化アンチ
モン(五酸化アンチモン)0.25gと、99.99%の
銅100gとを混合し、この混合物をSSA−Sのア
ルミナるつぼに入れた。このるつぼを雰囲気ガス
を制御できる電気炉の中に静置し、窒素ガスを雰
囲気として毎分十数流した。電気炉の温度を毎
時50℃の割合で1300℃まで昇温させて混合物を融
解させた。この温度に8時間保持した後、毎時
2.7℃の速度で冷却させた。この間、酸化錫単結
晶が析出育成された。溶融物が固化した後、室温
附近まで徐冷し、るつぼを取出した。固化した溶
融物を硝酸溶液で煮沸して銅を溶解し、洗浄して
酸化錫単結晶を得た。この結晶は3×2×2mm以
上の大きさのものであつた。
Example 1 2 g of 99.99% tin oxide, 0.25 g of 99.99% antimony oxide (antimony pentoxide), and 100 g of 99.99% copper were mixed, and this mixture was placed in an SS A -S alumina crucible. This crucible was placed in an electric furnace where the atmospheric gas could be controlled, and nitrogen gas was flowed through it every minute as an atmosphere. The temperature of the electric furnace was increased to 1300°C at a rate of 50°C per hour to melt the mixture. After holding this temperature for 8 hours,
Cooling was allowed at a rate of 2.7°C. During this time, a tin oxide single crystal was precipitated and grown. After the melt solidified, it was gradually cooled to around room temperature and the crucible was taken out. The solidified melt was boiled in a nitric acid solution to dissolve the copper and washed to obtain a tin oxide single crystal. This crystal had a size of 3 x 2 x 2 mm or more.

実施例 2 99.99%の酸化錫2gと、99.99%の五酸化アン
チモン0.25gと溶媒として99.99%の銅80gに99.9
%の錫20gを加えたもの(融点が800℃以下とな
つた。)との混合物を作つた。この混合物を実施
例1と同様にして溶融させた。1300℃の温度で8
時間保持した後、毎時2.7℃の速度で冷却させた。
溶融物が固化した後、室温附近まで徐冷してるつ
ぼを取出した。固化した溶融物を王水で煮沸して
溶媒を溶かし、洗浄して酸化錫単結晶を得た。そ
の結晶の大きさは3×3×2mm以上であつた。
Example 2 2 g of 99.99% tin oxide, 0.25 g of 99.99% antimony pentoxide and 80 g of 99.99% copper as solvent
% of tin (the melting point was below 800°C) was prepared. This mixture was melted as in Example 1. 8 at a temperature of 1300℃
After holding for an hour, it was cooled at a rate of 2.7°C per hour.
After the melt solidified, it was slowly cooled to around room temperature and the crucible was taken out. The solidified melt was boiled with aqua regia to dissolve the solvent and washed to obtain a tin oxide single crystal. The size of the crystal was 3 x 3 x 2 mm or more.

以上のように、本発明によると、大きな導電性
が100kΩ以下の酸化錫単結晶を容易に製造し得ら
れる優れた効果を有する。
As described above, according to the present invention, a tin oxide single crystal having a high conductivity of 100 kΩ or less can be easily produced and has an excellent effect.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性を増すための金属あるいはその酸化物
を加えた酸化錫を溶質とし、銅または銅と銅の融
点を降下させる金属との合金を溶媒として使用
し、その溶媒から溶質の酸化錫を単結晶として析
出成長させることを特徴とする酸化錫単結晶の製
造法。
1. Tin oxide with a metal or its oxide added to increase conductivity is used as a solute, copper or an alloy of copper and a metal that lowers the melting point of copper is used as a solvent, and the solute tin oxide is simply removed from the solvent. A method for producing a tin oxide single crystal, which is characterized by growing it by precipitation as a crystal.
JP59017597A 1984-02-01 1984-02-01 Manufacture of tin oxide single crystal Granted JPS60161387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59017597A JPS60161387A (en) 1984-02-01 1984-02-01 Manufacture of tin oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59017597A JPS60161387A (en) 1984-02-01 1984-02-01 Manufacture of tin oxide single crystal

Publications (2)

Publication Number Publication Date
JPS60161387A JPS60161387A (en) 1985-08-23
JPH0155238B2 true JPH0155238B2 (en) 1989-11-22

Family

ID=11948293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59017597A Granted JPS60161387A (en) 1984-02-01 1984-02-01 Manufacture of tin oxide single crystal

Country Status (1)

Country Link
JP (1) JPS60161387A (en)

Also Published As

Publication number Publication date
JPS60161387A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
JPS6127323B2 (en)
KR101780306B1 (en) method of preparing a silver nanowire and a silver nanowire prepared by using the same
JP2905353B2 (en) Purification method of metallic silicon
JPH0155238B2 (en)
JPH0155237B2 (en)
JP2642906B2 (en) Method for producing spinel single crystal fiber
Jones et al. The structure of high-purity copper ingots nucleated at large undercoolings
JP2684432B2 (en) Superconducting oxide single crystal and method for producing the same
JPS6054997A (en) Production of tin oxide fiber
JPS60161337A (en) Manufacture of tin oxide fiber
JP2002256355A (en) Method for recovering gallium and indium
JPH0676609B2 (en) Method for producing fine copper powder
JPH039173B2 (en)
JPH0339999B2 (en)
JP2959097B2 (en) Single crystal growth method
JPS6335562B2 (en)
JP2739546B2 (en) Method for producing lithium borate single crystal
JPH06321693A (en) Production of oxide superconducting material
JP3011497B2 (en) Method for producing potassium salt single crystal
KR19990052862A (en) Method for producing boride crystals
JPH0483798A (en) Removal of residue in crucible
JPH05163098A (en) Method for growing lanthanum aluminate crystal
JPH02129321A (en) Method for refining mish metal
JPS63274696A (en) Production of cupric acid-lanthanum single crystal
JPH027919B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term