JPH05163098A - Method for growing lanthanum aluminate crystal - Google Patents

Method for growing lanthanum aluminate crystal

Info

Publication number
JPH05163098A
JPH05163098A JP33493391A JP33493391A JPH05163098A JP H05163098 A JPH05163098 A JP H05163098A JP 33493391 A JP33493391 A JP 33493391A JP 33493391 A JP33493391 A JP 33493391A JP H05163098 A JPH05163098 A JP H05163098A
Authority
JP
Japan
Prior art keywords
residue
crucible
crystal
lanthanum
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33493391A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakami
博 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP33493391A priority Critical patent/JPH05163098A/en
Publication of JPH05163098A publication Critical patent/JPH05163098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To readily and efficiently take out a crystal without requiring troublesome operation to remove melt residues in a crucible after growing the crystal and causing the breakage or deterioration in the crucible in a method for growing a lanthanum aluminate crystal according to a method for pulling up the crystal. CONSTITUTION:Lanthanum oxide is added to a melt residue in a crucible after growing a crystal to solidify the residue into a polycrystal containing a phase rich in the lanthanum. Thereby, the residue is solidified in a state rich in the lanthanum. As a result, the residue can mechanically and extremely readily be removed. Self fine powdering of the residue considered due to moisture absorption occurs especially by exposing the solidified residue to steam or water under specific conditions. The residue can extremely easily be separated from the crucible and the life of the expensive crucible can remarkably be prolonged. Consequently, the crucible cost and further crystal growth cost can remarkably be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はランタンアルミネート結
晶の育成方法に係り、特に、貴金属製(イリジュウム)
るつぼ内の融液に種結晶を浸してこれを引き上げること
により、所定方向に所定量のランタンアルミネート単結
晶を育成する際に、融液残渣をるつぼ内に残した状態で
育成を終了させる結晶育成法において、るつぼ内残渣を
効率的に除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a lanthanum aluminate crystal, and more particularly to a precious metal (iridium).
By immersing a seed crystal in the melt in the crucible and pulling it up, when growing a predetermined amount of a lanthanum aluminate single crystal in a predetermined direction, a crystal that terminates the growth with the melt residue left in the crucible. In the growing method, it relates to a method for efficiently removing the residue in the crucible.

【0002】[0002]

【従来の技術】ランタンアルミネート(LaAlO3
結晶は、高Tc超伝導材料用基板材として、一部で注目
されている物質である。
2. Description of the Related Art Lanthanum aluminate (LaAlO 3 )
Crystals are substances that have received some attention as substrate materials for high Tc superconducting materials.

【0003】従来、ランタンアルミネートは、一般にベ
ルヌーイ法を用いて結晶育成されるが、一部にはチョク
ラルスキィ法と称される結晶引き上げ法での育成例が報
告されている。ランタンアルミネートは融点が高いた
め、如何に高品質で安価に結晶育成できるかが要点とさ
れており、そのために、結晶引き上げ法を用い、るつぼ
コストを低減させる技術の確立が望まれている。
Conventionally, lanthanum aluminate is generally grown by the Bernoulli method, but some examples have been reported by the crystal pulling method called Czochralski method. Since lanthanum aluminate has a high melting point, how to grow crystals with high quality and at low cost is important. Therefore, it is desired to establish a technique for reducing the crucible cost by using the crystal pulling method.

【0004】結晶引き上げ法は、るつぼ内でランタンア
ルミネートを融解させ、この融液に種結晶を浸した後、
引き上げて結晶を成長させる方法である。
In the crystal pulling method, lanthanum aluminate is melted in a crucible, and a seed crystal is immersed in this melt,
This is a method of pulling and growing a crystal.

【0005】このような結晶引き上げ法において、るつ
ぼ材料としては、育成する結晶組成の融解温度より融点
が高いこと、融解物と反応しないこと等を考慮する必要
があることから、るつぼ材の選択は非常に重要な要件で
あり、かつ、難しい問題である。従来、複合酸化物結晶
の育成用るつぼ材としては、白金やイリジュウムが一般
に用いられている。これらの材料は非常に高価であり、
10〜30回と繰り返し使用後、はじめて改鋳に供され
る。
In such a crystal pulling method, as the crucible material, it is necessary to consider that the melting point is higher than the melting temperature of the crystal composition to be grown and that it does not react with the melt. It is a very important requirement and a difficult problem. Conventionally, platinum and iridium have been generally used as crucible materials for growing complex oxide crystals. These materials are very expensive,
After repeated use for 10 to 30 times, it is first subjected to recasting.

【0006】ところで、一般に、結晶引き上げ法では2
0〜80%結晶が成長した段階で、融液から結晶を切り
離し、冷却後結晶を取り出す。その際、るつぼ内には融
液残渣が残る。従って、るつぼの再使用に際しては、こ
の残渣を除去する必要があり、従来、この残渣の除去に
は、その物性に応じて様々な除去法が取り入れられてい
る。例えば、再度溶解して取り出す、或いは、機械加工
や酸洗浄を組み合わせて取り出す等の方法が採用されて
いる。
By the way, in general, the crystal pulling method is 2
When 0 to 80% of the crystals have grown, the crystals are separated from the melt, and the crystals are taken out after cooling. At that time, a melt residue remains in the crucible. Therefore, when the crucible is reused, it is necessary to remove this residue, and conventionally, various removal methods have been adopted for removing this residue depending on the physical properties thereof. For example, a method of re-dissolving and taking out, or taking out in combination with machining or acid washing is adopted.

【0007】[0007]

【発明が解決しようとする課題】上記従来の融液残渣の
除去方法のうち、再溶解法は、ランタンアルミネートの
場合、融解温度が約2080℃と超高温であるため、る
つぼの融解破損の危険性がある。特に、イリジュウム製
るつぼでは、イリジュウムの(酸化)蒸発によるるつぼ
寿命短縮を引き起こす。また、機械加工及び酸洗浄法で
も、るつぼ破損の危険性、るつぼ劣化、工程の複雑化と
いう問題がある。
Among the conventional methods for removing the residue of the melt, the re-melting method in the case of lanthanum aluminate has an extremely high melting temperature of about 2080 ° C., which causes melting damage of the crucible. There is a risk. Particularly, in the crucible made of iridium, the life of the crucible is shortened by (oxidation) evaporation of iridium. Further, the mechanical processing and the acid cleaning method also have the problems of risk of crucible breakage, crucible deterioration, and complicated process.

【0008】このようなことから、ランタンアルミネー
ト結晶の育成において、融液残渣をるつぼの破損、劣化
を引き起こすことなく効率的に除去してるつぼを長期に
わたり繰り返し再使用する方法、特に、脆くて高価なイ
リジュウム製るつぼの寿命を大幅に改善する方法の出現
が望まれている。
Therefore, in growing lanthanum aluminate crystals, a method of efficiently removing the melt residue without causing damage or deterioration of the crucible and reusing the crucible for a long period of time, particularly when the crucible is fragile. The advent of methods to significantly improve the life of expensive iridium crucibles is desired.

【0009】[0009]

【課題を解決するための手段】請求項1のランタンアル
ミネート結晶の育成方法は、ランタンアルミネート結晶
にランタン化合物を加えることにより、該残渣を引き上
げ法によって育成する方法において、結晶育成後のるつ
ぼ内の融液残渣にランタン化合物を加えることにより、
該残渣をランタンリッチ相を含む多結晶に凝固させるこ
とを特徴とする。
A method for growing a lanthanum aluminate crystal according to claim 1 is a method for adding a lanthanum compound to a lanthanum aluminate crystal to grow the residue by a pulling method, wherein the crucible after the crystal is grown. By adding a lanthanum compound to the melt residue in the
The residue is solidified into a polycrystal containing a lanthanum-rich phase.

【0010】請求項2のランタンアルミネート結晶の育
成方法は、請求項1の方法において、凝固した融液残渣
を、温度0〜100℃、H2 O含有量10〜100%の
水蒸気又は水に10分間以上さらすことを特徴とする。
A method for growing a lanthanum aluminate crystal according to claim 2 is the method according to claim 1, wherein the solidified melt residue is converted into steam or water at a temperature of 0 to 100 ° C and a H 2 O content of 10 to 100%. It is characterized by exposing for 10 minutes or more.

【0011】即ち、本発明者は、イリジュウムるつぼか
らランタンアルミネート残渣を除去する方法について鋭
意検討を重ね、ランタンリッチの偏析相を有するランタ
ンアルミネート多結晶が脆くかつ吸湿性を有することを
利用することにより、ランタンアルミネート残渣をるつ
ぼ内から容易に取り出すことができることを見出し、本
発明を完成させた。
That is, the present inventor has conducted extensive studies on a method for removing a lanthanum aluminate residue from an iridium crucible, and utilizes the fact that a lanthanum aluminate polycrystal having a lanthanum-rich segregation phase is brittle and hygroscopic. As a result, they have found that the lanthanum aluminate residue can be easily taken out from the inside of the crucible, and have completed the present invention.

【0012】なお、本発明において、ランタンリッチ相
とは、アンタンとアルミニウムとが1:1の割合となる
ランタンアルミネート相に対して、ランタンが過剰とな
っている相をさす。
In the present invention, the lanthanum-rich phase means a phase in which the lanthanum is excessive with respect to the lanthanum aluminate phase in which the ratio of antan and aluminum is 1: 1.

【0013】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0014】本発明の方法においては、るつぼ内でラン
タンアルミネートを融解させ、この融液に種結晶を浸し
て引き上げる結晶引き上げ法によりランタンアルミネー
ト結晶を育成する方法において、結晶育成終了後、融液
残渣にランタン化合物を添加することによりランタンリ
ッチの状態とし、ランタンリッチ相を偏析相として含む
形で凝固させる。
In the method of the present invention, the lanthanum aluminate crystal is grown by the crystal pulling method in which the lanthanum aluminate is melted in the crucible, and the seed crystal is immersed in the melt to pull up the crystal. A lanthanum compound is added to the liquid residue to make it a lanthanum-rich state, and the lanthanum-rich phase is solidified in a form including a segregation phase.

【0015】即ち、まず、結晶育成終了後、育成した結
晶を切り離した直後に、酸化ランタン等のランタン化合
物を残渣に加えて溶解させる。この場合、ランタンリッ
チの割合には特に制限はないが、酸化ランタンと酸化ア
ルミニウムとを等モル配合とした融液の残渣であれば、
この残渣100gに対して、76.31〜83.86g
程度の酸化ランタンを溶解させて、残渣中のアルミニウ
ムに対して、ランタンが1.001〜1.100モル倍
となるようにするのが好ましい。
That is, first, after completion of crystal growth, immediately after separating the grown crystal, a lanthanum compound such as lanthanum oxide is added to the residue and dissolved. In this case, the lanthanum-rich ratio is not particularly limited, but if it is the residue of the melt in which lanthanum oxide and aluminum oxide are mixed in an equimolar ratio,
76.31 to 83.86 g for 100 g of this residue
It is preferable to dissolve about a lanthanum oxide so that the amount of lanthanum is 1.001 to 1.100 mol times that of aluminum in the residue.

【0016】なお、添加するランタン化合物としては、
残渣の再利用の面から酸化ランタンが最も有利である。
The lanthanum compound to be added is
Lanthanum oxide is most advantageous in terms of recycling of the residue.

【0017】このようにしてランタンリッチの状態とし
た残渣は、これを常法に従って冷却して凝固させること
により、ランタンリッチの偏析相を含む多結晶が得られ
る。
The lanthanum-rich residue thus obtained is cooled and solidified according to a conventional method to obtain a polycrystal containing a lanthanum-segregated phase.

【0018】この多結晶はるつぼ内壁からの剥離性が非
常に良く、軽い衝撃を加えることにより、容易にるつぼ
から取り出すことができる。
This polycrystal has a very good peeling property from the inner wall of the crucible and can be easily taken out from the crucible by applying a light impact.

【0019】特に、このるつぼ内の多結晶残渣を温度0
〜100℃、H2O含有率10〜100%の水蒸気又は
水に10分以上さらすことにより、多結晶残渣は自己微
粉末化により、効率的にるつぼ内壁から乖離し、より一
層容易に取り出すことが可能となる。るつぼ内の多結晶
残渣を上記特定条件の水蒸気又は水にさらすには、例え
ば、るつぼ内に多結晶残渣が浸る程度の水を入れ、加熱
後数時間放置する。この水蒸気又は水による残渣の乖離
は、処理する水蒸気又は水の温度が高い程容易に起こ
る。なお、水は水溶液であっても良い。
In particular, the polycrystalline residue in this crucible is removed at a temperature of 0.
By exposing it to steam or water having a H 2 O content of 10 to 100 ° C. and a H 2 O content of 10 to 10% for 10 minutes or more, the polycrystalline residue is efficiently separated from the inner wall of the crucible by self-pulverization and can be taken out more easily. Is possible. In order to expose the polycrystalline residue in the crucible to the steam or water under the above-mentioned specific conditions, for example, water enough for the polycrystalline residue to be immersed in the crucible is left for several hours after heating. The separation of the residue due to the steam or water easily occurs as the temperature of the steam or water to be treated increases. The water may be an aqueous solution.

【0020】このような本発明の方法は、特に、脆くて
高価なイリジュウム製るつぼを使用するランタンアルミ
ネート結晶の育成方法において、極めて有効である。
The method of the present invention as described above is extremely effective particularly in a method for growing a lanthanum aluminate crystal using a brittle and expensive iridium crucible.

【0021】[0021]

【作用】ランタンアルミネート結晶育成終了後の融液残
渣をランタンリッチな状態で凝固させることにより、機
械的に非常に容易に残渣を取り除くことが可能となる。
特に、この凝固した残渣を特定条件にて水蒸気又は水に
さらすことにより、吸湿に起因すると推定される残渣の
自己微粉末化が起こり、残渣はるつぼから極めて容易に
乖離する。
Function: By solidifying the melt residue after the lanthanum aluminate crystal growth in a lanthanum-rich state, the residue can be removed very easily mechanically.
In particular, by exposing the solidified residue to steam or water under specific conditions, self-micronization of the residue, which is presumed to be caused by moisture absorption, occurs, and the residue deviates from the crucible very easily.

【0022】本発明によるこのような残渣の剥離ないし
乖離作用機構の詳細は明らかではないが、ランタンリッ
チな残渣中の不純物或いはLa−Al−O系の異質相が
関与しているものと思われる。因みに、ボイド(ランタ
ンリッチの偏析相等)を含まない育成結晶には、吸湿に
よる自己微粉末化の現象は認められない。
Although the details of the mechanism of such residue separation or dissociation according to the present invention are not clear, it is believed that impurities in the lanthanum-rich residue or the heterogeneous phase of the La-Al-O system are involved. .. By the way, in the grown crystal that does not contain voids (lanthanum-rich segregation phase, etc.), the phenomenon of self-pulverization due to moisture absorption is not recognized.

【0023】[0023]

【実施例】以下に比較例及び実施例を挙げて本発明を更
に具体的に説明するが、本発明はその要旨を超えない限
り以下の実施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to comparative examples and examples, but the present invention is not limited to the following examples unless it exceeds the gist.

【0024】比較例1 110KHzの高周波加熱炉内に、直径50mm、高さ
50mm、厚さ1.5mmのイリジュウム(Ir)製る
つぼを設置し、その中に純度99.99%の酸化ランタ
ン50モル%、酸化アルミニウム50モル%の原料を3
20g入れ、窒素ガス雰囲気中で融解した。融液を融点
近くまで降温し、LaAlO3 の種結晶を浸し、12r
pmで回転させながら、約2mm/hrの引き上げ速
度、結晶径30mmで180gの結晶を育成した。その
後、結晶を切り離し、残渣を約24Hrかけて冷却しる
つぼ内で凝固させた。
Comparative Example 1 A crucible made of iridium (Ir) having a diameter of 50 mm, a height of 50 mm and a thickness of 1.5 mm was placed in a high frequency heating furnace of 110 KHz, and 50 mol of lanthanum oxide having a purity of 99.99% was placed in the crucible. %, Aluminum oxide 50 mol% 3
20 g was put and melted in a nitrogen gas atmosphere. The temperature of the melt is lowered to near the melting point, and a seed crystal of LaAlO 3 is immersed in the melt,
While rotating at pm, 180 g of crystals were grown at a pulling rate of about 2 mm / hr and a crystal diameter of 30 mm. Then, the crystal was separated, and the residue was solidified in a crucible which was cooled by applying about 24 hours.

【0025】育成された結晶は、透明で淡褐色をした双
晶を含む配向性の強い物質であり、偏析の結果生じるボ
イドは含んでいなかった。
The grown crystal was a highly oriented substance containing a transparent, light brown-colored twin, and did not contain a void resulting from segregation.

【0026】一方、残渣は、るつぼに付着した形で塊状
に多結晶質で凝固しており、そのままでは簡単な人為的
な軽い機械衝撃や酸洗浄では除去できなかった。そこで
残渣を含むるつぼ内に水を浸し、80℃に加熱して1日
放置した。残渣の自己微粉末化による乖離は全く起き
ず、処理前の非常に固い塊のままであり、残渣の除去は
困難であった。
On the other hand, the residue was solidified as a lump in a polycrystalline form while being attached to the crucible, and could not be removed by a simple artificial light mechanical shock or acid cleaning as it was. Then, water was immersed in the crucible containing the residue, heated to 80 ° C. and left for 1 day. No separation due to self-pulverization of the residue occurred at all, and it remained as a very hard lump before treatment, and it was difficult to remove the residue.

【0027】実施例1 比較例1において、結晶切離し直後にランタンを3g加
えて残渣中に溶解させた。その後、残渣を約24Hrか
けて凝固させた。その結果、残渣は多結晶質で凝固して
おり、人力による軽い機械衝撃でるつぼ内壁から、剥離
した。次いで、残渣を含むるつぼ内に水を浸し、80℃
に加熱して5Hr放置したところ、残渣の自己微粉末化
による乖離が起きており、容易に残渣を除去することが
できた。
Example 1 In Comparative Example 1, 3 g of lanthanum was added immediately after the crystal was cut off and dissolved in the residue. Then, the residue was solidified by applying about 24 hours. As a result, the residue was polycrystalline and solidified, and was peeled from the inner wall of the crucible by a light mechanical impact caused by human power. Then, immerse the water in the crucible containing the residue at 80 ° C.
When heated for 5 hours and left for 5 hours, the residue was dissociated due to self-pulverization, and the residue could be easily removed.

【0028】[0028]

【発明の効果】以上詳述した通り、本発明のランタンア
ルミネート結晶の育成方法によれば、結晶引き上げ法に
よりランタンアルミネート結晶を育成する方法におい
て、結晶育成後のるつぼ内の融液残渣を煩雑な残渣除去
作業を要することなく、また、るつぼの破損や劣化を引
き起こすことなく、容易かつ効率的に取り出すことが可
能とされる。
As described in detail above, according to the method for growing a lanthanum aluminate crystal of the present invention, in the method for growing a lanthanum aluminate crystal by the crystal pulling method, the melt residue in the crucible after the crystal growth is removed. It is possible to take out easily and efficiently without requiring a complicated residue removing operation and without causing damage or deterioration of the crucible.

【0029】このため、高価なるつぼ寿命を大幅に延ば
すことが可能とされ、この結果、るつぼコストの大幅な
低減、ひいては結晶育成コストの低減が図れ、その工業
的有用性は極めて大である。
Therefore, the life of an expensive crucible can be significantly extended, and as a result, the cost of the crucible and the crystal growth cost can be significantly reduced, and its industrial utility is extremely large.

【0030】請求項2のランタンアルミネート結晶の育
成方法によれば、残渣をより一層容易に除去することが
可能とされる。
According to the lanthanum aluminate crystal growing method of the second aspect, the residue can be removed more easily.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ランタンアルミネート結晶を引き上げ法
によって育成する方法において、結晶育成後のるつぼ内
の融液残渣にランタン化合物を加えることにより、該残
渣をランタンリッチ相を含む多結晶に凝固させることを
特徴とするランタンアルミネート結晶の育成方法。
1. A method of growing a lanthanum aluminate crystal by a pulling method, which comprises adding a lanthanum compound to a melt residue in a crucible after crystal growth to solidify the residue into a polycrystal containing a lanthanum-rich phase. And a method for growing a lanthanum aluminate crystal.
【請求項2】 凝固した融液残渣を、温度0〜100
℃、H2 O含有量10〜100%の水蒸気又は水に10
分間以上さらすことを特徴とする請求項1に記載のラン
タンアルミネート結晶の育成方法。
2. The solidified melt residue is treated at a temperature of 0-100.
℃, H 2 O content 10 to 100% steam or water 10
The method for growing a lanthanum aluminate crystal according to claim 1, wherein the lanthanum aluminate crystal is grown for at least a minute.
JP33493391A 1991-12-18 1991-12-18 Method for growing lanthanum aluminate crystal Pending JPH05163098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33493391A JPH05163098A (en) 1991-12-18 1991-12-18 Method for growing lanthanum aluminate crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33493391A JPH05163098A (en) 1991-12-18 1991-12-18 Method for growing lanthanum aluminate crystal

Publications (1)

Publication Number Publication Date
JPH05163098A true JPH05163098A (en) 1993-06-29

Family

ID=18282860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33493391A Pending JPH05163098A (en) 1991-12-18 1991-12-18 Method for growing lanthanum aluminate crystal

Country Status (1)

Country Link
JP (1) JPH05163098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325002A (en) * 2004-05-17 2005-11-24 Neomax Co Ltd Single crystal material and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325002A (en) * 2004-05-17 2005-11-24 Neomax Co Ltd Single crystal material and its manufacturing method
JP4596307B2 (en) * 2004-05-17 2010-12-08 日立金属株式会社 Single crystal materials for electronic devices

Similar Documents

Publication Publication Date Title
JP4198762B2 (en) Method for producing high-resistance GaN bulk crystal
US4304763A (en) Process for purifying metallurgical-grade silicon
US4298423A (en) Method of purifying silicon
US5314571A (en) Crystallization from high temperature solutions of Si in copper
JPH05163098A (en) Method for growing lanthanum aluminate crystal
JPH0570288A (en) Method and appartatus for producing compound semiconductor single crystal
JP2714684B2 (en) Purification method of metallic gallium
KR100882578B1 (en) Czochralski apparatus for growing crystals and purification method of waste salts using the same
JP4190678B2 (en) Purification method of gallium
JPH11246297A (en) Method for growing nitride-based compound semiconductor crystal
JPH0483798A (en) Removal of residue in crucible
JPH0214315B2 (en)
JP2835143B2 (en) Method for producing high purity In
JPS61501984A (en) Method for producing a single crystal thin layer of silver thiogallate (AgGaS↓2)
JP2007045640A (en) Forming method of semiconductor bulk crystal
JPH0585893A (en) Process for producing semiconductor foil and its usage
JPS62292613A (en) Method for purifying high purity silicon
JP2002256355A (en) Method for recovering gallium and indium
JPH05270814A (en) Production of silicon for solar battery
JP3885913B2 (en) Method for purifying recovered gallium
JPH039173B2 (en)
Šestáková et al. Various methods for the growth of GaSb single crystals
JPH03295890A (en) Method for removing residue in crucible
Wong-Ng et al. Superconducting Phase Formation in Bi (Pb)-Sr-Ca-Cu-O Glasses: A Review
JPS60221388A (en) Manufacture of gaas single crystal