JPH03295890A - Method for removing residue in crucible - Google Patents

Method for removing residue in crucible

Info

Publication number
JPH03295890A
JPH03295890A JP9812590A JP9812590A JPH03295890A JP H03295890 A JPH03295890 A JP H03295890A JP 9812590 A JP9812590 A JP 9812590A JP 9812590 A JP9812590 A JP 9812590A JP H03295890 A JPH03295890 A JP H03295890A
Authority
JP
Japan
Prior art keywords
crucible
residue
single crystal
polycrystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9812590A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakami
博 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP9812590A priority Critical patent/JPH03295890A/en
Publication of JPH03295890A publication Critical patent/JPH03295890A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prolong the service life of a crucible by growing an LaAlO3 single crystal, then solidifying the residue in the crucible into its polycrystal and allowing the polycrystal to stand in an atmosphere at specified temp. and humidity. CONSTITUTION:An LaAlO3 single crystal is grown by the pulling up method, and the grown single crystal and the LaAlO3 residue in a crucible of Ir, etc., are gradually cooled to-10 to +50 deg.C in 10 to 50hr so that the residue is solidified into a polycrystal. The crucible contg. the solidified polycrystal residue is allowed to stand in an atmosphere at-10 to +50 deg.C and 10-80% humidity for >=24 hr to pulverize the LaAlO3 polycrystal, the pulverized material is completely released from the crucible, and the residue is easily removed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ランタンアルミネー) (LaA103) 
単結晶を引き上げ法によって製造した後、るつぼ内の融
液残渣を除去する方法に関する。
[Detailed description of the invention] [Industrial application field] The present invention relates to lanthanum alumina) (LaA103)
The present invention relates to a method for removing melt residue in a crucible after producing a single crystal by a pulling method.

[従来の技術] ランタンアルミネート単結晶は、高Tc(臨界温度)超
伝導体用基板材料として、最近注目されている物質であ
る。
[Prior Art] Lanthanum aluminate single crystal is a substance that has recently attracted attention as a substrate material for high Tc (critical temperature) superconductors.

ランタンアルミネートのような複合酸化物の単結晶は、
ベルヌーイ法により育成されることが多いが、るつぼ内
に原料を融解させ、融液に種結晶を浸して引き上げる、
結晶引き上げ法(−船釣にはチョクラルスキー法)によ
っても育成されている。
Single crystals of complex oxides such as lanthanum aluminate are
It is often grown using the Bernoulli method, which involves melting the raw material in a crucible, dipping a seed crystal in the melt, and pulling it up.
It is also grown by the crystal pulling method (-Czochralski method for boat fishing).

結晶引き上げ法では、通常、融液量の20〜80重量%
の単結晶を育成させた後、融液から単結晶を弓き離し、
冷却した後、単結晶を取り出す。その結果、るつぼ内に
は残渣が残る。
In the crystal pulling method, usually 20 to 80% by weight of the melt amount
After growing a single crystal, the single crystal is separated from the melt,
After cooling, the single crystal is taken out. As a result, a residue remains inside the crucible.

残渣は、その物性に応じて、再度溶解したり、機械的加
工と酸洗浄を組み合わせたりすることにより除去されて
いる。
Depending on its physical properties, the residue is removed by redissolving or by a combination of mechanical processing and acid cleaning.

また、結晶引き上げ法に使用するるつぼとしては、育成
したい結晶の融解温度より融点が高いこと、原料融液と
反応しないこと等を考慮して、複合酸化物結晶を育成す
る場合は白金やイリジウム等の貴金属が一般に用いられ
ており、ランタンアルミネートの場合は融解温度が約2
080°Cと非常に高温であるため、通常、イリジウム
類のるつぼが使用されている。これらの材料は、非常に
高価であるために、通常10〜30回繰り返し使用した
後、改鋳に供される。
In addition, when growing composite oxide crystals, the crucible used for the crystal pulling method should be made of platinum, iridium, etc. Noble metals are commonly used, and in the case of lanthanum aluminate, the melting temperature is approximately 2
Since the temperature is extremely high at 080°C, an iridium crucible is usually used. Since these materials are very expensive, they are usually used 10 to 30 times before being recast.

[発明が解決しようとする課題J ランタンアルミネートの融液残渣を再溶解により除去す
る方法は、ランタンアルミネートの融解温度が非常に高
温であるため、イリジウム製るつぼの融解・破損、イリ
ジウムの酸化・蒸発によるるつぼの寿命短縮等の原因と
なる。
[Problem to be solved by the invention J] Since the melting temperature of lanthanum aluminate is extremely high, the method of removing the lanthanum aluminate melt residue by remelting may cause melting and damage of the iridium crucible and oxidation of iridium. - May cause shortening of crucible life due to evaporation.

また、機械加工と酸洗浄を組み合わせる方法も、イリジ
ウムが脆い材料であるためにるつぼの破損・劣化、除去
工程が複雑化する等の問題がある。
Furthermore, the method of combining machining and acid cleaning has problems such as damage and deterioration of the crucible and complication of the removal process because iridium is a brittle material.

したがって、高価で脆いイリジウム製るつぼの破損、劣
化を防止することができ、且つ効率的にるつぼ内残渣を
除去することができる方法が望まれていた。
Therefore, there has been a desire for a method that can prevent damage and deterioration of an expensive and brittle iridium crucible and can efficiently remove residue within the crucible.

[課題を解決するための手段] 本発明者は、イリジウム製るつぼからランタンアルミネ
ート残渣を除去する方法について鋭意検討した結果、ラ
ンタンアルミネートの融液から多結晶を育成した後、特
定の雰囲気下に放置することにより、るつぼの破損・劣
化を起こすことなくるつぼ内のランタンアルミネート残
渣を容易に除去できることを見出し本発明に到達した。
[Means for Solving the Problems] As a result of intensive study on a method for removing lanthanum aluminate residue from an iridium crucible, the inventors of the present invention found that after growing polycrystals from a lanthanum aluminate melt, The present inventors have discovered that the lanthanum aluminate residue in the crucible can be easily removed by leaving it in the crucible without causing damage or deterioration of the crucible.

即ち、本発明の要旨は、ランタンアルミネート単結晶を
引き上げ法によって育成した後、るつぼ内の融液残渣を
多結晶質に凝固させ、凝固した融液残渣を含むるつぼを
温度−10〜50℃、湿度10〜80%の雰囲気下に2
4時間以上放置することを特徴とするるつぼ内の残渣除
去方法に存する。
That is, the gist of the present invention is to grow a lanthanum aluminate single crystal by a pulling method, solidify the melt residue in the crucible into a polycrystalline state, and heat the crucible containing the solidified melt residue at a temperature of -10 to 50°C. , in an atmosphere with a humidity of 10 to 80%.
The present invention relates to a method for removing residue in a crucible, which is characterized by allowing the crucible to stand for 4 hours or more.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

通常、チョクラルスキー法等の結晶引き上げ法において
は、単結晶を育成させた後、融液から単結晶を引き離し
、冷却した後、単結晶を取り出す。
Usually, in a crystal pulling method such as the Czochralski method, after growing a single crystal, the single crystal is separated from the melt, cooled, and then taken out.

本発明においては、育成させたランタンアルミネート単
結晶にボイド、クラック等が発生しないように、かつ、
るつぼ内のランタンアルミネート融液残渣が多結晶質に
凝固するように、育成した単結晶及び融液残渣を緩かに
冷却するのが好ましく、通常、10〜50時間かけて一
10〜50°Cの温度まで冷却する。
In the present invention, it is necessary to prevent voids, cracks, etc. from occurring in the grown lanthanum aluminate single crystal, and
In order to solidify the lanthanum aluminate melt residue in the crucible into a polycrystalline state, it is preferable to slowly cool the grown single crystal and the melt residue, usually at a temperature of -10 to 50 degrees over a period of 10 to 50 hours. Cool to temperature C.

次いで、多結晶質に凝固した融液残渣を含むるつぼを温
度−10〜50℃、湿度10〜80%の雰囲気下に24
時間以上放置する。通常は、湿気のある室温の大気中に
5〜15日放置するだけでよい。湿度を有する雰囲気下
に放置することにより、ランタンアルミネート多結晶の
微粉末化が起こり、るつぼから完全に垂離するため、容
易に残渣を除去することができる。また、雰囲気中の湿
度を調整することにより、微粉末化の速度を早くするこ
とができる。
Next, the crucible containing the polycrystalline solidified melt residue was placed in an atmosphere with a temperature of -10 to 50°C and a humidity of 10 to 80% for 24 hours.
Leave it for more than an hour. Usually, it is sufficient to leave it in a humid room temperature atmosphere for 5 to 15 days. By leaving it in a humid atmosphere, the lanthanum aluminate polycrystal becomes finely powdered and completely separates from the crucible, so that the residue can be easily removed. Further, by adjusting the humidity in the atmosphere, the speed of pulverization can be increased.

ランタンアルミネート結晶では、上記のような微粉末化
は認められない。ランタンアルミネート多結晶の微粉末
化は吸湿によるものと思われるが、ランタンアルミネー
ト本来の物性によるものとは考えにくく、おそらく原料
中の不純物あるいはLa −AI −0系の異質層が関
与しているものと思われる。
In lanthanum aluminate crystals, the above-mentioned pulverization is not observed. The pulverization of lanthanum aluminate polycrystals is thought to be due to moisture absorption, but it is unlikely that this is due to the inherent physical properties of lanthanum aluminate, and impurities in the raw material or a heterogeneous layer of the La-AI-0 system are probably involved. It seems that there are.

[実施例] 以下に実施例により、本発明を更に詳細に説明するが、
本発明はその要旨を越えない限り実施例に限定されるも
のではない。
[Example] The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited to the examples unless it goes beyond the gist thereof.

実施例1 110KHzの高周波加熱炉内に、直径50mm、高さ
50mm、厚さ1.5mmのイリジウム(Ir)製るつ
ぼを設置し、その中に純度99.99%の酸化ランタン
(La20a)50モル%、酸化アルミニウム(A12
03) 50モル%からなる原料を320g入れ、窒素
ガス雰囲気中で融解した。融液を融点近くまで降温して
ランタンアルミネート(LaA103)の種結晶を浸し
、25rpmで回転させながら、約2mm/時間の引き
上げ速度、結晶径25mmで結晶を育成した。結晶を1
80g育成した後、融液から切り離し、約2日かけて冷
却し結晶を取り出した。
Example 1 An iridium (Ir) crucible with a diameter of 50 mm, a height of 50 mm, and a thickness of 1.5 mm was installed in a 110 KHz high-frequency heating furnace, and 50 moles of lanthanum oxide (La20a) with a purity of 99.99% was placed in the crucible. %, aluminum oxide (A12
03) 320g of raw material consisting of 50 mol% was added and melted in a nitrogen gas atmosphere. The temperature of the melt was lowered to near the melting point, and seed crystals of lanthanum aluminate (LaA103) were immersed therein, and crystals were grown at a pulling rate of about 2 mm/hour and a crystal diameter of 25 mm while rotating at 25 rpm. 1 crystal
After growing 80 g, it was separated from the melt, cooled for about 2 days, and the crystals were taken out.

育成結晶は、透明で淡褐色をした双晶を含む配向性の強
い物質であり、一部にボイドを含む物であった。融液残
渣は、るつぼに付着した形で塊状に多結晶質で凝固して
おり、そのままでは、るつぼからの除去は不可能であっ
た。
The grown crystals were transparent, light brown, highly oriented substances containing twin crystals, and some contained voids. The melt residue was solidified in a polycrystalline mass and adhered to the crucible, and could not be removed from the crucible as it was.

凝固した融液残渣を含むるつぼを温度18℃、湿度35
%の大気中に10日放置したところ、残渣表面に微粉が
沸き出しているのが認められた。更に、5日放置したと
ころ全ての残渣が微粉化していた。その結果、容易に残
渣をるつぼから取り出すことができた。一方、育成結晶
は、15日放置しても外観上変化は全くなかった。また
、育成結晶をウェハ状にしても同様であり、育成結晶の
微粉末化はみられなかった。
The crucible containing the solidified melt residue was heated to a temperature of 18°C and a humidity of 35°C.
% of air for 10 days, fine powder was observed to be boiling out on the surface of the residue. Furthermore, when it was left to stand for 5 days, all the residues were found to be finely powdered. As a result, the residue could be easily taken out from the crucible. On the other hand, the grown crystal showed no change in appearance even after being left for 15 days. Further, the same effect was observed even when the grown crystal was made into a wafer shape, and no fine powderization of the grown crystal was observed.

[発明の効果] 本発明によると、高価なイリジウムるつぼを破損、劣化
させることなく、イリジウムるつぼ内に残ったランタン
アルミネート残渣を容易に除去することができる。また
、その結果、単結晶育成に要する費用を低減することが
できるため、工業的に有用である。
[Effects of the Invention] According to the present invention, the lanthanum aluminate residue remaining in the iridium crucible can be easily removed without damaging or deteriorating the expensive iridium crucible. Moreover, as a result, the cost required for single crystal growth can be reduced, which is industrially useful.

Claims (1)

【特許請求の範囲】[Claims] (1)ランタンアルミネート単結晶を引き上げ法によっ
て育成した後、るつぼ内の融液残渣を多結晶質に凝固さ
せ、凝固した融液残渣を含むるつぼを温度−10〜50
℃、湿度10〜80%の雰囲気下に24時間以上放置す
ることを特徴とするるつぼ内の残渣除去方法。
(1) After growing a lanthanum aluminate single crystal by a pulling method, the melt residue in the crucible is solidified into a polycrystalline state, and the crucible containing the solidified melt residue is heated to a temperature of -10 to 50.
A method for removing residue in a crucible, which comprises leaving the crucible in an atmosphere at a temperature of 10 to 80% humidity for 24 hours or more.
JP9812590A 1990-04-13 1990-04-13 Method for removing residue in crucible Pending JPH03295890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9812590A JPH03295890A (en) 1990-04-13 1990-04-13 Method for removing residue in crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9812590A JPH03295890A (en) 1990-04-13 1990-04-13 Method for removing residue in crucible

Publications (1)

Publication Number Publication Date
JPH03295890A true JPH03295890A (en) 1991-12-26

Family

ID=14211561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9812590A Pending JPH03295890A (en) 1990-04-13 1990-04-13 Method for removing residue in crucible

Country Status (1)

Country Link
JP (1) JPH03295890A (en)

Similar Documents

Publication Publication Date Title
US6165425A (en) Melting pot with silicon protective layers, method for applying said layer and the use thereof
JP6800468B2 (en) A gallium oxide crystal manufacturing device, a gallium oxide crystal manufacturing method, and a crucible for growing gallium oxide crystals used for these.
JP2019163187A (en) Single crystal growth method of iron gallium alloy
JPH03295890A (en) Method for removing residue in crucible
Kletowski et al. Single crystal growth of (rare earth) Me3 compounds where Me≡ Sn, In and Pb
JPH0483798A (en) Removal of residue in crucible
TWI743609B (en) Crucible for single crystal growth, single crystal manufacturing method and single crystal
JP2929006B1 (en) Manufacturing method of high quality crystal sheet material
JPS61501984A (en) Method for producing a single crystal thin layer of silver thiogallate (AgGaS↓2)
JP2007045640A (en) Forming method of semiconductor bulk crystal
RU2108418C1 (en) Method for growing single crystals of lanthanum-gallium silicate
JPS60195016A (en) Purification of metallic silicon
JP2733899B2 (en) Method for growing rare earth gallium perovskite single crystal
JP3188541B2 (en) Method for producing single crystal thin film by liquid phase epitaxy
JPH05170430A (en) Production of magnesia single crystal
JPH05163098A (en) Method for growing lanthanum aluminate crystal
RU2156327C2 (en) Method of preparing charge for growing lanthanum-gallium silicate monocrystals
JP2001026494A (en) Quartz crucible
JP3870258B2 (en) Manufacturing method of oxide semiconductor single crystal
JPS63250428A (en) Method for purifying indium
JPH08133884A (en) Production of single crystal
JP2739546B2 (en) Method for producing lithium borate single crystal
EP1670974A1 (en) Spinel articles and methods for forming same
JPH06321693A (en) Production of oxide superconducting material
Carter et al. Growing single crystals