JPH0483798A - Removal of residue in crucible - Google Patents

Removal of residue in crucible

Info

Publication number
JPH0483798A
JPH0483798A JP19551890A JP19551890A JPH0483798A JP H0483798 A JPH0483798 A JP H0483798A JP 19551890 A JP19551890 A JP 19551890A JP 19551890 A JP19551890 A JP 19551890A JP H0483798 A JPH0483798 A JP H0483798A
Authority
JP
Japan
Prior art keywords
crucible
residue
lanthanum aluminate
single crystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19551890A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakami
博 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP19551890A priority Critical patent/JPH0483798A/en
Publication of JPH0483798A publication Critical patent/JPH0483798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To remove the residue in a crucible in high efficiency and to prevent the breakage and deterioration of an expensive and brittle iridium crucible by growing a lanthanum aluminate single crystal using a crystal-pulling method, solidifying the residue of molten liquid in the crucible in the form of a polycrystalline material and immersing the residue-containing crucible in an aqueous solution. CONSTITUTION:A lanthanum aluminate single crystal is grown by a crystal- pulling method. The residue of molten liquid in the crucible is solidified in the form of a polycrystalline material and the crucible containing the solidified melt residue is immersed in an aqueous solution having water-content of 10-100% at 0-100 deg.C for >=3min.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ランタンアルミネート(LaA103)単結
晶を引き上げ法によって製造した後、るつぼ内の融液残
渣を効果的に除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for effectively removing melt residue in a crucible after producing a lanthanum aluminate (LaA103) single crystal by a pulling method.

[従来の技術1 ランタンアルミネート単結晶は、高Tc(臨界温度)超
伝導体用基板材料として、最近注目されている物質であ
る。
[Prior Art 1 Lanthanum aluminate single crystal is a substance that has recently attracted attention as a substrate material for high Tc (critical temperature) superconductors.

ランタンアルミネートのような複合酸化物の単結晶は、
ベルヌーイ法により育成されることが多いが、るつぼ内
に原料を融解させ、融液に種結晶を浸して引き上げる、
結晶引き上げ法(−船釣にはチョクラルスキー法)によ
っても育成されている。
Single crystals of complex oxides such as lanthanum aluminate are
It is often grown using the Bernoulli method, which involves melting the raw material in a crucible, dipping a seed crystal in the melt, and pulling it up.
It is also grown by the crystal pulling method (-Czochralski method for boat fishing).

結晶引き上げ法では、通常、融液量の20〜80重量%
の単結晶を育成させた後、融液から単結晶を弓き離し、
冷却した後、単結晶を取り出す。その結果、るつぼ内に
は残渣が残る。
In the crystal pulling method, usually 20 to 80% by weight of the melt amount
After growing a single crystal, the single crystal is separated from the melt,
After cooling, the single crystal is taken out. As a result, a residue remains inside the crucible.

残渣は、その物性に応じて、再度溶解したり、機械的加
工と酸洗浄を組み合わせたりすることにより除去されて
いる。
Depending on its physical properties, the residue is removed by redissolving or by a combination of mechanical processing and acid cleaning.

また、結晶引き上げ法に使用するるつぼとしては、育成
したい結晶の融解温度より融点が高いこと、原料融液と
反応しないこと等を考慮して、複合酸化物結晶を育成す
る場合は白金やイリジウム等の貴金属が一般に用いられ
ており、ランタンアルミネートの場合は融解温度が約2
080°Cと非常に高温であるため、通常、イリジウム
製のるつぼが使用されている。これらの材料は、非常に
高価であるために、通常10〜30回繰り返し使用した
後、改鋳に供される。
In addition, when growing composite oxide crystals, the crucible used for the crystal pulling method should be made of platinum, iridium, etc. Noble metals are commonly used, and in the case of lanthanum aluminate, the melting temperature is approximately 2
Since the temperature is extremely high at 080°C, an iridium crucible is usually used. Since these materials are very expensive, they are usually used 10 to 30 times before being recast.

[発明が解決しようとする課題] ランタンアルミネートの融液残渣を再溶解により除去す
る方法は、ランタンアルミネートの融解温度が非常に高
温であるため、イリジウム製るつぼの融解、破損、イリ
ジウムの酸化・蒸発によるるつぼの寿命短縮等の原因と
なる。
[Problems to be Solved by the Invention] The method of removing the lanthanum aluminate melt residue by remelting the lanthanum aluminate has a very high melting temperature, so the iridium crucible may be melted, damaged, and the iridium may be oxidized. - May cause shortening of crucible life due to evaporation.

また、機械加工と酸洗浄を組み合わせる方法も、イリジ
ウムが脆い材料であるためにるつぼの破損・劣化、除去
工程が複雑化する等の問題がある。
Furthermore, the method of combining machining and acid cleaning has problems such as damage and deterioration of the crucible and complication of the removal process because iridium is a brittle material.

したがって、高価で脆いイリジウム製るつぼの破損・劣
化を防止することができ、且つ効率的にるつぼ内残渣を
除去することができる方法が望まれていた。
Therefore, there has been a desire for a method that can prevent damage and deterioration of the expensive and brittle iridium crucible and efficiently remove the residue inside the crucible.

[課題を解決するための手段] 本発明は、イリジウム製るつぼからランタンアルミネー
ト残渣を除去する方法について鋭意検討した結果、ラン
タンアルミネートの融液から多結晶を育成した後、水溶
液中に浸すことにより、るつぼの破損・劣化を起こすこ
となくるつぼ内のランタンアルミネート残渣を容易に除
去できることを見出し、本発明に到着した。
[Means for Solving the Problems] As a result of intensive studies on a method for removing lanthanum aluminate residue from an iridium crucible, the present invention proposes a method for growing polycrystals from a lanthanum aluminate melt and then immersing them in an aqueous solution. It was discovered that the lanthanum aluminate residue inside the crucible can be easily removed without causing damage or deterioration of the crucible, and the present invention was arrived at.

即ち、本発明の要旨は、ランタンアルミネート単結晶を
引き上げ法によって育成した後、るつぼ内の融液残渣を
多結晶質に凝固させた後、凝固した融液残渣を含むるつ
ぼを温度0〜1000℃、水の含有量10〜100%の
水溶液中に3分間以上浸すことを特徴とするるつぼ内の
残渣除去方法に存する。
That is, the gist of the present invention is to grow a lanthanum aluminate single crystal by a pulling method, solidify the melt residue in the crucible into a polycrystalline state, and then heat the crucible containing the solidified melt residue at a temperature of 0 to 1000. C., and immersing the crucible in an aqueous solution having a water content of 10 to 100% for 3 minutes or more.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

通常、チョクラルスキー法等の結晶引き上げ法において
は、単結晶を育成させた後、融液から単結晶を引き離し
、冷却した後、単結晶を取り高す。
Usually, in a crystal pulling method such as the Czochralski method, after growing a single crystal, the single crystal is separated from the melt, cooled, and then raised.

本発明においては、育成させたランタンアルミネート単
結晶にボイド、クラック等が発生しないように、かつ、
るつぼ内のランタンアルミネート融液残渣が多結晶質に
凝固するように、育成した単結晶及び融液残渣を緩かに
冷却するのが好ましく、通常、10〜50時間かけて一
10〜50°Cの温度まで冷却する。
In the present invention, it is necessary to prevent voids, cracks, etc. from occurring in the grown lanthanum aluminate single crystal, and
In order to solidify the lanthanum aluminate melt residue in the crucible into a polycrystalline state, it is preferable to slowly cool the grown single crystal and the melt residue, usually at a temperature of -10 to 50 degrees over a period of 10 to 50 hours. Cool to temperature C.

次いで、多結晶質に凝固した融液残渣を含むるつぼを温
度0〜1000℃、水の含有量10〜100%の水溶液
中に3分間以上放置する。通常は、室温の水中に浸すこ
とにより、ランタンアルミネート多結晶の微粉末化が起
こり、るつぼから完全に垂離するため、容易に残渣を除
去することができる。また、水溶液中の温度を高くする
ことにより、微粉末化の速度を早くすることができる。
Next, the crucible containing the polycrystalline solidified melt residue is left in an aqueous solution with a temperature of 0 to 1000°C and a water content of 10 to 100% for 3 minutes or more. Normally, lanthanum aluminate polycrystals are pulverized by immersion in water at room temperature and are completely separated from the crucible, so that the residue can be easily removed. Further, by increasing the temperature in the aqueous solution, the speed of pulverization can be increased.

ランタンアルミネート単結晶では、上記のような微粉末
化は認められない。ランタンアルミネート多結晶の微粉
末化は吸湿によるものと思われるが、ランタンアルミネ
ート本来の物性によるものとは考えにくく、おそらく原
料中の不純物あるいはLa −AI −0系の異質層が
関与しているものと思われる。
In the lanthanum aluminate single crystal, the above-mentioned pulverization is not observed. The pulverization of lanthanum aluminate polycrystals is thought to be due to moisture absorption, but it is unlikely that this is due to the inherent physical properties of lanthanum aluminate, and impurities in the raw material or a heterogeneous layer of the La-AI-0 system are probably involved. It seems that there are.

[実施例] 以下に実施例により、本発明を更に詳細に説明するが、
本発明はその要旨を越えない限り実施例に限定表れるも
のではない。
[Example] The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited to the examples unless it goes beyond the gist thereof.

実施例1 110KHzの高周波加熱炉内に、直径50mm、高さ
50mm、厚さ1.5mmのイリジウム(Ir)製るつ
ぼを設置し、その中に純度99.99%の酸化ランタン
(La20a )50モル%、酸化アルミニウム(Al
2O3)50モル%からなる原料を320g入れ、窒素
ガス雰囲気中で融解した。融液を融点近くまで降温しで
ランタンアルミネート(LaA10a )の種結晶を浸
し、25rpmで回転させながら、約2mm/時間の引
き上げ速度、結晶径25mmで結晶を育成した。結晶を
180g育成した後、融液から切り離し、約2日かけて
冷却し結晶を取り出した。
Example 1 An iridium (Ir) crucible with a diameter of 50 mm, a height of 50 mm, and a thickness of 1.5 mm was placed in a 110 KHz high-frequency heating furnace, and 50 moles of lanthanum oxide (La20a) with a purity of 99.99% was placed in the crucible. %, aluminum oxide (Al
320 g of a raw material consisting of 50 mol% of 2O3) was added and melted in a nitrogen gas atmosphere. The temperature of the melt was lowered to near its melting point, and seed crystals of lanthanum aluminate (LaA10a) were immersed therein, and crystals were grown at a pulling rate of about 2 mm/hour and a crystal diameter of 25 mm while rotating at 25 rpm. After growing 180 g of crystals, they were separated from the melt, cooled for about 2 days, and then taken out.

育成結晶は、透明で淡褐色をした双晶を含む配向性の強
い物質であり、一部にボイドを含む物であった。融液残
渣は、るつぼに付着した形で塊状に多結晶で凝固してお
り、そのままでは、るつぼからの除去は不可能であった
The grown crystals were transparent, light brown, highly oriented substances containing twin crystals, and some contained voids. The melt residue was solidified in the form of polycrystals attached to the crucible, and could not be removed from the crucible as it was.

凝固した融液残渣を含むるつぼを温度25°Cの水中に
1日放置したところ、残渣表面から塊状に臂開している
のが認められた。更に、1日放置した後、残渣部を軽く
叩くことにより、容易に残渣をるつぼから取り出すこと
ができた。
When the crucible containing the solidified melt residue was left in water at a temperature of 25°C for one day, it was observed that the residue was bulging out from the surface. Further, after leaving it for one day, the residue could be easily removed from the crucible by tapping the residue.

[発明の効果] 本発明によると、高価なイリジウムるつぼを破損、劣化
させることなく、イリジウムるつぼ内に残ったランタン
アルミネート残渣を容易に除去することができる。また
、その結果、単結晶育成に要する費用を低減することが
できるため、工業的に有用である。
[Effects of the Invention] According to the present invention, the lanthanum aluminate residue remaining in the iridium crucible can be easily removed without damaging or deteriorating the expensive iridium crucible. Moreover, as a result, the cost required for single crystal growth can be reduced, which is industrially useful.

Claims (1)

【特許請求の範囲】[Claims] (1)ランタンアルミネート単結晶を引き上げ法によっ
て育成した後、るつぼ内の融液残渣を多結晶質に凝固さ
せた後、凝固した融液残渣を含むるつぼを温度0〜10
00℃、水の含有量10〜100%の水溶液中に3分間
以上浸すことを特徴とするるつぼ内の残渣除去方法。
(1) After growing a lanthanum aluminate single crystal by the pulling method, the melt residue in the crucible is solidified into a polycrystalline state, and then the crucible containing the solidified melt residue is heated to a temperature of 0 to 10°C.
A method for removing residue in a crucible, the method comprising immersing the crucible in an aqueous solution containing 10 to 100% water at 00°C for 3 minutes or more.
JP19551890A 1990-07-24 1990-07-24 Removal of residue in crucible Pending JPH0483798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19551890A JPH0483798A (en) 1990-07-24 1990-07-24 Removal of residue in crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19551890A JPH0483798A (en) 1990-07-24 1990-07-24 Removal of residue in crucible

Publications (1)

Publication Number Publication Date
JPH0483798A true JPH0483798A (en) 1992-03-17

Family

ID=16342420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19551890A Pending JPH0483798A (en) 1990-07-24 1990-07-24 Removal of residue in crucible

Country Status (1)

Country Link
JP (1) JPH0483798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203150A (en) * 2008-02-01 2009-09-10 Hitachi Chem Co Ltd Method for removing aluminum oxide from inside surface of crucible and method for regenerating crucible

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203150A (en) * 2008-02-01 2009-09-10 Hitachi Chem Co Ltd Method for removing aluminum oxide from inside surface of crucible and method for regenerating crucible

Similar Documents

Publication Publication Date Title
JP2001510434A (en) Melt pot with silicon protective layer, method of applying silicon protective layer and use thereof
JP2019163187A (en) Single crystal growth method of iron gallium alloy
JPH0483798A (en) Removal of residue in crucible
JP2005112718A5 (en)
Kletowski et al. Single crystal growth of (rare earth) Me3 compounds where Me≡ Sn, In and Pb
Bennett Seeded growth of garnet from molten salts
JPH03295890A (en) Method for removing residue in crucible
TWI743609B (en) Crucible for single crystal growth, single crystal manufacturing method and single crystal
JP2001226721A (en) Refining method for aluminum and its application
JPS61275119A (en) Production of silicon ribbon
JPH05163098A (en) Method for growing lanthanum aluminate crystal
JPS61501984A (en) Method for producing a single crystal thin layer of silver thiogallate (AgGaS↓2)
Taft et al. Zone purification of silicon
JP2007045640A (en) Forming method of semiconductor bulk crystal
JPH039173B2 (en)
JP3188541B2 (en) Method for producing single crystal thin film by liquid phase epitaxy
JP2835143B2 (en) Method for producing high purity In
JP3719452B2 (en) Method for producing single crystal copper
JP2739546B2 (en) Method for producing lithium borate single crystal
JP2000007499A (en) Method for growing langasite single crystal
JPH06321693A (en) Production of oxide superconducting material
RU2400574C1 (en) Method of producing a3b5 monocrystals
JPH0527500Y2 (en)
JPH07206577A (en) Process for growing rare earth-gallium-perovskite single crystal
JP2001026494A (en) Quartz crucible