JP2976967B1 - Langasite single crystal growth method - Google Patents
Langasite single crystal growth methodInfo
- Publication number
- JP2976967B1 JP2976967B1 JP10168604A JP16860498A JP2976967B1 JP 2976967 B1 JP2976967 B1 JP 2976967B1 JP 10168604 A JP10168604 A JP 10168604A JP 16860498 A JP16860498 A JP 16860498A JP 2976967 B1 JP2976967 B1 JP 2976967B1
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- growing
- langasite
- crystal
- langasite single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002109 crystal growth method Methods 0.000 title 1
- 239000013078 crystal Substances 0.000 claims abstract description 113
- 238000000034 method Methods 0.000 claims abstract description 76
- 239000002994 raw material Substances 0.000 claims abstract description 31
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000012544 monitoring process Methods 0.000 claims abstract description 16
- 238000010304 firing Methods 0.000 claims abstract description 6
- OXHNIMPTBAKYRS-UHFFFAOYSA-H lanthanum(3+);oxalate Chemical compound [La+3].[La+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O OXHNIMPTBAKYRS-UHFFFAOYSA-H 0.000 claims abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 238000010899 nucleation Methods 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 11
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 150000001768 cations Chemical class 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 9
- 238000004040 coloring Methods 0.000 abstract description 7
- 239000012299 nitrogen atmosphere Substances 0.000 abstract description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 3
- 229910001195 gallium oxide Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 150000002604 lanthanum compounds Chemical class 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910000629 Rh alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
【要約】
【課題】 CZ法(引上げ法)によるランガサイトLa3G
a5SiO14単結晶育成において、結晶の割れやインクル
ージョン等の巨視的欠陥の発生を抑制し、且つ通常の育
成で見られる褐色の着色を軽減し、圧電用のみならず光
学用としても好適なランガサイト単結晶を得るための育
成方法、該単結晶の改質方法、該単結晶の育成装置の提
供。
【解決手段】 シュウ酸ランタンLa2(C2O4)3を90
0℃以下の温度で焼成して得られる酸化ランタンLa2O
3を原料としCZ法によりランガサイトLa3Ga5SiO14
単結晶を得る育成方法、該単結晶を窒素雰囲気中で熱処
理するランガサイト単結晶改質方法、CZ法によるラン
ガサイト単結晶育成装置のるつぼ上部の保温用耐火物に
育成状況監視用開口を設けないランガサイト単結晶育成
装置。Abstract: [Problem] Langasite La 3 G by CZ method (pulling method)
In the growth of a 5 SiO 14 single crystal, it suppresses the occurrence of macroscopic defects such as crystal cracks and inclusions, and reduces the brown coloring seen in normal growth, making it suitable not only for piezoelectric but also for optics. Provided are a growing method for obtaining a langasite single crystal, a method for modifying the single crystal, and an apparatus for growing the single crystal. SOLUTION: Lanthanum oxalate La 2 (C 2 O 4 ) 3 is 90
Lanthanum oxide La 2 O obtained by firing at a temperature of 0 ° C. or less
Langasite La 3 Ga 5 SiO 14 by CZ method using 3 as raw material
A method for growing a single crystal, a method for modifying a single crystal of langasite by heat-treating the single crystal in a nitrogen atmosphere, and an opening for monitoring a growth state in a refractory for heat retention at the upper part of a crucible of a langasite single crystal growing apparatus by a CZ method. No langasite single crystal growing equipment.
Description
【0001】[0001]
【発明の属する技術分野】本発明は光学用および圧電用
として用いられるランガサイトLa3Ga5SiO14単結晶
の育成方法に関する。The present invention relates to a method for growing a langasite La 3 Ga 5 SiO 14 single crystal used for optical and piezoelectric purposes.
【0002】[0002]
【従来の技術】ランガサイト単結晶は、当初光学用とし
て育成されていたが、この系の化合物の相図や育成試験
は主にロシアにおいて進展[G.G.Khodzhabagyan,Russia
n J.Inorg.Chem.,32(2),1987,pp246-248参照]してき
た。近年、表面弾性波を利用したフイルター等の圧電用
としても用いられるようになり、結晶育成に関連した報
告[福田他 日本結晶成長学会誌 22(5)1995,p358参
照]もなされるようになった。2. Description of the Related Art Langasite single crystals were initially grown for optical use, but phase diagrams and growth tests of compounds of this system have been developed mainly in Russia [GGKhodzhabagyan, Russia
n J. Inorg. Chem., 32 (2), 1987, pp. 246-248]. In recent years, it has also been used for piezoelectric devices such as filters using surface acoustic waves, and reports related to crystal growth have been made (see Fukuda et al., Journal of Japanese Society for Crystal Growth 22 (5) 1995, p358). Was.
【0003】結晶育成は専らCZ法(Czochralski meto
d:引上げ法)で行われており、るつぼとしてはイリジウ
ムまたは白金-ロジウムの合金が用いられている。この
結晶は結晶育成条件が適切であれば大型結晶も可能であ
るが、結晶品質は種々の結晶育成条件に敏感である[島
村他 第40回人工結晶討論会講演要旨集2A144(1995)p10
3]とされている。[0003] The crystal is grown exclusively by the CZ method (Czochralski meto).
d: pulling method), and iridium or an alloy of platinum and rhodium is used as the crucible. This crystal can be a large crystal if the crystal growth conditions are appropriate, but the crystal quality is sensitive to various crystal growth conditions [Shimamura et al., Proceedings of the 40th Symposium on Artificial Crystals 2A144 (1995) p10
3].
【0004】一方、特開昭62-154681号公報には、アク
チュェーター用PLZT電歪磁器が開示されているが、該電
歪磁器は、本発明の光学用磁器材料であるランガサイト
とは異なり、その組成も全く相違している。また、特開
昭63-282188号公報には、単結晶製造装置が開示されて
いるが、該装置は単なる一般的なCZ法(引上げ法)によ
るものであって、本発明の特定するCZ法によるランガ
サイト単結晶の特定育成装置に関してはなんら具体的に
示されていない。On the other hand, Japanese Patent Application Laid-Open No. 62-154681 discloses a PLZT electrostrictive porcelain for an actuator, which is different from langasite which is an optical porcelain material of the present invention. Their compositions are also quite different. Further, Japanese Patent Application Laid-Open No. 63-282188 discloses a single crystal production apparatus, which is based on a mere general CZ method (pulling method), and which is a CZ method specified in the present invention. No specific reference is made to a specific growth apparatus for a langasite single crystal according to the present invention.
【0005】さらに、特開平03-202087号公報には、酸
化物単結晶製造方法が開示されているが、該方法は単な
る一般的なCZ法(引上げ法)による製造方法であって、
本発明の特定するCZ法によるランガサイト単結晶の特
定育成方法に関してはなんら具体的に示されていない。
また、特公平07-055878製造方法には、半導体単結晶の
直径制御方法が開示されているが、該方法は単なる一般
的なCZ法(引上げ法)によるものであって、本発明の特
定するCZ法によるランガサイト単結晶の特定育成方法
に関してはなんら具体的に示されていない。Further, Japanese Patent Application Laid-Open No. 03-202087 discloses a method for producing an oxide single crystal, which is a production method based on a mere general CZ method (pulling method).
The specific growth method of the langasite single crystal by the CZ method specified in the present invention is not specifically described.
Also, in Japanese Patent Publication No. 07-055878, a method of controlling the diameter of a semiconductor single crystal is disclosed, but this method is based on a mere general CZ method (pulling method), and is specified by the present invention. The specific growth method of the langasite single crystal by the CZ method is not specifically described.
【0006】[0006]
【発明が解決しようとする課題】本発明における第1の
解決課題は、結晶育成に用いる原料をいかに選定するか
にある。もちろん純度はでき得る限り高いものを用いる
べきではあるが、たとえ4n(99.99%)のような比較的高
い純度の原料を用いた場合であっても、ときとして割
れ、インクルージョン、双晶その他の巨視的欠陥が発生
するので、この結晶を作成するのに適した原料の製法が
課題となっている。A first problem to be solved in the present invention is how to select a raw material used for growing a crystal. Of course, the purity should be as high as possible, but even with relatively high purity raw materials such as 4n (99.99%), cracks, inclusions, twins and other macroscopic effects can sometimes occur. Therefore, a method for producing a raw material suitable for producing the crystal has been a problem.
【0007】また第2の解決課題は、育成結晶の品質が
結晶育成条件に敏感で精密な条件設定が必要であり、特
に育成炉の温度勾配を最適化する必要があることであ
る。さらに第3の解決課題は、育成結晶の着色を緩和す
ることである。特に光学用途では大きな問題となる。ま
た圧電用途でもこれが結晶欠陥に基づくものであるなら
ば、何らかの影響を受ける可能性があるので、着色はな
いことが望ましい。A second problem to be solved is that the quality of the grown crystal is sensitive to the crystal growing conditions, and it is necessary to set precise conditions, and in particular, it is necessary to optimize the temperature gradient of the growing furnace. A third problem to be solved is to alleviate coloring of the grown crystal. This is a major problem particularly in optical applications. Also, in the case of a piezoelectric application, if this is based on a crystal defect, there is a possibility of being affected in some way, so it is desirable that there is no coloring.
【0008】本発明は、上記に鑑みなされたものであっ
て、その目的は上記のような問題ののない、光学用、圧
電用いづれの用途においても優れた性能を発揮する良質
なランガサイト単結晶を得るための、原料の製造方法、
結晶育成方法、該結晶の熱処理改質方法、結晶育成装置
を提供することにある。The present invention has been made in view of the above, and has as its object the object of the present invention, which does not have the above-mentioned problems, is a high-quality langasite unit that exhibits excellent performance even in applications for optical and piezoelectric use. A method for producing raw materials to obtain crystals,
An object of the present invention is to provide a crystal growing method, a heat treatment modifying method for the crystal, and a crystal growing apparatus.
【0009】[0009]
【課題を解決するための手段】上記の課題・目的は以下
に示す本発明によって解決・達成される。すなわち本発
明は、ランガサイトLa3Ga5SiO14単結晶を育成する
方法において、シュウ酸ランタンLa2(C2O4)3を90
0℃以下の温度で焼成して得られる酸化ランタンLa2O
3を原料として用いることを特徴とするランガサイト単
結晶の育成方法、もしくはCZ法(引上げ法)によりラン
ガサイト単結晶を育成する方法において、るつぼ内の原
料融液面から上方15mmまでの範囲の温度勾配を2℃
±1℃/mmとし、且つさらに上方50mmまでの温度
勾配を8℃/mm以下に設定することを特徴とするラン
ガサイト単結晶の育成方法、もしくは、るつぼ上部の保
温用耐火物に育成状況監視用開口を設けないことを特徴
とするランガサイト単結晶育成方法、もしくは前記育成
状況監視用開口を設けないランガサイト単結晶育成方法
において、シーディング操作を行うに際し監視窓からの
観察によらず、重量センサーからの信号変化の情報のみ
によりシーディングを行うことを特徴とするランガサイ
ト単結晶の育成方法、もしくは結晶育成原料中に不純物
として含まれる2価の陽イオン不純物を10ppm以下
に抑制することを特徴とするランガサイト単結晶育成方
法、もしくは結晶育成雰囲気ガスとして窒素を使用する
ことを特徴とするランガサイト単結晶育成方法を開示す
るものである。The above objects and objects are solved and achieved by the present invention described below. That is, the present invention relates to a method of growing a langasite La 3 Ga 5 SiO 14 single crystal, wherein 90 g of lanthanum oxalate La 2 (C 2 O 4 ) 3 is used.
Lanthanum oxide La 2 O obtained by firing at a temperature of 0 ° C. or less
In the method for growing a langasite single crystal characterized by using 3 as a raw material, or the method for growing a langasite single crystal by a CZ method (pulling method), a method for growing a langasite single crystal in a range from 15 mm above a raw material melt surface in a crucible. 2 ° C temperature gradient
A method for growing a langasite single crystal, characterized in that the temperature gradient is set to ± 1 ° C./mm and the temperature gradient up to 50 mm above the temperature is set to 8 ° C./mm or less, or the growth status is monitored on a refractory for keeping heat at the upper part of the crucible. In the method of growing a langasite single crystal characterized by not providing an opening for, or in the method of growing a langasite single crystal not having the growth state monitoring opening, regardless of observation from a monitoring window when performing a seeding operation, A method for growing a langasite single crystal, characterized in that seeding is performed only based on information on a signal change from a weight sensor, or a method in which a divalent cation impurity contained as an impurity in a crystal growing material is suppressed to 10 ppm or less. A method for growing a single crystal of langasite, or a method of using nitrogen as a crystal growth atmosphere gas. It discloses a method for growing a gausite single crystal.
【0010】本発明においては、先ず原料について溶解
性、反応性のよい酸化ランタンLa2O3を製造する方法
が確定される。次いで、結晶育成において単結晶の割
れ、インクルージョン、双晶その他の巨視的欠陥の発生
を抑制する上で大きな影響のある、炉内の垂直方向の温
度勾配を最適化する方法が定められる。また結晶の着色
の問題に関しては原料純度を向上させること、および育
成雰囲気を選定することにより解決される。さらに該方
法に好適に用いられるランガサイト単結晶育成装置が提
供される。In the present invention, a method for producing lanthanum oxide La 2 O 3 having good solubility and reactivity with respect to the raw material is first determined. Next, a method for optimizing the vertical temperature gradient in the furnace, which has a great effect on suppressing the occurrence of cracks, inclusions, twins, and other macroscopic defects in the single crystal during crystal growth, is determined. The problem of crystal coloring can be solved by improving the purity of the raw material and selecting the growth atmosphere. Further, there is provided a langasite single crystal growing apparatus suitably used in the method.
【0011】[0011]
【発明の実施の形態】以下、本発明の実施態様について
具体的に説明する。先ず、本発明の酸化ランタンLa2O
3を原料として用いる原料調製法は、以下に述べる試験
事実に基づく。通常、ランガサイトLa3Ga5SiO14単
結晶は、酸化ランタンLa2O3、酸化ガリウムGa2O3、
二酸化珪素SiO2の各粉末を原料として育成されるが、
試行試験の結果、このうち育成される結晶の品質、特に
割れ等の巨視的欠陥の発生に最も関わりの深いのは、酸
化ランタンLa2O3であることがわかった。すなわち、
溶解性、反応性のよい酸化ランタンを用いることによ
り、欠陥の少ない結晶が得られる。そのような酸化ラン
タンの調製は次の方法による。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be specifically described below. First, the lanthanum oxide La 2 O of the present invention is used.
The raw material preparation method using 3 as a raw material is based on the test facts described below. Usually, the langasite La 3 Ga 5 SiO 14 single crystal is composed of lanthanum oxide La 2 O 3 , gallium oxide Ga 2 O 3 ,
It is grown using each powder of silicon dioxide SiO 2 as a raw material.
As a result of the trial test, it was found that lanthanum oxide La 2 O 3 was most closely related to the quality of the grown crystal, particularly the occurrence of macroscopic defects such as cracks. That is,
By using lanthanum oxide having good solubility and reactivity, a crystal with few defects can be obtained. The preparation of such lanthanum oxide is according to the following method.
【0012】先ず、ランタン化合物を塩酸、硝酸等の酸
に溶かし、シュウ酸を加えてシュウ酸ランタンLa2(C2
O4)3を沈殿させる。これを濾過乾燥して900℃以下
の温度で焼成して酸化ランタンLa2O3とすればよい。
ここで重要なことは焼成温度を900℃以下とすること
であって、通常行われているよいうに1000℃以上の
温度で焼成したものは有効でない。First, a lanthanum compound is dissolved in an acid such as hydrochloric acid or nitric acid, and oxalic acid is added to the lanthanum compound to form lanthanum oxalate La 2 (C 2
O 4 ) 3 is precipitated. This may be filtered, dried and calcined at a temperature of 900 ° C. or less to obtain lanthanum oxide La 2 O 3 .
What is important here is that the firing temperature is set to 900 ° C. or lower, and firing at a temperature of 1000 ° C. or higher, which is usually performed, is not effective.
【0013】次に、本発明のCZ法(引上げ法)によるラ
ンガサイト単結晶の育成方法における温度勾配は、結晶
育成炉の保温条件を種々変更しながら試験した結果、る
つぼ内の原料融液面から上方15mmまでの範囲の温度
勾配を2℃±1℃/mmとし且つ、さらに上方50mm
までの温度勾配を8℃/mm以下に設定することにより
巨視的欠陥の発生が最も抑制され、良質なランガサイト
単結晶が育成されることがわかった。Next, the temperature gradient in the method of growing a langasite single crystal by the CZ method (pulling method) of the present invention was tested while variously changing the heat retaining conditions of the crystal growing furnace. And a temperature gradient of 2 ° C. ± 1 ° C./mm in a range from 15 mm to
By setting the temperature gradient up to 8 ° C./mm or less, it was found that the generation of macroscopic defects was suppressed most, and a good quality langasite single crystal was grown.
【0014】さらにこの温度勾配を実現する最も簡便な
方法として本発明においては、監視窓を用いない結晶育
成炉方式を見出した。従来監視窓は、結晶育成の状態把
握のため重要であり、特にシーディングのために必須で
あるとされているが、本発明の重量センサーを用いる方
法によれば目視による観測を全く行わずにシーディング
が可能であることが確かめられた。Further, in the present invention, a crystal growing furnace system not using a monitoring window has been found as the simplest method for realizing the temperature gradient. Conventionally, the monitoring window is important for grasping the state of crystal growth, and is considered to be particularly essential for seeding. However, according to the method using the weight sensor of the present invention, visual observation is not performed at all. It was confirmed that seeding was possible.
【0015】この方法は次の手順による。図1は従来の
監視窓付育成装置の構造の一例を示す模式断面図である
が、先ずこうした装置を用いて監視しながら原料の融解
を行いそのときの温度を熱伝対10により測定し予備デ
ータとする。以降、例えば図2に示すような、本発明に
よる監視窓のない結晶育成装置を用いて、熱伝対10の
温度を監視しながら、予備データの原料融解温度まで温
度を上昇させた後、シードを徐々に下降させる。シード
が原料表面に達したときの重量センサー信号は図3ない
し図6のいずれか示すようになる。This method is based on the following procedure. FIG. 1 is a schematic cross-sectional view showing an example of the structure of a conventional growing device with a monitoring window. First, the raw material is melted while monitoring using such a device. Data. Thereafter, while monitoring the temperature of the thermocouple 10 using a crystal growing apparatus without a monitoring window according to the present invention as shown in FIG. Is gradually lowered. The weight sensor signal when the seed reaches the raw material surface is as shown in FIG. 3 to FIG.
【0016】各図の横軸は時間経過を示し、T0はシー
ド接触時を示す。図3は原料が融解していない場合、図
5は融液温度が理想温度よりかなり低い場合、図6は逆
に高すぎる場合をそれぞれ示し、図4に示す場合のよう
に液面接触したとき重量が増しそれが変化しないか、或
いは僅かに減少していく場合が良好シーディングであ
る。In each figure, the horizontal axis represents the passage of time, and T 0 represents the time of seed contact. FIG. 3 shows the case where the raw material is not melted, FIG. 5 shows the case where the melt temperature is considerably lower than the ideal temperature, and FIG. 6 shows the case where the melt temperature is too high. Good seeding is when the weight increases and does not change or decreases slightly.
【0017】このようにして監視窓がなくとも重量信号
を基に温度を調整することによりシーディングが可能で
ある。この方法によって、本発明の保温用耐火物に育成
状況監視用開口を設けず、且つ育成結晶重量を検知する
装置を備えてなるランガサイト単結晶育成装置装置が有
効となる。In this manner, seeding can be performed by adjusting the temperature based on the weight signal without the monitoring window. According to this method, a langasite single crystal growing apparatus having a device for detecting the weight of a grown crystal without providing an opening for monitoring a growing state in the refractory for heat retention of the present invention is effective.
【0018】次に本発明の結晶育成原料中に不純物とし
て含まれる2価の陽イオン不純物を10ppm以下に抑
制する結晶育成方法、および結晶育成雰囲気ガスとして
窒素を使用する結晶育成方法について説明する。結晶の
着色には、原料等の不純物と結晶育成雰囲気との両者が
関係することが試験の結果から明らかとなり、不純物に
関しては、原料中の2価の陽イオン不純物の量を10p
pm以下にすること、また結晶育成雰囲気に関しては純
窒素にすること、が必要であることがわかった。したが
って本発明の、結晶育成原料中に不純物として含まれる
2価の陽イオン不純物を10ppm以下に抑制し、且つ
結晶育成雰囲気ガスとして窒素を使用する単結晶育成方
法は、両者を満たすときにより良い結果をもたらす。Next, a crystal growing method for suppressing divalent cation impurities contained as impurities in the crystal growing material of the present invention to 10 ppm or less and a crystal growing method using nitrogen as a crystal growing atmosphere gas will be described. It is clear from the test results that both the impurity such as the raw material and the crystal growth atmosphere are related to the coloring of the crystal, and the amount of the divalent cation impurity in the raw material is reduced by 10 p.
pm or less, and the crystal growth atmosphere must be pure nitrogen. Therefore, the single crystal growing method of the present invention in which the divalent cation impurity contained as an impurity in the crystal growing material is suppressed to 10 ppm or less and nitrogen is used as the crystal growing atmosphere gas has better results when both are satisfied. Bring.
【0019】また本発明の、育成されたランガサイト単
結晶をさらに窒素雰囲気中で熱処理するランガサイト単
結晶の改質方法は、酸素を含む雰囲気で育成された結晶
の着色除去に関するもので、通常黄色ないし赤褐色に着
色した結晶を窒素雰囲気中で熱処理する。これによって
光学用途での吸収損失を少なくすることができる。The method for modifying a langasite single crystal according to the present invention, in which the grown langasite single crystal is further heat-treated in a nitrogen atmosphere, relates to the removal of the color of the crystal grown in an atmosphere containing oxygen. The crystals colored yellow or reddish brown are heat treated in a nitrogen atmosphere. As a result, absorption loss in optical applications can be reduced.
【0020】[0020]
【実施例】以下、図面に基づいて実施例により本発明を
さらに詳細に説明するが、本発明はこれらによってなん
ら限定されるものではない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the drawings based on embodiments, but the present invention is not limited to these embodiments.
【0021】[実施例1] 市販の純度99.99%酸化ランタンLa2O3を硝酸に溶解
後、シュウ酸を加えてシュウ酸ランタンLa2(C2O4)3
を沈殿させ、これを濾過乾燥させて、ロータリーキルン
を用い空気中850℃以下の温度で3時間焼成して酸化
ランタンLa2O3を得た。この酸化ランタンと市販の純
度99.99%酸化ガリウムGa2O3、二酸化珪素SiO2の各
粉末を原料として化学量論比組成でランガサイトLa3G
a5SiO14の育成を行った。Example 1 After commercially available lanthanum oxide La 2 O 3 having a purity of 99.99% was dissolved in nitric acid, oxalic acid was added thereto to add lanthanum oxalate La 2 (C 2 O 4 ) 3.
The precipitate was dried by filtration and calcined in a rotary kiln at 850 ° C. or lower for 3 hours in air to obtain lanthanum oxide La 2 O 3 . Using this lanthanum oxide and commercially available powders of 99.99% pure gallium oxide Ga 2 O 3 and silicon dioxide SiO 2 as raw materials, langasite La 3 G with a stoichiometric composition.
a 5 SiO 14 was cultivated.
【0022】結晶育成装置は図2に示す高周波誘導加熱
引き上げ装置、るつぼは直径50mm、深さ50mmの
イリジウム製、原料総量600g、育成雰囲気は酸素
0.5%を含む窒素、引き上げ速度は1mm/hrした。
引き上げ方位Zで、直径約25mm、長さ50mmの淡
褐色の結晶を得た。巨視的欠陥の発生は見られなかっ
た。The crystal growing apparatus is a high frequency induction heating and pulling apparatus shown in FIG. 2, the crucible is made of iridium having a diameter of 50 mm and a depth of 50 mm, the total amount of raw materials is 600 g, the growing atmosphere is nitrogen containing 0.5% of oxygen, and the pulling rate is 1 mm / hr.
A light brown crystal having a diameter of about 25 mm and a length of 50 mm in a pulling direction Z was obtained. No macroscopic defects were found.
【0023】[比較例1] シュウ酸ランタンLa2(C2O4)3を焼成温度1050℃
で3時間焼成して得た一般市販品と同質の酸化ランタン
La2O3を用い、その他は実施例1と全く同様にランガ
サイトLa3Ga5SiO14の育成を行った。その結果、微
少な割れを多数含んだ不透明結晶が育成された。Comparative Example 1 Lanthanum oxalate La 2 (C 2 O 4 ) 3 was fired at a temperature of 1050 ° C.
Lanthanum La 3 Ga 5 SiO 14 was grown in the same manner as in Example 1 except that lanthanum oxide La 2 O 3 of the same quality as that of a general commercial product obtained by firing for 3 hours was used. As a result, an opaque crystal containing many fine cracks was grown.
【0024】[実施例2] 図2に示す構成の監視窓のない結晶育成装置を用い、実
施例1と同様の条件でランガサイトLa3Ga5SiO14結
晶育成を行った。るつぼ内の原料融液面から上方15m
mまでの温度勾配は2℃/mm(図7のA部分参照)であ
り、さらに上方50mmまでの温度勾配は約5℃/mm
であった。得られた結晶には、割れ、インクルージョ
ン、双晶はみられなかった。なおシーディング操作は重
量センサーの信号により行い、図4に示す状態にするた
めにるつぼ熱伝対温度を25℃ほど上昇させた。Example 2 A langasite La 3 Ga 5 SiO 14 crystal was grown under the same conditions as in Example 1 using a crystal growing apparatus without a monitoring window having the configuration shown in FIG. 15m above the raw material melt surface in the crucible
The temperature gradient up to 50 m is 2 ° C./mm (see part A in FIG. 7), and the temperature gradient up to 50 mm above is approximately 5 ° C./mm.
Met. No cracks, inclusions, or twins were found in the obtained crystals. The seeding operation was performed by a signal from the weight sensor, and the temperature of the crucible thermocouple was raised by about 25 ° C. to obtain the state shown in FIG.
【0025】[比較例2] 実施例2において炉の構成のみ監視窓付耐火物(図1参
照)とし、その他は同様にして結晶育成を行った。るつ
ぼ内の原料融液面から上方15mmまでの温度勾配は1
7.8℃/mm(図7のB部分参照)であった。得られた結
晶は大きな割れが入り、育成結晶の一部が割れて原料融
液中に落下した。[Comparative Example 2] In Example 2, only the structure of the furnace was changed to a refractory with a monitoring window (see Fig. 1), and the others were grown in the same manner. The temperature gradient from the surface of the raw material melt in the crucible to 15 mm above is 1
It was 7.8 ° C./mm (refer to the portion B in FIG. 7). The obtained crystal had a large crack, and a part of the grown crystal was broken and dropped into the raw material melt.
【0026】[実施例3] 結晶育成雰囲気を純窒素とし、その他は実施例1と全く
同様にしてランガサイトLa3Ga5SiO14結晶育成を行
ったところ、淡黄緑色の結晶を得た。Example 3 A langasite La 3 Ga 5 SiO 14 crystal was grown in the same manner as in Example 1 except that the atmosphere for growing the crystal was pure nitrogen, and a pale yellow-green crystal was obtained.
【0027】[実施例4] 実施例1において原料の酸化ガリウムGa2O3を純度5
n(99.999%)の高純度原料にかえ、且つ育成雰囲気を純
窒素にして結晶育成を行ったところ、得られた結晶は無
色透明で、巨視的欠陥もみられなかった。なお、原料中
の不純物分析を行ったところ、実施例1と本例4の場合
の相違は、Zn,Ca,Cu等の2価の陽イオン不純物含有
量であり、実施例1の場合は12ppm、本例4の場合
は4ppmとなり、この差は着色と関連があるものと推
定される。Example 4 In Example 1, the raw material gallium oxide Ga 2 O 3 was purified to a purity of 5%.
When the crystal was grown by replacing n (99.999%) high-purity raw material with a growth atmosphere of pure nitrogen, the obtained crystal was colorless and transparent, and no macroscopic defect was observed. When the impurities in the raw material were analyzed, the difference between Example 1 and Example 4 was the content of divalent cation impurities such as Zn, Ca, and Cu. In Example 1, the content was 12 ppm. In the case of Example 4, the difference was 4 ppm, and this difference is presumed to be related to coloring.
【0028】[実施例5] 実施例1で得られた淡褐色結晶を、窒素中1000℃で
8時間熱処理したところ淡黄色まで退色した。Example 5 When the light brown crystal obtained in Example 1 was heat-treated at 1000 ° C. for 8 hours in nitrogen, the color faded to pale yellow.
【0029】[0029]
【発明の効果】本発明によって、結晶の割れやインクル
ージョン等の巨視的欠陥が少なく、また褐色の着色が僅
かで、圧電用のみならず光学用としても好適に用いられ
るランガサイト単結晶を再現性良く製造可能なランガサ
イト単結晶の育成方法が提供され、優れた性能を発揮す
る良質なランガサイト単結晶を得ることができる。According to the present invention, a langasite single crystal which has few macroscopic defects such as crystal cracks and inclusions, has little brown coloring, and is preferably used not only for piezoelectrics but also for optics can be reproduced. A method for growing a langasite single crystal that can be manufactured well is provided, and a high-quality langasite single crystal exhibiting excellent performance can be obtained.
【図1】従来のCZ育成装置のホットゾーン(窓付き)を
示す模式断面図。FIG. 1 is a schematic sectional view showing a hot zone (with a window) of a conventional CZ growing apparatus.
【図2】本発明によるCZ育成装置のホットゾーン(窓
付なし、重量センサー付き)を示す模式断面図。FIG. 2 is a schematic sectional view showing a hot zone (without window, with weight sensor) of the CZ growing apparatus according to the present invention.
【図3】シーディング時の重量信号変化(原料不溶解の
場合)を示すグラフ図。FIG. 3 is a graph showing a change in weight signal during seeding (when raw materials are not dissolved).
【図4】シーディング時の重量信号変化(適温の場合)を
示すグラフ図。FIG. 4 is a graph showing a change in weight signal during seeding (at an appropriate temperature).
【図5】シーディング時の重量信号変化(低温の場合)を
示すグラフ図。FIG. 5 is a graph showing a change in a weight signal during seeding (at a low temperature).
【図6】シーディング時の重量信号変化(高温の場合)を
示すグラフ図。FIG. 6 is a graph showing a change in weight signal during seeding (at a high temperature).
【図7】原料融液面上方の温度勾配を示すグラフ図(但
し、Aは良好の場合、Bは不適の場合を表わす)。FIG. 7 is a graph showing the temperature gradient above the surface of the raw material melt (however, A represents a good case, and B represents an unsuitable case).
1 保温耐火物(アルミナ) 2 加熱用高周波コイル 4 原料融液 5 るつぼ 6 シード 7 シャフト 8 育成結晶 9 窓なし耐火物 10 熱電対 11 窓付き耐火物 12 重量センサー DESCRIPTION OF SYMBOLS 1 Insulated refractory (alumina) 2 Heating high frequency coil 4 Raw material melt 5 Crucible 6 Seed 7 Shaft 8 Growth crystal 9 Windowless refractory 10 Thermocouple 11 Window refractory 12 Weight sensor
Claims (7)
育成する方法において、シュウ酸ランタンLa2(C2O4)
3を900℃以下の温度で焼成して得られる酸化ランタ
ンLa2O3を原料として用いることを特徴とする、ラン
ガサイト単結晶の育成方法。1. A method for growing a langasite La 3 Ga 5 SiO 14 single crystal, comprising the steps of: lanthanum oxalate La 2 (C 2 O 4 )
3. A method for growing a langasite single crystal, characterized by using lanthanum oxide La 2 O 3 obtained by firing 3 at a temperature of 900 ° C. or less as a raw material.
つCZ法(引上げ法)によりランガサイト単結晶を育成す
ることを特徴とする、請求項1記載のランガサイト単結
晶の育成方法。2. The method of growing a langasite single crystal according to claim 1, wherein said lanthanum oxide is used as a raw material, and said langasite single crystal is grown by a CZ method (pulling method).
育成する方法が、るつぼ内の原料融液面から上方15m
mまでの範囲の温度勾配を2℃±1℃/mmとし、且つ
さらに上方50mmまでの温度勾配を8℃/mm以下に
設定することを特徴とする、請求項2記載のランガサイ
ト単結晶の育成方法。3. The method of growing a langasite single crystal by the CZ method according to claim 1, wherein the method comprises:
3. The langasite single crystal according to claim 2, wherein the temperature gradient in the range up to m is 2 ° C. ± 1 ° C./mm, and the temperature gradient up to 50 mm above is set to 8 ° C./mm or less. Training method.
育成する方法が、るつぼ上部の保温用耐火物に育成状況
監視用開口を設けないことを特徴とする、請求項2記載
のランガサイト単結晶の育成方法。4. The langasite single crystal according to claim 2, wherein the method for growing a langasite single crystal by the CZ method does not provide an opening for monitoring a growth state in the refractory for keeping heat at the upper part of the crucible. Training method.
を設けないランガサイト単結晶の育成方法が、シーディ
ング操作を行うに際し監視窓からの観察によらず、重量
センサーからの信号変化の情報のみによりシーディング
を行うことを特徴とする、請求項4記載のランガサイト
単結晶の育成方法。5. A method for growing a langasite single crystal in which an opening for monitoring a growth state is not provided in the refractory for heat insulation, wherein a signal change from a weight sensor is performed regardless of observation from a monitoring window when performing a seeding operation. 5. The method of growing a langasite single crystal according to claim 4, wherein seeding is performed using only information.
成方法が、結晶育成原料中に不純物として含まれる2価
の陽イオン不純物を10ppm以下に抑制することを特
徴とする、請求項2ないし5のいずれかに記載のランガ
サイト単結晶育成方法。6. The method of growing a langasite single crystal according to the CZ method, wherein a divalent cation impurity contained as an impurity in a crystal growth raw material is suppressed to 10 ppm or less. The method for growing a langasite single crystal according to any one of the above.
成方法が、結晶育成雰囲気ガスとして窒素を使用するこ
とを特徴とする、請求項2ないし6のいずれかに記載の
ランガサイト単結晶育成方法。7. The method of growing a langasite single crystal according to claim 2, wherein said method of growing a langasite single crystal by the CZ method uses nitrogen as a crystal growth atmosphere gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10168604A JP2976967B1 (en) | 1998-06-16 | 1998-06-16 | Langasite single crystal growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10168604A JP2976967B1 (en) | 1998-06-16 | 1998-06-16 | Langasite single crystal growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2976967B1 true JP2976967B1 (en) | 1999-11-10 |
JP2000007499A JP2000007499A (en) | 2000-01-11 |
Family
ID=15871149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10168604A Expired - Fee Related JP2976967B1 (en) | 1998-06-16 | 1998-06-16 | Langasite single crystal growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2976967B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2400301A (en) * | 1999-12-28 | 2001-07-09 | Mitsubishi Materials Corporation | Langasite single crystal ingot, substrate for piezoelectric device and method for manufacture thereof, and surface acoustic wave device |
WO2003033780A1 (en) * | 2001-10-16 | 2003-04-24 | Utar Scientific Inc. | Method of growing piezoelectric lanthanide gallium crystals |
JP5341415B2 (en) * | 2008-07-16 | 2013-11-13 | 株式会社福田結晶技術研究所 | Piezoelectric single crystal and manufacturing method thereof |
JP5299908B2 (en) * | 2009-03-27 | 2013-09-25 | シチズンホールディングス株式会社 | Method for producing langate single crystal |
-
1998
- 1998-06-16 JP JP10168604A patent/JP2976967B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000007499A (en) | 2000-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mulvihill et al. | The role of processing variables in the flux growth of lead zinc niobate-lead titanate relaxor ferroelectric single crystals | |
JP6800468B2 (en) | A gallium oxide crystal manufacturing device, a gallium oxide crystal manufacturing method, and a crucible for growing gallium oxide crystals used for these. | |
KR20010090002A (en) | Semiconductor wafer made from silicon and method for producing the semiconductor wafer | |
JP2002293693A (en) | Terbium-aluminum-garnet single crystal and method of manufacturing for the same | |
CN108531990A (en) | Single-crystal manufacturing apparatus | |
US20080081013A1 (en) | Gallate Single Crystal, Process For Producing The Same, Piezoelectric Device For High-Temperature Use And Piezoelectric Sensor For High-Temperature Use | |
US6514336B1 (en) | Method of growing piezoelectric lanthanide gallium crystals | |
CN110079861B (en) | Yttrium strontium phosphate crystal and preparation method and application thereof | |
JP2976967B1 (en) | Langasite single crystal growth method | |
JP4930166B2 (en) | Method for producing aluminum oxide single crystal | |
JP4237280B2 (en) | Method for producing silicon single crystal | |
JP2003137690A (en) | Star blue sapphire and method for producing the same | |
RU2776470C2 (en) | Device for manufacture of gallium oxide crystal, method for manufacture of gallium oxide crystal and crucible for growing gallium oxide crystal, used for it | |
JP3128173B2 (en) | Method and apparatus for producing bismuth germanate single crystal | |
JP2002356396A (en) | Method of preparation of langasite type single crystal | |
JPH0411513B2 (en) | ||
JPH06157187A (en) | Single crystal growth furnace and production of single crystal | |
RU2108418C1 (en) | Method for growing single crystals of lanthanum-gallium silicate | |
KR960005521B1 (en) | Preparation of litao3 single crystal | |
JPH02196082A (en) | Production of silicon single crystal | |
JPS59152285A (en) | Preparation of single crystal | |
JP3906359B2 (en) | Method for producing P-type semiconductor SrCu2O2 single crystal | |
WO2003033780A1 (en) | Method of growing piezoelectric lanthanide gallium crystals | |
KR960005520B1 (en) | Preparation of single crystal | |
JP2692613B2 (en) | Method for producing rare earth vanadate single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090910 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090910 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100910 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110910 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120910 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |