JP4237280B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP4237280B2
JP4237280B2 JP19177997A JP19177997A JP4237280B2 JP 4237280 B2 JP4237280 B2 JP 4237280B2 JP 19177997 A JP19177997 A JP 19177997A JP 19177997 A JP19177997 A JP 19177997A JP 4237280 B2 JP4237280 B2 JP 4237280B2
Authority
JP
Japan
Prior art keywords
single crystal
quartz crucible
silicon
silicon single
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19177997A
Other languages
Japanese (ja)
Other versions
JPH1121196A (en
Inventor
栄一 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP19177997A priority Critical patent/JP4237280B2/en
Publication of JPH1121196A publication Critical patent/JPH1121196A/en
Application granted granted Critical
Publication of JP4237280B2 publication Critical patent/JP4237280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チョクラルスキー法によるシリコン単結晶の育成に際し、高温のシリコン融液と接触して劣化、浸食される石英ルツボの寿命を延ばし、長時間の安定操業及び生産性の向上が可能なシリコン単結晶の製造方法に関するものである。
【0002】
【従来の技術】
チョクラルスキー法(CZ法)によるシリコン単結晶の製造方法において、近年結晶の大直径化が進むにつれ、使用する石英ルツボも大口径化の一途をたどり、結晶成長中のシリコン融液及び石英ルツボの温度が高温化している。この高温化に伴い石英ルツボの内表面が結晶化し易くなり、さらに結晶化した石英が剥離してシリコン融液中に浮遊し、結晶に到達して結晶が有転位化するという問題が生じている。この理由から、ある一定時間以上の結晶成長は基本的には不可能となり、石英ルツボの寿命が短命なため生産性、コストの両面から工業的に非常に大きな問題となっている。
【0003】
石英ルツボ表面の結晶化を抑制する方法として、特開平5−45066号の提案によれば、石英ルツボの組成として不純物となるCaOを添加し、原料石英中にもともと存在するアルミナを低融点のカルシウムアルミネートに変化させて、石英ガラスの結晶化を抑制し、石英ルツボの寿命を長くしている。
【0004】
しかしながら、この方法では石英ルツボの製造時に不純物となるCaOの添加量を厳密に制御することは非常に困難を伴い、また、Alのような他の不純物についてもCa同様にその量を制御する必要があり容易な技術ではなく、またコスト上昇の要因にもなる。さらに、添加されたCaOは、ルツボ内で不均一に分布することになる可能性も十分に考えられる。
【0005】
一方、従来からの知見として、石英ルツボを超高純度化するという方法が有効であると言われているが、しかし、石英ルツボの超高純度化に関しては、人工的に合成した超高純度の石英粉を使用する必要があり、さらには、特殊な石英粉や製造技術を必要とするということで石英ルツボのコストが極端に上昇するという問題が生じる。
【0006】
【発明が解決しようとする課題】
本発明は、このような問題点に鑑みなされたもので、チョクラルスキー法によるシリコン単結晶の育成に際し、高温のシリコン融液と接触して劣化、浸食される石英ルツボ内表面からの石英の剥離を抑制し石英ルツボの寿命を延ばし、ひいてはシリコン単結晶の育成時間を延長して長時間の安定操業と生産性の向上を図ることを主目的とする。
【0007】
【課題を解決するための手段】
本発明は、前記目的を達成するために為されたもので、本発明は、石英ルツボ中に収容されたシリコン融液からチョクラルスキー法によりシリコン単結晶を製造する場合において、該シリコン融液中にCaOまたはBaOを添加してシリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法である。
【0008】
このようにすれば、シリコン単結晶成長中に、シリコン融液中のCaOまたはBaOが石英ルツボ内表面にドーピングされ、石英の結晶化を促進して、均一で微細な結晶層が形成され、シリコン融液による石英ルツボの劣化、浸食、剥離を抑制することができる。その結果、石英ルツボの寿命が延びると共に、シリコン単結晶育成時間も延長されるので長時間の安定操業および生産性の向上を図ることが可能となる。
【0009】
そして、前記CaOまたはBaOの添加量を、シリコン融液中の濃度として0.01〜10wtppmとなるようにした。
【0010】
このように、結晶成長時に、シリコン融液中に添加するCaOまたはBaOの量を0.01〜10wtppmの範囲内とすると、石英ルツボの内表面で石英の結晶化が促進され、微細で均一な結晶層が形成され、シリコン融液による石英ルツボの劣化、浸食、剥離を抑制することができる。
また、この範囲内の添加量では育成したシリコン単結晶の品質に悪影響を与えることもない。
【0011】
以下、本発明につきさらに詳細に説明するが、本発明はこれらに限定されるものではない。
本発明者らは、チョクラルスキー法によるシリコン単結晶成長に関し、石英ルツボの寿命を延ばす方策を種々検討した結果、驚くべきことに、従来のように石英ルツボの表面の結晶化を抑制してルツボ表面からの石英の剥離を防ぐ方法ではなく、逆に、石英ルツボの表面の結晶化を促進して均一で微細な結晶層を形成させればルツボ表面からの石英の剥離を抑制できることを見出した。そして、これにより石英ルツボの寿命を延ばし、剥離した石英によるシリコン単結晶の有転位化を防止して結晶成長時間を延ばすことに成功し、諸条件を確立して本発明を完成させた。
【0012】
なぜ、石英の結晶化が進むと剥離しにくくなるのか、その理由は明確ではないが、通常使用されている石英ルツボのように、その内表面に様々な形態の石英が存在すると、石英ルツボ内表面における結晶化は不均一に起こり、シリコン融液の影響も加わって、一部組成の変化している部分を境に剥離現象が起きると考えられる。一方、これに対して石英ルツボ内表面の一部または全面が均一に結晶化してしまえば、そのような組成の差はなくなり、むしろその表面は安定化しているためと考えられる。
【0013】
石英ルツボ内表面を均一に結晶化させる方法として、本発明では、ある特定の不純物が結晶化を促進することに着目し、その元素について詳細に検討した結果、CaまたはBaの酸化物がシリコン融液中にある量存在すればよいことを見出した。つまり、基本的には僅かなCaO、BaOをシリコン融液中に添加すれば、ルツボ表面の石英にドーピングされ、均一で微細な結晶層がルツボ内表面のシリコン融液に接触する全面に形成されるものと考えられる。
【0014】
この場合、石英ルツボの種類は、従来からシリコンの結晶成長に使用されている品質レベルのものであれば、ルツボの原料石英粉が天然品でも合成品でも問題はない。従って、ルツボの寿命を延長できるようにルツボの材質を改質したり、加工した特別なルツボを作製し、使用する必要は全くなくなり、従来から使用されている品質の石英ルツボを用いればよい。そして、CaOまたはBaO以外の不純物については、石英の結晶化に影響を及ぼさないので、特にその濃度を規定する必要はない。
【0015】
また、このようなCaO、BaO不純物の添加によるシリコン単結晶の品質への影響は、例えば重金属類は偏析係数が非常に小さいので結晶中には殆ど取り込まれることはなく、育成されるシリコン単結晶の品質への影響は極めて小さい。
【0016】
CaOまたはBaOの添加量は、シリコン融液中の濃度として0.01〜10wtppmの範囲が好ましく、0.01wtppm未満では石英の結晶化を促進する効果が少なくなり、10wtppmを越えると引き上げたシリコン単結晶のライフタイム値が低下するようになるので好ましくない。
【0017】
さらに、添加不純物としては、必ずしも最初からCaOまたはBaOのように酸化物の形態を採る必要はなく、例えば、CaCO3 、Ca(OH)2 、BaCO3 、Ba(OH)2 等のような熱分解により安定な酸化物へ変化する化合物であってもその効果は同じである。
すなわち、本発明でいうCaO、BaOを添加することとは、このように後でCaO、BaOに変換される化合物を添加する場合も含むものである。
【0018】
そして、これら添加物のシリコン融液への添加の時期は、特に限定されないが、その効果を出来る限り早く発現させるために、石英ルツボに仕込んだシリコン多結晶原料を溶融する前に添加しておくのが最も望ましい。シリコン多結晶原料を溶融後に、シリコン融液に直接添加するようにしてもよく、このようにしてもその効果は基本的には変わらない。ただし、融液に添加する場合は、最初からCaO、BaOの形をとっている方が好ましい。
【0019】
また、シリコン融液からシリコン単結晶を成長させ、その後シリコン単結晶を取り出し、そのシリコン単結晶と同重量のシリコン多結晶原料を石英ルツボに再充填するいわゆるマルチプリング法においては、これらの添加物は、原則として最初にシリコン多結晶原料を溶融する前、すなわち、初期チャージの時またはその溶融直後に一度添加すればその効果を得ることができる。マルチ次数(シリコン多結晶原料の石英ルツボへの再充填回数)を重ねても添加物による効果は継続され、マルチ次数を重ねる度に毎回添加物を加える必要はない。また、マルチプリング法における添加物の添加時期は、その効果を出来る限り早く発現させるために、初期チャージの時に添加するのが望ましい。
【0020】
【発明の実施の形態】
以下、本発明の実施形態について、実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
【0021】
【実施例】
以下、本発明の実施例を示す。
(実施例1)
直径18インチの石英ルツボにシリコンの多結晶原料60kgとCaOを仕込み、これを融解し、シリコン単結晶の育成を行い、シリコン単結晶育成後の石英ルツボの表面状態を顕微鏡で観察調査した。CaOの添加量を変化させた場合の結果を表1に示した。尚、平均操業時間は、約40時間であった。
【0022】
【表1】

Figure 0004237280
【0023】
実施例1では、CaOのドープ量を5段階に設定しその効果を確認した結果、表1の試験結果から明らかなように、石英ルツボに白色化結晶層の形成が確認されたのは、0.01wtppm以上のCaOを添加した時であり、添加量の増加に伴って白色化結晶層の面積が増大する傾向が判る。
【0024】
(実施例2)
直径18インチの石英ルツボにシリコンの多結晶原料60kgとCaOを仕込み、これを融解し、結晶成長を行い、直径150mmの結晶を直胴部の長さで60cm成長させ、丸めを付けた後、結晶を取り出し、その後、その結晶と同重量の原料を石英ルツボに再充填するという方法で、成長結晶が単結晶化しなくなるまでの時間(石英ルツボの寿命)を調べた。また、単結晶の品質としては、成長結晶の直胴のボトム部から10mm厚さのウエーハを切り出し、そのライフタイムを測定した。CaOの添加量を変化させた場合の結果を表2に示した。
【0025】
ライフタイムの測定方法は、ASTM F28−75に準拠した方法とした。これは少数キャリアバルクライフタイム測定といい、光パルスを当て、発生した少数キャリアの減衰を測定する方法である。
【0026】
【表2】
Figure 0004237280
【0027】
以上の実施例2から判るように、石英ルツボの白色化結晶層の形成効果は、CaOの添加量が0.01wtppm以上で認められ、実質的な石英ルツボの寿命も確実に延びる結果となった。また、10wtppmを超えると石英ルツボの寿命は延びているが、結晶のライフタイムは減少傾向を示しているので、0.01〜10wtppmの範囲が好ましい。
【0028】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0029】
例えば、上記実施形態においては、直径6インチのシリコン単結晶を育成する場合につき例を挙げて説明したが、本発明はこれには限定されず、直径8〜16インチあるいはそれ以上のシリコン単結晶の育成の場合にも適用できる。
また、本発明は、シリコン融液に水平磁場、縦磁場、カスプ磁場等を印加するいわゆるMCZ法にも適用できることは言うまでもない。
【0030】
【発明の効果】
以上説明したように、本発明によれば、ルツボの寿命を延長するように加工した特別なルツボを作製したり使用したりする必要はなく、従来から使用されてきた品質の石英ルツボによるシリコン単結晶成長において、容易に石英ルツボの寿命を延ばすことができると共に、結晶品質を劣化させることなくシリコン単結晶の育成時間を延長することができ、長時間の安定操業と生産性の向上を図ることが可能となる。[0001]
BACKGROUND OF THE INVENTION
In the present invention, when growing a silicon single crystal by the Czochralski method, the life of a quartz crucible that is deteriorated and eroded by contact with a high-temperature silicon melt can be extended, and stable operation and productivity can be improved for a long time. The present invention relates to a method for producing a silicon single crystal.
[0002]
[Prior art]
In the method of manufacturing a silicon single crystal by the Czochralski method (CZ method), as the diameter of a crystal increases in recent years, the quartz crucible to be used is steadily increasing in diameter, and the silicon melt and the quartz crucible during crystal growth are being used. The temperature of is increasing. As the temperature rises, the inner surface of the quartz crucible becomes easier to crystallize, and the crystallized quartz peels off and floats in the silicon melt, reaching the crystal and causing crystal dislocation. . For this reason, crystal growth over a certain period of time is basically impossible, and the quartz crucible has a short life, which is a very large industrial problem in terms of both productivity and cost.
[0003]
As a method for suppressing the crystallization of the surface of the quartz crucible, according to the proposal of Japanese Patent Laid-Open No. 5-45066, CaO which is an impurity is added as a composition of the quartz crucible, and alumina originally present in the raw material quartz is reduced to calcium having a low melting point. By changing to aluminate, crystallization of quartz glass is suppressed, and the life of the quartz crucible is extended.
[0004]
However, in this method, it is very difficult to strictly control the amount of CaO added as an impurity during the production of the quartz crucible, and it is necessary to control the amount of other impurities such as Al as well as Ca. This is not an easy technology and also causes an increase in cost. Furthermore, it is fully possible that the added CaO will be unevenly distributed in the crucible.
[0005]
On the other hand, as a conventional knowledge, it is said that a method of ultra-high purity of a quartz crucible is effective. However, for ultra-high purity of a quartz crucible, an artificially synthesized ultra-high purity Quartz powder needs to be used, and furthermore, the need for special quartz powder and manufacturing technology raises the problem that the cost of the quartz crucible increases extremely.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and when growing a silicon single crystal by the Czochralski method, the quartz from the inner surface of the quartz crucible that is deteriorated and eroded by contact with a high-temperature silicon melt is obtained. The main purpose is to suppress the peeling and prolong the life of the quartz crucible, thereby extending the growth time of the silicon single crystal to improve the stable operation for a long time and the productivity.
[0007]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and the present invention provides a silicon single crystal in the case of producing a silicon single crystal by a Czochralski method from a silicon melt accommodated in a quartz crucible. A silicon single crystal manufacturing method characterized by growing Ca single crystal by adding CaO or BaO therein.
[0008]
In this way, during the growth of the silicon single crystal, CaO or BaO in the silicon melt is doped on the inner surface of the quartz crucible to promote the crystallization of quartz, and a uniform and fine crystal layer is formed. Degradation, erosion, and peeling of the quartz crucible due to the melt can be suppressed. As a result, the life of the quartz crucible is extended and the silicon single crystal growth time is extended, so that stable operation for a long time and improvement in productivity can be achieved.
[0009]
And the addition amount of the said CaO or BaO was made into 0.01-10 wtppm as a density | concentration in a silicon melt .
[0010]
As described above, when the amount of CaO or BaO added to the silicon melt during the crystal growth is in the range of 0.01 to 10 wtppm, crystallization of quartz is promoted on the inner surface of the quartz crucible, and it is fine and uniform. A crystal layer is formed, and deterioration, erosion, and peeling of the quartz crucible due to the silicon melt can be suppressed.
Moreover, the addition amount within this range does not adversely affect the quality of the grown silicon single crystal.
[0011]
Hereinafter, the present invention will be described in more detail, but the present invention is not limited thereto.
As a result of studying various measures for extending the life of a quartz crucible with respect to the growth of a silicon single crystal by the Czochralski method, the present inventors surprisingly suppressed the crystallization of the surface of the quartz crucible as in the prior art. It is not a method to prevent the exfoliation of quartz from the surface of the crucible, but conversely, it is found that the exfoliation of quartz from the surface of the crucible can be suppressed by promoting the crystallization of the surface of the quartz crucible to form a uniform and fine crystal layer. It was. As a result, the life of the quartz crucible was extended, the dislocation of the silicon single crystal by the separated quartz was prevented from being dislocated, and the crystal growth time was extended. Various conditions were established and the present invention was completed.
[0012]
The reason why it becomes difficult to exfoliate as the crystallization of quartz progresses is not clear, but if there are various forms of quartz on the inner surface, such as a quartz crucible that is usually used, Crystallization on the surface occurs non-uniformly, and due to the influence of the silicon melt, it is considered that a peeling phenomenon occurs at the part where the composition is partially changed. On the other hand, if part or the entire surface of the inner surface of the quartz crucible is crystallized uniformly, it is considered that such a difference in composition disappears and the surface is stabilized.
[0013]
As a method for uniformly crystallizing the inner surface of the quartz crucible, the present invention pays attention to the fact that a specific impurity promotes crystallization, and as a result of examining the element in detail, the oxide of Ca or Ba is a silicon melt. It has been found that a certain amount should be present in the liquid. In other words, basically, if a small amount of CaO or BaO is added to the silicon melt, the silica on the crucible surface is doped, and a uniform and fine crystal layer is formed on the entire surface in contact with the silicon melt on the crucible inner surface. It is thought that.
[0014]
In this case, as long as the type of the quartz crucible is of a quality level conventionally used for crystal growth of silicon, there is no problem whether the raw material quartz powder of the crucible is a natural product or a synthetic product. Therefore, it is not necessary to modify the material of the crucible so that the life of the crucible can be extended or to produce a special crucible that has been processed, and to use a quartz crucible of a quality that has been used conventionally. Since impurities other than CaO or BaO do not affect the crystallization of quartz, it is not necessary to define the concentration thereof.
[0015]
In addition, the influence of the addition of CaO and BaO impurities on the quality of the silicon single crystal is, for example, that heavy metals have a very small segregation coefficient, so that the silicon single crystal to be grown is hardly taken into the crystal. The impact on quality is extremely small.
[0016]
The addition amount of CaO or BaO is preferably in the range of 0.01 to 10 wtppm as the concentration in the silicon melt, and if it is less than 0.01 wtppm, the effect of promoting crystallization of quartz is reduced. Since the lifetime value of a crystal falls, it is not preferable.
[0017]
Furthermore, the additive impurity does not necessarily have to be in the form of an oxide as in the case of CaO or BaO from the beginning. For example, heat such as CaCO 3 , Ca (OH) 2 , BaCO 3 , Ba (OH) 2, etc. The effect is the same even if the compound is changed to a stable oxide by decomposition.
That is, the addition of CaO and BaO as used in the present invention includes the case of adding a compound that is subsequently converted to CaO and BaO.
[0018]
The timing of adding these additives to the silicon melt is not particularly limited, but is added before melting the silicon polycrystalline raw material charged in the quartz crucible in order to realize the effect as soon as possible. Is most desirable. After the silicon polycrystalline raw material is melted, it may be added directly to the silicon melt. Even in this way, the effect is basically the same. However, when adding to a melt, it is preferable to take the form of CaO and BaO from the beginning.
[0019]
In the so-called multiple pulling method in which a silicon single crystal is grown from a silicon melt, the silicon single crystal is subsequently taken out, and a silicon polycrystal raw material having the same weight as the silicon single crystal is refilled into a quartz crucible, these additives are used. In principle, the effect can be obtained if it is added once before melting the silicon polycrystalline raw material for the first time, that is, at the time of initial charge or immediately after melting. Even if the multi-order (the number of times the silicon polycrystal raw material is refilled into the quartz crucible) is repeated, the effect of the additive continues, and it is not necessary to add the additive every time the multi-order is repeated. In addition, it is desirable to add the additive in the multiple pulling method at the time of initial charge in order to express the effect as soon as possible.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although an example is given and an embodiment of the present invention is described, the present invention is not limited to these.
[0021]
【Example】
Examples of the present invention will be described below.
Example 1
A quartz crucible of 18 inches in diameter was charged with 60 kg of polycrystalline silicon raw material and CaO, melted to grow a silicon single crystal, and the surface state of the quartz crucible after the growth of the silicon single crystal was observed and examined with a microscope. Table 1 shows the results when the amount of CaO added was changed. The average operation time was about 40 hours.
[0022]
[Table 1]
Figure 0004237280
[0023]
In Example 1, as a result of confirming the effect by setting the doping amount of CaO to 5 stages, as is clear from the test results of Table 1, the formation of the whitened crystal layer in the quartz crucible was confirmed as 0 It is a time when 0.01 wtppm or more of CaO is added, and it can be seen that the area of the whitened crystal layer tends to increase as the addition amount increases.
[0024]
(Example 2)
A silicon crucible of 18 inches in diameter is charged with 60 kg of polycrystalline silicon raw material and CaO, melted and crystal-grown, and a crystal with a diameter of 150 mm is grown 60 cm in length of the straight body, and then rounded. Crystals were taken out, and then the time until the grown crystals were not single-crystallized (life of the quartz crucible) was examined by refilling the quartz crucible with the raw material having the same weight as the crystal. As the quality of the single crystal, a 10 mm thick wafer was cut out from the bottom of the straight body of the grown crystal, and the lifetime was measured. Table 2 shows the results when the amount of CaO added was changed.
[0025]
The method for measuring the lifetime was a method based on ASTM F28-75. This is called minority carrier bulk lifetime measurement, which is a method of measuring attenuation of generated minority carriers by applying an optical pulse.
[0026]
[Table 2]
Figure 0004237280
[0027]
As can be seen from Example 2 above, the effect of forming the whitening crystal layer of the quartz crucible was recognized when the amount of CaO added was 0.01 wtppm or more, and the life of the substantial quartz crucible was reliably extended. . Further, if it exceeds 10 wtppm, the life of the quartz crucible is extended, but the lifetime of the crystal shows a decreasing tendency, so the range of 0.01 to 10 wtppm is preferable.
[0028]
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
[0029]
For example, in the above embodiment, the case where a silicon single crystal having a diameter of 6 inches is grown has been described as an example. However, the present invention is not limited to this, and the silicon single crystal having a diameter of 8 to 16 inches or more is described. It can also be applied in the case of training.
Needless to say, the present invention can also be applied to a so-called MCZ method in which a horizontal magnetic field, a vertical magnetic field, a cusp magnetic field, or the like is applied to a silicon melt.
[0030]
【The invention's effect】
As described above, according to the present invention, it is not necessary to produce or use a special crucible that has been processed so as to extend the life of the crucible. In crystal growth, it is possible to easily extend the life of a quartz crucible and extend the growth time of a silicon single crystal without degrading the crystal quality, thereby improving long-term stable operation and productivity. Is possible.

Claims (2)

石英ルツボ中に収容されたシリコン融液からチョクラルスキー法によりシリコン単結晶を製造する場合において、
前記シリコン融液の原料に溶融前にCaOまたはBaOを仕込むかまたは前記シリコン融液の原料に溶融後にCaOまたはBaOを直接添加することによって、
前記石英ルツボ内表面にCaOまたはBaOをドーピングして石英ルツボ内表面を結晶化させつつ、シリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法。
In the case of producing a silicon single crystal by the Czochralski method from a silicon melt accommodated in a quartz crucible,
By charging CaO or BaO before melting into the silicon melt raw material or by directly adding CaO or BaO after melting into the silicon melt raw material,
A method for producing a silicon single crystal, comprising growing a silicon single crystal while crystallization of the quartz crucible inner surface by doping CaO or BaO into the quartz crucible inner surface .
前記CaOまたはBaOの添加量が、シリコン融液中の濃度として0.01〜10wtppmであることを特徴とする、請求項1に記載したシリコン単結晶の製造方法。  2. The method for producing a silicon single crystal according to claim 1, wherein an addition amount of the CaO or BaO is 0.01 to 10 wtppm as a concentration in the silicon melt.
JP19177997A 1997-07-02 1997-07-02 Method for producing silicon single crystal Expired - Fee Related JP4237280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19177997A JP4237280B2 (en) 1997-07-02 1997-07-02 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19177997A JP4237280B2 (en) 1997-07-02 1997-07-02 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JPH1121196A JPH1121196A (en) 1999-01-26
JP4237280B2 true JP4237280B2 (en) 2009-03-11

Family

ID=16280404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19177997A Expired - Fee Related JP4237280B2 (en) 1997-07-02 1997-07-02 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP4237280B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247788A (en) * 1999-02-26 2000-09-12 Shin Etsu Handotai Co Ltd Production of silicon single crystal
US6350312B1 (en) 1999-03-15 2002-02-26 Memc Electronic Materials, Inc. Strontium doping of molten silicon for use in crystal growing process
US6319313B1 (en) * 1999-03-15 2001-11-20 Memc Electronic Materials, Inc. Barium doping of molten silicon for use in crystal growing process
JP5034246B2 (en) * 2006-02-01 2012-09-26 株式会社Sumco Silicon single crystal manufacturing method and silicon single crystal
JP4788445B2 (en) * 2006-04-04 2011-10-05 株式会社Sumco Pulling method of silicon single crystal
JP4788444B2 (en) * 2006-04-04 2011-10-05 株式会社Sumco Method for producing silicon single crystal
JP4807130B2 (en) * 2006-04-04 2011-11-02 株式会社Sumco Pulling method of silicon single crystal
JP6743753B2 (en) 2017-04-27 2020-08-19 株式会社Sumco Silicon single crystal pulling method

Also Published As

Publication number Publication date
JPH1121196A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
JP4948504B2 (en) Silicon single crystal pulling method
KR101857612B1 (en) Method for producing gaas single crystal and gaas single crystal wafer
JP2009263149A (en) Method for manufacturing polycrystalline silicon rod
JP4237280B2 (en) Method for producing silicon single crystal
CN101796225B (en) Seed crystal for pulling silicon single crystal and method for manufacturing silicon single crystal by using seed crystal
JPH0812493A (en) Production of silicon single crystal
JP4726138B2 (en) Quartz glass crucible
JP4930166B2 (en) Method for producing aluminum oxide single crystal
KR101029141B1 (en) Process for Producing P Doped Silicon Single Crystal and P Doped N Type Silicon Single Crystal Wafer
KR101540571B1 (en) Additives for manufacturing a single crystalline silicon ingot, and method for manufacturing the ingot using the additives
JP4144060B2 (en) Method for growing silicon single crystal
US4302280A (en) Growing gadolinium gallium garnet with calcium ions
JPH068237B2 (en) Quartz crucible for pulling silicon single crystal
JPH10182287A (en) Production of silicon single crystal and quartz crucible therefor
JP3787888B2 (en) Crystal growth method and growth crucible
JP2508546B2 (en) Quartz crucible for pulling silicon single crystal
JP4200690B2 (en) GaAs wafer manufacturing method
JP5136253B2 (en) Method for growing silicon single crystal
JP2000007499A (en) Method for growing langasite single crystal
JPH0798715B2 (en) Method for producing silicon single crystal
JP2787995B2 (en) Method for producing lithium tetraborate single crystal
JP4930165B2 (en) Method for producing aluminum oxide single crystal
KR100209579B1 (en) Mn-zn ferrite single crystal manufacturing method
JPS60118696A (en) Method for growing indium phosphide single crystal
JPH11199362A (en) Production of compound semiconductor single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees