JP4788445B2 - Pulling method of silicon single crystal - Google Patents
Pulling method of silicon single crystal Download PDFInfo
- Publication number
- JP4788445B2 JP4788445B2 JP2006103000A JP2006103000A JP4788445B2 JP 4788445 B2 JP4788445 B2 JP 4788445B2 JP 2006103000 A JP2006103000 A JP 2006103000A JP 2006103000 A JP2006103000 A JP 2006103000A JP 4788445 B2 JP4788445 B2 JP 4788445B2
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- single crystal
- silicon
- baco
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims description 121
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 120
- 229910052710 silicon Inorganic materials 0.000 title claims description 120
- 239000010703 silicon Substances 0.000 title claims description 120
- 238000000034 method Methods 0.000 title claims description 79
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 126
- 239000010453 quartz Substances 0.000 claims description 120
- 239000000843 powder Substances 0.000 claims description 69
- 239000002994 raw material Substances 0.000 claims description 60
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 239000000155 melt Substances 0.000 claims description 9
- 238000002425 crystallisation Methods 0.000 description 29
- 230000008025 crystallization Effects 0.000 description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 26
- 229910052799 carbon Inorganic materials 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000004031 devitrification Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000002210 silicon-based material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000008710 crystal-8 Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、チョクラルスキー法を用いたシリコン単結晶の引上げ方法に関し、さらに詳しくは、シリコン単結晶引上げ中に石英坩堝の内壁表面を効率よく失透(結晶化)させ、長時間に亘る単結晶の引上げであっても、結晶成長中の有転位化を防止し、結晶品質を劣化させることなく、生産性を向上させることができるシリコン単結晶の引上げ方法に関する。 The present invention relates to a method for pulling a silicon single crystal using the Czochralski method. More specifically, the inner wall surface of a quartz crucible is efficiently devitrified (crystallized) during the pulling of the silicon single crystal, and the single crystal over a long time. The present invention relates to a silicon single crystal pulling method capable of preventing dislocation during crystal growth and improving productivity without deteriorating crystal quality even when the crystal is pulled.
半導体基板に用いられるシリコン単結晶を製造する方法には種々の方法があるが、そのなかでも回転引上げ法としてチョクラルスキー法(以下、「CZ法」という)が広く採用されている。 There are various methods for producing a silicon single crystal used for a semiconductor substrate. Among them, the Czochralski method (hereinafter referred to as “CZ method”) is widely adopted as a rotational pulling method.
図2は、CZ法によるシリコン単結晶の引上げ方法を実施するのに適した引上げ装置の要部構成を模式的に示す図である。引上げ装置の外観は図示しないチャンバーで構成され、その中心部に坩堝1が配設されている。この坩堝1は二重構造であり、有底円筒状をなす石英製の内層保持容器(以下、単に「石英坩堝」という)1aと、その石英坩堝1aの外側を保持すべく適合された同じく有底円筒状の黒鉛製の外層保持容器(以下、単に「黒鉛坩堝」という)1bとから構成されている。 FIG. 2 is a diagram schematically showing a main configuration of a pulling apparatus suitable for carrying out a silicon single crystal pulling method by the CZ method. The appearance of the pulling device is composed of a chamber (not shown), and a crucible 1 is disposed at the center thereof. The crucible 1 has a double structure, and has a quartz inner layer holding container (hereinafter simply referred to as a “quartz crucible”) 1a having a bottomed cylindrical shape, and the same holding unit adapted to hold the outside of the quartz crucible 1a. It is composed of a bottom cylindrical graphite outer layer holding container (hereinafter simply referred to as “graphite crucible”) 1b.
これらの坩堝1は、回転および昇降が可能な支持軸6の上端部に固定されている。そして、坩堝1の外側には抵抗加熱式ヒーター2が概ね同心円状に配設されており、前記坩堝1内に投入された所定重量の結晶用シリコン原料は溶融され、溶融液3が形成される。
These crucibles 1 are fixed to the upper end of a
溶融液3を充填した前記坩堝1の中心軸上には、支持軸6と同一軸上で逆方向または同方向に所定の速度で回転する引上げ軸(またはワイヤー、以下両者を合わせて「引上げ軸」という)5が配設されており、引上げ軸5の下端には種結晶7が保持されている。
On the central axis of the crucible 1 filled with the
このような引上げ装置にあっては、石英坩堝1a内に結晶用原料を投入し、減圧下の不活性ガス雰囲気中で結晶用原料を坩堝1の周囲に配設したヒーター2にて溶融した後、形成された溶融液3の表面に引上げ軸5の下端に保持された種結晶7を浸漬し、坩堝1および引上げ軸5を回転させつつ、引上げ軸5を上方に引上げて種結晶7の下端面に単結晶4を成長させる。
In such a pulling apparatus, the raw material for crystallization is put into the quartz crucible 1a, and the raw material for crystallization is melted in the
前述の通り、CZ法によるシリコン単結晶の引上げでは、二重構造の坩堝のうち石英坩堝によって、結晶用シリコン原料を溶融した溶融液が保持される。この石英坩堝がシリコン溶融液を保持する際には、坩堝表面は1500℃以上の高温に晒されており、その時間は原料シリコンの充填量、結晶成長速度などの条件により異なるものの、通常、数十時間を要することになる。 As described above, in the pulling of the silicon single crystal by the CZ method, the molten liquid obtained by melting the silicon raw material for crystallization is held by the quartz crucible among the crucibles having a double structure. When this quartz crucible holds a silicon melt, the surface of the crucible is exposed to a high temperature of 1500 ° C. or higher, and the time varies depending on conditions such as the amount of raw silicon filling, crystal growth rate, etc. It will take ten hours.
さらに、最近では、単結晶引上げの生産性を高めるため、同一の坩堝から複数本の単結晶を製造するリチャージ引上げ法(RCCZ法、例えば、志村史夫著、「半導体シリコン結晶工学」p72−73、丸善)が開発されている。このようなリチャージ引上げ法では、石英坩堝がシリコン溶融液に晒される時間が100時間を超える場合もある。 Furthermore, recently, in order to increase the productivity of pulling a single crystal, a recharge pulling method (RCCZ method, for example, written by Fumio Shimura, “Semiconductor Silicon Crystal Engineering” p72-73, Maruzen) has been developed. In such a recharge pulling method, the time during which the quartz crucible is exposed to the silicon melt may exceed 100 hours.
通常、石英坩堝の内壁表面は、高温状態のシリコン溶融液と接触する間に、ブラウニッシュリングと呼ばれる褐色のクリストバライトが生成され、次第に成長していく。このブラウニッシュリングが、単結晶の引上げ過程で剥離すると、それが結晶成長を阻害し、結晶中に有転位化を招くことになる。このような坩堝内表面の結晶化(クリストバライトの生成)とその剥離にともなう有転位化を防止するため、従来から種々の対策が検討されている。 Usually, the surface of the inner wall of the quartz crucible is gradually grown by generating brown cristobalite called a brownish ring while in contact with the silicon melt in a high temperature state. When this brownish ring peels off during the pulling process of a single crystal, it inhibits crystal growth and causes dislocations in the crystal. In order to prevent such crystallization of the inner surface of the crucible (generation of cristobalite) and dislocation accompanying the separation, various countermeasures have been studied.
まず、特許文献1では、外壁部分が不透明ガラス層、内壁部分が透明ガラス層からなる石英坩堝において、坩堝の湾曲部分の透明ガラス層を厚く不透明ガラス層を薄くすることにより、結晶化の基点となりうる微小な気泡を表面近傍において低減した坩堝が開示されている。しかし、低気泡であっても長時間の使用により、結晶化を完全には防止できず、さらに石英坩堝そのものが変形して、シリコン単結晶の引上げ自体が続行不能になるという問題がある。 First, in Patent Document 1, in a quartz crucible in which an outer wall portion is made of an opaque glass layer and an inner wall portion is made of a transparent glass layer, the transparent glass layer in the curved portion of the crucible is thickened and the opaque glass layer is made thin, thereby becoming a starting point for crystallization. A crucible in which minute bubbles that can be formed is reduced in the vicinity of the surface is disclosed. However, even with low bubbles, there is a problem that crystallization cannot be completely prevented by long-term use, and further, the quartz crucible itself is deformed and the pulling of the silicon single crystal itself cannot be continued.
また、特許文献2および特許文献3には、石英坩堝の内壁に結晶化促進剤を塗布または含有させ、内表面全体を結晶化させることにより劣化を防止する方法が開示されている。しかし、これらの方法においては、石英坩堝の内壁に結晶化促進剤を均等に塗布する工程が必要であり、製造コストの上昇を招くという問題がある。さらには、石英坩堝の内壁に結晶化促進剤を塗布しても、何らかの理由で坩堝の内壁に汚れが生じた場合、洗浄すると結晶化促進剤の塗布効果がなくなるため、その坩堝は使用できなくなるなど、取り扱いが難しいという問題がある。
上記の結晶化促進剤を塗布した石英坩堝の欠点を解決すべく、特許文献4では、天然石英ガラス外層および合成石英ガラス内層からなる二層構造を有する石英坩堝において、合成石英ガラス内層に天然石英ガラス外層から拡散または移動したNa、KおよびLiのいずれかのアルカリ金属イオンを含有させた石英坩堝が提案されている。しかし、提案の石英坩堝では、アルカリ金属イオンを含有することによって、坩堝内表面の結晶化を促進させようとするものであるが、アルカリ金属が結晶中に取り込まれ、品質を劣化させるという問題がある。 In order to solve the disadvantages of the quartz crucible coated with the crystallization accelerator described above, in Patent Document 4, in a quartz crucible having a two-layer structure composed of a natural quartz glass outer layer and a synthetic quartz glass inner layer, the synthetic quartz glass inner layer has natural quartz. There has been proposed a quartz crucible containing alkali metal ions of Na, K and Li diffused or moved from the outer glass layer. However, the proposed quartz crucible is intended to promote crystallization of the inner surface of the crucible by containing alkali metal ions, but there is a problem that the alkali metal is taken into the crystal and deteriorates the quality. is there.
さらに、特許文献5には、シリコン溶融液と坩堝に電場を印加することで、石英坩堝の内壁の結晶劣化を防止し、さらに劣化した内壁を修復できるとする単結晶の製造方法が提案されている。しかし、この提案の方法においても、長時間の引上げにあっては、石英坩堝の内壁劣化を完全に防止することはできないという問題がある。
Furthermore,
本発明は、従来の石英坩堝を用いた引上げ方法の問題点に鑑みてなされたものであり、シリコン単結晶引上げ過程において、またはシリコン原料を溶融後の引上げの前段階において、石英坩堝の内壁表面に適切な結晶化層を生成させ、内壁の表面状態を安定させることにより、単結晶育成時の有転位化を防止し、長時間に亘る単結晶引上げの操業に際しても、単結晶歩留まりと生産性を向上させることができるシリコン単結晶の引上げ方法を提供することを目的としている。 The present invention has been made in view of the problems of a conventional pulling method using a quartz crucible, and in the process of pulling a silicon single crystal or in the stage before pulling after melting a silicon raw material, the inner wall surface of the quartz crucible By generating a suitable crystallized layer and stabilizing the surface state of the inner wall, dislocations are prevented during single crystal growth, and single crystal yield and productivity can be achieved even during long-term single crystal pulling operations. An object of the present invention is to provide a silicon single crystal pulling method capable of improving the above.
本発明者らは、前記の課題を解決するため、詳細な検討を行った結果、CZ法により、石英坩堝内でシリコン原料を溶融し、この溶融液から単結晶を引上げて成長させるに際し、坩堝内のシリコン原料に適正な量の炭酸バリウム(BaCO3)粉末を添加することにより、単結晶育成時の有転位化を防止し、長時間に亘る単結晶引上げの操業に際しても、単結晶歩留まりと生産性を向上させ得ることが判明した。 As a result of detailed studies to solve the above-mentioned problems, the present inventors have melted a silicon raw material in a quartz crucible by the CZ method, and when pulling a single crystal from this melt to grow it, By adding an appropriate amount of barium carbonate (BaCO 3 ) powder to the silicon raw material, dislocations are prevented during single crystal growth, and even during the operation of pulling a single crystal over a long period of time, It has been found that productivity can be improved.
これは、前述したように、石英坩堝が1500℃以上の高温の溶融液を保持しながら長時間に亘って使用されると、シリコン溶融液と接触した石英坩堝の内壁表面には、クリストバライトが現れ、次第に成長し、その一部が内壁表面から剥離してシリコン単結晶の成長界面に侵入し、シリコン単結晶の成長を阻害するが、坩堝内のシリコン原料にBaCO3粉末を添加することにより、石英坩堝の内壁の全面に適切な(すなわち、均一で剥離しにくい)結晶化層を効率よく生成させ、内壁の表面状態を安定させ得ることによるものと考えられる。 As described above, when the quartz crucible is used for a long time while holding a high-temperature melt of 1500 ° C. or more, cristobalite appears on the inner wall surface of the quartz crucible in contact with the silicon melt. Then, it gradually grows, part of it peels off from the inner wall surface and penetrates into the growth interface of the silicon single crystal to inhibit the growth of the silicon single crystal, but by adding BaCO 3 powder to the silicon raw material in the crucible, This is considered to be because an appropriate (that is, uniform and difficult to peel off) crystallized layer is efficiently generated on the entire inner wall of the quartz crucible and the surface state of the inner wall can be stabilized.
また、石英坩堝の内壁表面の結晶化のしやすさは、石英坩堝の内壁が合成石英である場合と天然石英である場合で異なり、前者の方が結晶化しやすく、坩堝の内壁が合成石英層の場合は、坩堝内のシリコン原料に、質量比で0.5〜35ppmのBaCO3粉末を添加し、天然石英層の場合は1〜70ppm添加するのが効果的であることを知見した。添加するBaCO3粉末の純度は高い方が望ましい。 The ease of crystallization of the inner wall surface of the quartz crucible differs depending on whether the inner wall of the quartz crucible is synthetic quartz or natural quartz. The former is easier to crystallize, and the inner wall of the crucible is a synthetic quartz layer. In this case, it was found that it is effective to add 0.5 to 35 ppm of BaCO 3 powder in a mass ratio to the silicon raw material in the crucible, and 1 to 70 ppm in the case of the natural quartz layer. The purity of the BaCO 3 powder to be added is desirably higher.
さらに、BaCO3粉末の添加方法についても検討を重ね、BaCO3の熱分解により生成するCO2のシリコン単結晶中へのカーボン源としての取り込みを防止するための効果的な方法を見いだした。 Furthermore, studies were made on the method of adding BaCO 3 powder, and an effective method for preventing the incorporation of CO 2 produced by thermal decomposition of BaCO 3 into the silicon single crystal as a carbon source was found.
本発明はこのような知見に基づきなされたもので、その要旨は、下記のシリコン単結晶の引上げ方法にある。 The present invention has been made based on such knowledge, and the gist thereof is the following method for pulling a silicon single crystal.
すなわち、CZ法により、石英坩堝内で結晶用シリコン原料を溶融しこの溶融液から単結晶を引上げて成長させる方法において、前記石英坩堝内のシリコン原料に、BaCO3粉末を、シリコン原料に対する質量比で、当該石英坩堝の内壁が合成石英層である場合には0.5〜35ppm添加し、天然石英層である場合には1〜70ppm添加するシリコン単結晶の引上げ方法であって、前記石英坩堝内のシリコン原料へのBaCO 3 粉末の添加を、当該シリコン原料の最表面で、且つ石英坩堝の内壁表面から中心軸方向へ20〜100mm離れた石英坩堝壁近傍に、石英坩堝の周方向に均等に振りまくことにより行うシリコン単結晶の引上げ方法である。
That is, in the method of melting a silicon raw material for crystallization in a quartz crucible by the CZ method and pulling up a single crystal from the melt, the BaCO 3 powder is added to the silicon raw material in the quartz crucible in a mass ratio to the silicon raw material. In the method for pulling a silicon single crystal, 0.5 to 35 ppm is added when the inner wall of the quartz crucible is a synthetic quartz layer, and 1 to 70 ppm is added when the inner wall is a natural quartz layer. The addition of BaCO 3 powder to the silicon raw material in the inside is performed in the circumferential direction of the quartz crucible at the outermost surface of the silicon raw material and in the vicinity of the quartz crucible wall 20 to 100 mm away from the inner wall surface of the quartz crucible in the central axis direction. This is a method for pulling a silicon single crystal that is performed by swaying it .
ここでいう「合成石英層」とは、天然の石英(水晶)粉末を原料とする通常の石英坩堝の内壁(つまり、坩堝の側壁および底の部分の内表面側)に形成させた合成石英の層(通常は厚さ5mm以下)である。なお、このような合成石英層を備える石英坩堝を合成石英坩堝と称している。また、「天然石英層」とは、前記天然の石英粉末を原料とする通常の天然石英坩堝の内壁を指す。合成石英層に対応させて、ここでは天然石英層という。 The term “synthetic quartz layer” as used herein refers to synthetic quartz formed on the inner wall of a normal quartz crucible (that is, the inner surface side of the crucible side wall and bottom) made of natural quartz (quartz) powder. Layer (usually 5 mm or less in thickness). A quartz crucible provided with such a synthetic quartz layer is referred to as a synthetic quartz crucible. The “natural quartz layer” refers to the inner wall of a normal natural quartz crucible made from the natural quartz powder. Here, it is referred to as a natural quartz layer, corresponding to the synthetic quartz layer.
前記BaCO3粉末の純度が99%以上であれば、得られるシリコン単結晶のライフタイム低下の懸念がなく、望ましい。 If the purity of the BaCO 3 powder is 99% or more, there is no concern about the lifetime reduction of the resulting silicon single crystal, which is desirable.
また、前記石英坩堝内のシリコン原料へのBaCO3粉末の添加を、当該シリコン原料の最表面の石英坩堝壁近傍で、石英坩堝の周方向に均等に振りまくことにより、BaCO3の熱分解で生成し、カーボン源としてシリコン単結晶中に取り込まれるおそれのあるCO2を効果的に排気できる。
Further, the addition of BaCO 3 powder into a silicon material in the quartz crucible, a quartz crucible wall near the outermost surface of the silicon material, Ri by the evenly sprinkle it in the circumferential direction of the quartz crucible, the thermal decomposition of BaCO 3 in generated, Ru can be effectively evacuate the CO 2 that could be incorporated into a silicon single crystal as the carbon source.
本発明のシリコン単結晶の引上げ方法によれば、シリコン単結晶引上げ過程において、またはシリコン原料を溶融後の引上げの前段階において、石英坩堝の内壁表面を効率よくほぼ均一に失透させることができ、その内壁の表面状態を安定させて、坩堝表面からの結晶片の剥離を防止し、単結晶有転位化を有効に抑制することができる。これにより、結晶品質を劣化させることなく、単結晶歩留まりと生産性を向上させることができる。 According to the pulling method of the silicon single crystal of the present invention, the inner wall surface of the quartz crucible can be devitrified efficiently and substantially uniformly in the pulling process of the silicon single crystal or in the stage before pulling after melting the silicon raw material. The surface state of the inner wall can be stabilized, the crystal pieces can be prevented from peeling from the crucible surface, and the single crystal dislocation can be effectively suppressed. Thereby, the yield and productivity of single crystals can be improved without deteriorating crystal quality.
本発明のシリコン単結晶の引上げ方法は、CZ法により、石英坩堝内のシリコン溶融液から単結晶を引上げて成長させるに際し、石英坩堝内のシリコン原料に、BaCO3粉末を、坩堝の内壁が合成石英層である場合には、シリコン原料に対する質量比で0.5〜35ppm添加し(以下、BaCO3粉末の添加量(ppm)は、シリコン原料に対する質量比を意味する)、天然石英層である場合には1〜70ppm添加することを特徴としている。 The silicon single crystal pulling method according to the present invention is based on the CZ method. When a single crystal is pulled from a silicon melt in a quartz crucible and grown, BaCO 3 powder is synthesized into the silicon raw material in the quartz crucible and the inner wall of the crucible is synthesized. In the case of the quartz layer, 0.5 to 35 ppm is added in a mass ratio with respect to the silicon raw material (hereinafter, the added amount (ppm) of BaCO 3 powder means the mass ratio with respect to the silicon raw material), and the natural quartz layer. In some cases, 1 to 70 ppm is added.
石英坩堝内のシリコン原料にBaCO3粉末を添加するのは、シリコン溶融液中にバリウムを存在させ、石英坩堝の内壁表面で結晶化の核として作用させるためである。これにより、石英坩堝の内壁全面に均一で剥離しにくい結晶化層を効率よく生成させることができる。 The reason why the BaCO 3 powder is added to the silicon raw material in the quartz crucible is to allow barium to exist in the silicon melt and to act as a crystallization nucleus on the inner wall surface of the quartz crucible. As a result, a uniform and difficult-to-peel crystallization layer can be efficiently generated on the entire inner wall of the quartz crucible.
BaCO3粉末添加量の適正範囲は、坩堝の内壁に合成石英層が形成された合成石英坩堝を用いる場合と坩堝の内壁が天然石英層である通常の石英坩堝(天然石英坩堝)を用いる場合とで異なる。前者の方が結晶化しやすいため、BaCO3粉末添加量の適正範囲は、坩堝の内壁が合成石英の場合の方が低くなっている。 The appropriate range of the BaCO 3 powder addition amount is when using a synthetic quartz crucible in which a synthetic quartz layer is formed on the inner wall of the crucible and when using a normal quartz crucible (natural quartz crucible) in which the inner wall of the crucible is a natural quartz layer. It is different. Since the former is easier to crystallize, the appropriate range of the BaCO 3 powder addition amount is lower when the inner wall of the crucible is made of synthetic quartz.
すなわち、坩堝の内壁表面に適正な(すなわち、均一で剥離しにくい)結晶化層を得るために、石英坩堝の内壁が合成石英層の場合は、BaCO3粉末を0.5ppm以上添加することが必要であるのに対し、坩堝の内壁が天然石英層の場合は、最低でも1ppmの添加が必要であり、前記結晶化層を十分に形成するためには、10ppm以上添加するのが望ましい。また、結晶化が進み過ぎ、結晶化層が剥離し易くなるのを避けるため、坩堝の内壁が合成石英層の場合は35ppmをBaCO3粉末の添加量の上限とするのに対し、天然石英層の場合は70ppmを上限とする。 That is, in order to obtain an appropriate (that is, uniform and difficult to peel off) crystallized layer on the inner wall surface of the crucible, when the inner wall of the quartz crucible is a synthetic quartz layer, 0.5 ppm or more of BaCO 3 powder may be added. In contrast, when the inner wall of the crucible is a natural quartz layer, it is necessary to add at least 1 ppm. In order to sufficiently form the crystallized layer, it is desirable to add 10 ppm or more. Further, in order to avoid the crystallization from proceeding excessively and the crystallization layer from being easily peeled off, when the inner wall of the crucible is a synthetic quartz layer, 35 ppm is the upper limit of the amount of BaCO 3 powder added, whereas the natural quartz layer In this case, the upper limit is 70 ppm.
BaCO3粉末の添加は、石英坩堝内のシリコン原料に対して行う。すなわち、石英坩堝に投入した溶融する前のシリコン原料に添加してもよいし、溶融後のシリコン原料に添加してもよい。溶融後に添加する場合は、溶融直後に添加するのが望ましい。これによって、坩堝の内壁表面に早期に均一で剥離しにくい結晶化層を形成させ、シリコン単結晶引上げ過程においてはもちろん、シリコン原料を溶融後の引上げを行う前の段階においても、坩堝内壁の表面状態を安定させることができる。 The addition of BaCO 3 powder is performed on the silicon raw material in the quartz crucible. That is, it may be added to the silicon raw material that has been put into the quartz crucible before melting or may be added to the silicon raw material after melting. When adding after melting, it is desirable to add immediately after melting. As a result, a uniform and difficult-to-peel crystallization layer is formed on the inner wall surface of the crucible at an early stage, and the surface of the inner wall of the crucible can be used not only in the silicon single crystal pulling process but also before the silicon raw material is pulled up after melting. The state can be stabilized.
また、BaCO3粉末を坩堝内のシリコン原料のどの部分に添加するかについても特に限定はしない。しかし、シリコン単結晶中のカーボン濃度等、単結晶の品質が重視される場合には、後述するように、シリコン原料の表面の、しかも石英坩堝壁の近傍において、坩堝の周方向に分散させて添加するのが望ましい。 Further, there is no particular limitation as to which part of the silicon raw material in the crucible the BaCO 3 powder is added. However, when the quality of the single crystal, such as the carbon concentration in the silicon single crystal, is important, as described later, it is dispersed in the circumferential direction of the crucible on the surface of the silicon raw material and in the vicinity of the quartz crucible wall. It is desirable to add.
BaCO3を粉末状態で添加するのは、シリコン溶融液への溶解(熱分解)、分散を迅速に行わせるためである。その粒径に特に限定はないが、取り扱いに支障を来さない範囲で、微粒のBaCO3を使用するのが望ましい。 The reason why BaCO 3 is added in a powder state is to allow rapid dissolution (thermal decomposition) and dispersion in the silicon melt. The particle size is not particularly limited, but it is desirable to use fine BaCO 3 as long as it does not interfere with handling.
また、本発明のシリコン単結晶の引上げ方法においては、シリコン原料に添加する前記BaCO3粉末の純度を99%以上とするのが望ましい。シリコン単結晶のライフタイムの低下を危惧せずに使用できるからである。 In the method for pulling a silicon single crystal of the present invention, it is desirable that the purity of the BaCO 3 powder added to the silicon raw material is 99% or more. This is because the silicon single crystal can be used without fear of a decrease in the lifetime.
坩堝内へ添加されたBaCO3の挙動を考えた場合、BaCO3はシリコン溶融液中1300℃でBaOとCO2に熱分解され、生成したCO2の大部分はそのままカーボン源としてシリコン単結晶中に取り込まれる。単結晶中に存在する過度のカーボンは、シリコンデバイス製造工程での熱処理により酸素析出物を生じてデバイスの品質を低下させる場合がある。そのため、デバイスによっては、シリコン単結晶中のカーボン濃度を規制している。 Considering the behavior of BaCO 3 added into the crucible, BaCO 3 is thermally decomposed into BaO and CO 2 at 1300 ° C. in a silicon melt, and most of the generated CO 2 is used as it is in a silicon single crystal as a carbon source. Is taken in. Excessive carbon present in the single crystal may cause oxygen precipitates due to heat treatment in the silicon device manufacturing process, thereby deteriorating the quality of the device. Therefore, depending on the device, the carbon concentration in the silicon single crystal is regulated.
このようないわば高品質デバイス向けのウエハー用シリコン単結晶を製造するに際して、BaCO3粉末を、単純に、シリコン原料の内部に添加した場合には、後述する実施例1で説明するように、シリコン単結晶のカーボン濃度は上昇する。 When manufacturing a silicon single crystal for a wafer for such a high quality device, when the BaCO 3 powder is simply added to the inside of the silicon raw material, as described in Example 1 described later, silicon The carbon concentration of the single crystal increases.
例えば、デバイスのカーボン濃度の上限が3×1016atoms/cm3と規定されている場合、引上げるシリコン単結晶の全域でこの規定を満たすためには、シリコン溶融液中のカーボン濃度を3×1016atoms/cm3程度以下にしなければならない。炉内のカーボン部材から混入するカーボン濃度を1×1016atoms/cm3とすると、残りの2×1016atoms/cm3がBaCO3として許容されるカーボン濃度となる。これはBaCO3粉末の添加量に換算すると約2.9ppmとなり、BaCO3粉末の坩堝内への添加量はこの値以下に制限される。そのため、特に合成石英坩堝に比べて内壁表面が結晶化しにくい天然石英坩堝を用いた場合は、十分な結晶化層が得られない可能性がある。デバイスのカーボン濃度の規定がより厳しい場合、許容されるBaCO3粉末の添加量はさらに制限される。 For example, when the upper limit of the carbon concentration of the device is defined as 3 × 10 16 atoms / cm 3 , the carbon concentration in the silicon melt is 3 × in order to satisfy this regulation throughout the silicon single crystal to be pulled up. It must be about 10 16 atoms / cm 3 or less. If the carbon concentration mixed from the carbon member in the furnace is 1 × 10 16 atoms / cm 3 , the remaining 2 × 10 16 atoms / cm 3 is the carbon concentration allowed as BaCO 3 . This is about 2.9 ppm in terms of the amount of BaCO 3 powder added, and the amount of BaCO 3 powder added to the crucible is limited to this value or less. Therefore, there is a possibility that a sufficient crystallized layer cannot be obtained particularly when a natural quartz crucible whose inner wall surface is difficult to crystallize compared to a synthetic quartz crucible is used. If the carbon concentration of the device is more stringent, the allowable amount of BaCO 3 powder added is further limited.
したがって、BaOに換えてBaCO3を使用できる可能性があるとしても、その添加量、添加方法等、添加したBaCO3の作用効果を十分に発揮させるための条件については詳細な検討が必要である。 Therefore, even if there is a possibility that BaCO 3 can be used instead of BaO, it is necessary to examine in detail the conditions for fully exerting the action and effect of the added BaCO 3 , such as the amount and method of addition. .
本発明の単結晶引上げ方法において、BaCO3粉末の添加量については前述のとおりであり、使用する石英坩堝の内壁が合成石英層であるか、天然石英層であるかによってその適正範囲が規定される。 In the single crystal pulling method of the present invention, the amount of BaCO 3 powder added is as described above, and the appropriate range is defined by whether the inner wall of the quartz crucible used is a synthetic quartz layer or a natural quartz layer. The
一方、BaCO3粉末の添加方法については、石英坩堝内のシリコン原料へのBaCO3粉末の添加を、当該シリコン原料の最表面の石英坩堝壁近傍で、石英坩堝の周方向に均等に振りまくことにより行う、前記の実施形態を採用するのが望ましい。 On the other hand, the method of adding the BaCO 3 powder, the addition of BaCO 3 powder into a silicon material in the quartz crucible, a quartz crucible wall near the outermost surface of the silicon raw material, by sprinkle evenly in the circumferential direction of the quartz crucible It is desirable to adopt the embodiment described above.
図1は、この実施形態、すなわち本発明のシリコン単結晶の引上げ方法を実施する際に行う石英坩堝内へのBaCO3粉末の添加方式の説明図である。同図に示すように、BaCO3粉末の添加は、この粉末を、石英坩堝1a内に保持された溶融液3の最表面のしかも石英坩堝1a壁の近傍で、坩堝1aの周方向に均等に振りまくことにより行う。図示した例は、シリコン原料が溶融した状態の場合で、図中に斜線を施した部分が添加したBaCO3粉末8を表している。シリコン原料が溶融前であっても、前記と同じ要領で均等に添加すればよい。
FIG. 1 is an explanatory view of a method of adding BaCO 3 powder into a quartz crucible when this embodiment, that is, the method for pulling a silicon single crystal of the present invention is carried out. As shown in the figure, the addition of BaCO 3 powder is performed evenly in the circumferential direction of the crucible 1a on the outermost surface of the
ここで言う「坩堝の周方向に均等に振りまく」とは、BaCO3粉末を坩堝の周方向に(つまり、全周にわたって)見掛け上添加量が等しくなるように分散させて撒き散らすことをいう。必ずしも厳密に均等になるように分散させる必要はない。 Here, “spread evenly in the circumferential direction of the crucible” means that the BaCO 3 powder is dispersed in the circumferential direction of the crucible (that is, over the entire circumference) so that the added amount is seemingly equal. It is not always necessary to disperse them to be strictly equal.
また、前記「石英坩堝壁の近傍」とは、坩堝の内壁表面から若干離れた場所である。坩堝の大きさにもよるが、坩堝の内壁表面から中心軸方向へ20〜100mm程度離れた場所が望ましい。BaCO3粉末を直接石英坩堝内壁に接するように添加すると、その部位のみが激しく失透し結晶化が過度に進行して、場合によってはそれが坩堝の生地層から剥離するので、望ましくない。 The “near the quartz crucible wall” is a place slightly away from the inner wall surface of the crucible. Although it depends on the size of the crucible, a place that is about 20 to 100 mm away from the inner wall surface of the crucible in the central axis direction is desirable. If BaCO 3 powder is added so as to be in direct contact with the inner wall of the quartz crucible, only that portion is vigorously devitrified and crystallization progresses excessively. In some cases, it is peeled off from the dough layer of the crucible, which is not desirable.
このように、BaCO3粉末をシリコン原料の最表面に添加することによって、CO2を溶融液内に留めることなく排気し、シリコン単結晶にCO2がカーボン源として取り込まれるのを抑制することができる。さらに、石英坩堝壁の近傍に添加することにより、石英との適度な反応を促し、石英坩堝の内壁表面で結晶化の核として作用させることにより結晶化層の形成を容易にすることが可能となる。 Thus, by adding BaCO 3 powder on the top surface of the silicon material, evacuated without fastening the CO 2 into the melt inside, that CO 2 can be inhibited from being taken as a carbon source to the silicon single crystal it can. Furthermore, by adding it in the vicinity of the quartz crucible wall, it is possible to promote an appropriate reaction with quartz, and to facilitate the formation of a crystallization layer by acting as a crystallization nucleus on the inner wall surface of the quartz crucible. Become.
すなわち、このようなBaCO3粉末の坩堝内への添加方法を採ることにより、石英坩堝の内壁表面のほぼ均一な結晶化(失透)とシリコン単結晶におけるカーボン濃度上昇の抑制とを両立させることができる。 That is, by adopting such a method of adding BaCO 3 powder into the crucible, it is possible to achieve both substantially uniform crystallization (devitrification) on the inner wall surface of the quartz crucible and suppression of an increase in carbon concentration in the silicon single crystal. Can do.
本発明のシリコン単結晶引上げ方法の効果を確認するため、前記図2に示す引上げ装置を用いて、種々の条件でシリコン単結晶の引上げを行い、単結晶のカーボン濃度、坩堝内壁の状態、単結晶歩留まり等を調査した。 In order to confirm the effect of the silicon single crystal pulling method of the present invention, the silicon single crystal is pulled under various conditions using the pulling apparatus shown in FIG. 2, and the carbon concentration of the single crystal, the state of the inner wall of the crucible, The crystal yield was investigated.
(実施例1)
内径600mmの石英坩堝1a(天然石英坩堝を使用)にシリコン原料150kgを充填し、BaCO3粉末(純度:99.9%)の添加量を変更して、溶融液3を形成した後、直径200mmの単結晶4を1600mm引上げた。その際、BaCO3粉末を単純に坩堝内の原料内部に添加した場合と、本発明の単結晶引上げ方法で用いる前記図1に示した添加方式で添加した場合について、単結晶のカーボン濃度を比較した。なお、BaCO3粉末の添加は、いずれも溶融後のシリコン原料に対して行った。また、図1に示した添加方式では、「石英坩堝壁の近傍」を坩堝の内壁表面から約30mm離れた場所とし、その位置でBaCO3粉末を坩堝の周方向に振りまいた。
(Example 1)
A quartz crucible 1a having an inner diameter of 600 mm (using a natural quartz crucible) is filled with 150 kg of silicon raw material, and the addition amount of BaCO 3 powder (purity: 99.9%) is changed to form a
図3にその結果を示す。同図において、横軸はBaCO3粉末の添加量から換算したBa濃度(atoms/cm3)で、添加したカーボン(C)濃度(atoms/cm3)に等しい。縦軸は引上げた単結晶のカーボン濃度(引上げ率70%の位置でのカーボン濃度)である。また、図中の●印はBaCO3粉末を坩堝内のシリコン原料の内部に添加する方式(以下、「原料内部添加方式」という)を採った場合、▲印は本発明の単結晶引上げ方法で用いる前記図1に示した添加方式(以下、「本発明方式」という)で添加した場合である。 The result is shown in FIG. In the figure, the horizontal axis represents the Ba concentration (atoms / cm 3 ) converted from the added amount of BaCO 3 powder, which is equal to the added carbon (C) concentration (atoms / cm 3 ). The vertical axis represents the carbon concentration of the pulled single crystal (carbon concentration at the position where the pulling rate is 70%). Also, the ● mark in the figure shows the method of adding BaCO 3 powder into the silicon raw material in the crucible (hereinafter referred to as “raw material internal addition method”), and the ▲ mark indicates the single crystal pulling method of the present invention. This is a case where the addition method shown in FIG. 1 is used (hereinafter referred to as “the present invention method”).
図3に示すように、原料内部添加方式、本発明方式のいずれにおいてもBaCO3粉末の添加量の増大に伴いシリコン単結晶のカーボン濃度は上昇するが、本発明方式で添加した場合は、同じBaCO3粉末添加量であっても、原料内部添加方式の場合に比べてシリコン単結晶のカーボン濃度は低かった。なお、図3に示したBa濃度範囲では、引上げたシリコン結晶中からBaは検出されず、単結晶のライフタイムにも差はなかった。 As shown in FIG. 3, the carbon concentration of the silicon single crystal increases with an increase in the amount of BaCO 3 powder added in both the raw material internal addition method and the present invention method. Even with the amount of BaCO 3 powder added, the carbon concentration of the silicon single crystal was lower than in the case of the raw material internal addition method. In the Ba concentration range shown in FIG. 3, Ba was not detected from the pulled silicon crystal, and there was no difference in the lifetime of the single crystal.
図4および図5は前記単結晶の引上げを行った後の坩堝内壁の状態を模式的に例示する図である。図4はBaCO3粉末2.2gを原料内部添加方式で添加した場合の坩堝内壁の状態を示し、図5は同じくBaCO3粉末2.2gを本発明方式で添加した場合の坩堝内壁の状態を示す。 4 and 5 are diagrams schematically illustrating the state of the inner wall of the crucible after the single crystal is pulled. 4 shows the state of the inner wall of the crucible when 2.2 g of BaCO 3 powder is added by the raw material internal addition method, and FIG. 5 shows the state of the inner wall of the crucible when 2.2 g of BaCO 3 powder is added by the present invention method. Show.
図4に示すように、BaCO3粉末を原料内部に添加した場合には、失透域9と結晶化域10およびブラウニッシュリング発生域11が混在しているが、本発明方式で添加した場合は、図5に示すように、坩堝上部が失透域9、坩堝下部は全面が結晶化域10となっており、ブラウニッシュリングは発生しなかった。
As shown in FIG. 4, when BaCO 3 powder is added to the inside of the raw material, the
前記の条件で(すなわち、BaCO3粉末の添加量を2.2gとして)、原料内部添加方式または本発明方式によりBaCO3粉末をシリコン原料に添加し、各10バッチのシリコン単結晶の引上げを行った。その結果、原料内部添加方式を用いた場合(この時、坩堝の内壁は図4に例示した状態を呈する)は、10バッチ中2バッチが単結晶引上げの途中で結晶中に有転位化を生じた。しかし、本発明方式を用いた場合(坩堝の内壁は図5に例示した状態を呈する)は、10バッチ全てが単結晶の全域で無転位であった。 Under the above conditions (that is, the amount of BaCO 3 powder added is 2.2 g), BaCO 3 powder is added to the silicon raw material by the raw material internal addition method or the present invention method, and each 10 batches of silicon single crystal is pulled up. It was. As a result, when the raw material internal addition method is used (at this time, the inner wall of the crucible exhibits the state illustrated in FIG. 4), 2 batches out of 10 batches generate dislocations in the crystal during the pulling of the single crystal. It was. However, when the method of the present invention was used (the inner wall of the crucible exhibited the state illustrated in FIG. 5), all 10 batches were dislocation-free throughout the single crystal.
(実施例2)
内径600mmの石英坩堝1a(天然石英坩堝を使用)にシリコン原料150kgを充填し、溶融液3とした後、純度99.9%のBaCO3粉末2.2g(シリコン原料に対する質量比で14.7ppm)を本発明方式で添加し、直径200mmの単結晶4を引上げて、BaCO3粉末を添加しなかった場合と、単結晶歩留まりを比較した。
(Example 2)
A quartz crucible 1a having an inner diameter of 600 mm (using a natural quartz crucible) is filled with 150 kg of silicon raw material to obtain a
このシリコン単結晶の引上げでは、まず、1000mmの単結晶を成長させ、この単結晶を引上げ、取り出した後に、これと同じ質量のシリコン原料を坩堝内に投入して再び1000mmの単結晶を成長させた。さらにこの単結晶を引上げ、取り出した後、これと同質量のシリコン原料を投入し、1600mmのシリコン単結晶を引上げた。 In this pulling of the silicon single crystal, first, a 1000 mm single crystal is grown, and after pulling up and taking out this single crystal, a silicon raw material having the same mass is put into the crucible to grow a single crystal of 1000 mm again. It was. Further, after pulling up and taking out this single crystal, a silicon raw material having the same mass as this was charged to pull up a 1600 mm silicon single crystal.
その結果、引上げた単結晶は3本とも全域にわたって無転位であり、引上げ所用時間が150時間に達したにもかかわらず、坩堝の変形も全く起こらなかった。一方、BaCO3粉末を添加しなかった場合は、引上げ3本目の単結晶に有転位化が生じ、また坩堝も直胴部が挫屈変形気味であった。 As a result, all three single crystals pulled up were dislocation-free over the entire region, and the crucible was not deformed at all even though the pulling time reached 150 hours. On the other hand, when no BaCO 3 powder was added, dislocation occurred in the pulled third single crystal, and the straight body of the crucible was slightly deformed.
この3本連続引上げを、本発明方式でBaCO3粉末を添加した場合、およびBaCO3粉末を添加しなかった場合(比較例)について各5バッチずつ実施して、単結晶歩留まりを比較した。単結晶歩留まりは、「(無転位シリコン単結晶の質量/用いたシリコン原料の質量)×100(%)」により求めた。 The three continuous pulling was carried out for each of the five batches when the BaCO 3 powder was added by the method of the present invention and when the BaCO 3 powder was not added (comparative example), and the single crystal yields were compared. The single crystal yield was obtained by “(mass of dislocation-free silicon single crystal / mass of silicon raw material used) × 100 (%)”.
その結果を図6に示す。この図から明らかなように、単結晶歩留まりは、本発明方式でBaCO3粉末を添加した場合、比較例に比べて大幅に向上した。 The result is shown in FIG. As is clear from this figure, the yield of the single crystal was greatly improved as compared with the comparative example when BaCO 3 powder was added according to the method of the present invention.
(実施例3)
内壁が合成石英層である合成石英坩堝を用い、BaCO3粉末の添加量を1g(シリコン原料に対する質量比で6.7ppm、なお、実施例1では2.2g添加)とした以外は実施例1と同じ条件で、すなわち、内径600mmの坩堝にシリコン原料150kgを充填し、溶融液とした後、本発明方式でBaCO3粉末を添加し、直径200mmで、1600mmの単結晶の引上げを10バッチ実施した。
(Example 3)
Example 1 except that a synthetic quartz crucible whose inner wall is a synthetic quartz layer was used, and the amount of BaCO 3 powder added was 1 g (mass ratio to the silicon raw material was 6.7 ppm, and 2.2 g was added in Example 1). Under the same conditions as above, that is, a crucible with an inner diameter of 600 mm is filled with 150 kg of silicon raw material to form a molten liquid, then BaCO 3 powder is added by the method of the present invention, and 10 batches of a single crystal having a diameter of 200 mm and 1600 mm are carried out did.
その結果、いずれの単結晶も全域にわたって無転位であった。坩堝の内壁が合成石英層の場合、天然石英層に比べて結晶化が早いので、BaCO3粉末の添加量が少なくても、実施例1の場合と同程度の結晶化効果が得られることが確認できた。 As a result, all single crystals were dislocation-free throughout. When the inner wall of the crucible is a synthetic quartz layer, crystallization is quicker than that of a natural quartz layer. Therefore, even if the addition amount of BaCO 3 powder is small, the same crystallization effect as in Example 1 can be obtained. It could be confirmed.
(実施例4)
内径800mmの石英坩堝(天然石英坩堝を使用)に、300kgのシリコン原料を充填し、直径300mmのシリコン単結晶を、実施例1の場合と同様の方法で、すなわち、坩堝内のシリコン原料を溶融液とした後、BaCO3粉末を添加し、1600mmの単結晶を3本引上げた。この場合、BaCO3粉末を5g(シリコン原料に対する質量比で19ppm)用いたが、坩堝が深いこともあり、3.5gを本発明方式で添加し、残り1.5gをシリコン原料内部のやや下方に添加した。
Example 4
A quartz crucible with an inner diameter of 800 mm (using a natural quartz crucible) is filled with 300 kg of silicon raw material, and a silicon single crystal with a diameter of 300 mm is melted in the same manner as in Example 1, that is, the silicon raw material in the crucible is melted. After preparing the liquid, BaCO 3 powder was added to pull up three single crystals of 1600 mm. In this case, 5 g of BaCO 3 powder (19 ppm by mass ratio with respect to the silicon raw material) was used, but the crucible was deep, and 3.5 g was added by the method of the present invention, and the remaining 1.5 g was slightly below the silicon raw material. Added to.
その結果、いずれの単結晶も全域で無転位であり、坩堝の内壁は全面が均一な失透状態を呈した。 As a result, all single crystals were dislocation-free throughout, and the entire inner wall of the crucible exhibited a uniform devitrification state.
本発明のシリコン単結晶の引上げ方法は、CZ法により、石英坩堝内のシリコン溶融液から単結晶を引上げて成長させるに際し、石英坩堝内のシリコン原料に、坩堝内壁の構成に応じて所定量のBaCO3粉末を添加する方法で、石英坩堝の内壁表面を効率よくほぼ均一に失透させることができる。その結果、内壁の表面状態を安定させて、長時間に亘るシリコン単結晶の引上げ操業においても、坩堝表面からの結晶片の剥離や坩堝の変形を防止するとともに、単結晶の有転位化を抑制して、単結晶歩留まりおよび生産性を向上させることが可能となる。 The silicon single crystal pulling method of the present invention is a method of pulling a single crystal from a silicon melt in a quartz crucible and growing it by the CZ method. The silicon raw material in the quartz crucible has a predetermined amount according to the structure of the inner wall of the crucible. By adding BaCO 3 powder, the inner wall surface of the quartz crucible can be efficiently and substantially devitrified. As a result, the surface state of the inner wall is stabilized, and even during the operation of pulling up a silicon single crystal over a long period of time, it prevents the crystal pieces from peeling from the crucible surface and the deformation of the crucible, and suppresses dislocation of the single crystal. Thus, the single crystal yield and productivity can be improved.
したがって、本発明のシリコン単結晶の引上げ方法は、シリコン単結晶の製造に好適に利用することができる。 Therefore, the silicon single crystal pulling method of the present invention can be suitably used for the production of a silicon single crystal.
1:坩堝
1a:石英坩堝
1b:黒鉛坩堝
2:ヒーター
3:溶融液
4: 単結晶
5:引上げ軸
6:支持軸
7:種結晶
8:BaCO3粉末
9:失透域
10:結晶化域
11:ブラウンリング発生域
1: crucible 1a:
Claims (2)
前記石英坩堝内のシリコン原料に、BaCO3粉末を、シリコン原料に対する質量比で、当該石英坩堝の内壁が合成石英層である場合には0.5〜35ppm添加し、天然石英層である場合には1〜70ppm添加するシリコン単結晶の引上げ方法であって、
前記石英坩堝内のシリコン原料へのBaCO 3 粉末の添加を、当該シリコン原料の最表面で、且つ石英坩堝の内壁表面から中心軸方向へ20〜100mm離れた石英坩堝壁近傍に、石英坩堝の周方向に均等に振りまくことにより行うことを特徴とするシリコン単結晶の引上げ方法。 In the method of melting a silicon raw material for crystal in a quartz crucible by the Czochralski method and pulling up a single crystal from this melt,
When BaCO 3 powder is added to the silicon raw material in the quartz crucible in a mass ratio with respect to the silicon raw material and the inner wall of the quartz crucible is a synthetic quartz layer, 0.5 to 35 ppm is added. Is a pulling method of a silicon single crystal to which 1 to 70 ppm is added ,
The addition of BaCO 3 powder to the silicon raw material in the quartz crucible is carried out on the outermost surface of the silicon raw material and in the vicinity of the quartz crucible wall 20 to 100 mm away from the inner wall surface of the quartz crucible in the central axis direction. A method for pulling a silicon single crystal, wherein the method is performed by swinging evenly in a direction .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006103000A JP4788445B2 (en) | 2006-04-04 | 2006-04-04 | Pulling method of silicon single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006103000A JP4788445B2 (en) | 2006-04-04 | 2006-04-04 | Pulling method of silicon single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007277026A JP2007277026A (en) | 2007-10-25 |
JP4788445B2 true JP4788445B2 (en) | 2011-10-05 |
Family
ID=38678881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006103000A Active JP4788445B2 (en) | 2006-04-04 | 2006-04-04 | Pulling method of silicon single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4788445B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4807130B2 (en) * | 2006-04-04 | 2011-11-02 | 株式会社Sumco | Pulling method of silicon single crystal |
JP5136253B2 (en) * | 2008-07-11 | 2013-02-06 | 株式会社Sumco | Method for growing silicon single crystal |
JP6743753B2 (en) * | 2017-04-27 | 2020-08-19 | 株式会社Sumco | Silicon single crystal pulling method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4237280B2 (en) * | 1997-07-02 | 2009-03-11 | 信越半導体株式会社 | Method for producing silicon single crystal |
US6319313B1 (en) * | 1999-03-15 | 2001-11-20 | Memc Electronic Materials, Inc. | Barium doping of molten silicon for use in crystal growing process |
JP2000335999A (en) * | 1999-05-31 | 2000-12-05 | Murata Mfg Co Ltd | Production of barium titanate single crystal |
JP4288646B2 (en) * | 2001-10-16 | 2009-07-01 | ジャパンスーパークォーツ株式会社 | Surface modification method and surface modified crucible of quartz glass crucible |
JP4427775B2 (en) * | 2002-03-29 | 2010-03-10 | ジャパンスーパークォーツ株式会社 | Surface-modified quartz glass crucible and its surface modification method |
-
2006
- 2006-04-04 JP JP2006103000A patent/JP4788445B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007277026A (en) | 2007-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4560216B2 (en) | Barium doping of molten silicon used in crystal growth processes | |
US7299658B2 (en) | Quartz glass crucible for the pulling up of silicon single crystal | |
JP2686460B2 (en) | Single crystal manufacturing method | |
JP2009114054A (en) | Method for producing semiconductor single crystal having improved oxygen concentration characteristics | |
JP2009091233A (en) | Method for growing silicon ingot | |
JP4788445B2 (en) | Pulling method of silicon single crystal | |
JP5007596B2 (en) | Single crystal growth method and single crystal pulling apparatus | |
JP5169455B2 (en) | Single crystal growth method and single crystal pulling apparatus | |
JP2011105537A (en) | Method for producing silicon single crystal | |
JP2007022864A (en) | Method for manufacturing silicon single crystal | |
JP2007022865A (en) | Method for manufacturing silicon single crystal | |
JP2009018984A (en) | Low oxygen concentration silicon single crystal and its manufacturing method | |
JP4788444B2 (en) | Method for producing silicon single crystal | |
JP4013324B2 (en) | Single crystal growth method | |
JP3085567B2 (en) | Polycrystalline recharge apparatus and recharge method | |
JP2013133243A (en) | Method for producing single crystal silicon | |
JP2016033093A (en) | Quartz glass crucible for lifting single crystal silicon, and method of manufacturing the same | |
JP2006036568A (en) | Method and apparatus for pulling silicon single crystal | |
JP7509528B2 (en) | Method for producing silicon single crystals | |
JP2020097512A (en) | Silica glass crucible | |
JP3885245B2 (en) | Single crystal pulling method | |
JP2004269335A (en) | Production method for single crystal | |
WO2021162046A1 (en) | Method for producing silicon single crystal | |
JP3945073B2 (en) | Single crystal manufacturing method | |
JP4807130B2 (en) | Pulling method of silicon single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090312 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110704 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4788445 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |