JPS59152285A - Preparation of single crystal - Google Patents

Preparation of single crystal

Info

Publication number
JPS59152285A
JPS59152285A JP2402483A JP2402483A JPS59152285A JP S59152285 A JPS59152285 A JP S59152285A JP 2402483 A JP2402483 A JP 2402483A JP 2402483 A JP2402483 A JP 2402483A JP S59152285 A JPS59152285 A JP S59152285A
Authority
JP
Japan
Prior art keywords
single crystal
thin film
crystal
polycrystalline material
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2402483A
Other languages
Japanese (ja)
Inventor
Takeshi Hirota
健 廣田
Harufumi Sakino
先納 治文
Eiichi Hirota
広田 栄一
Minoru Sugimura
杉村 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2402483A priority Critical patent/JPS59152285A/en
Publication of JPS59152285A publication Critical patent/JPS59152285A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing

Abstract

PURPOSE:To obtain a large amount of a uniform single crystal having a controlled crystal direction and low segregation of composition in high productivity, by using a single crystal of thin film as a seed crystal, forming the single crystal of thin film on the surface of polycrystal line material to be processed into a single crystal, heat-treating the resultant composite material. CONSTITUTION:A single crystal of thin film is formed on the surface of polycrystalline material to be processed into a single crystal, and the resultant composite material is heat-treated at a temperature not exceeding the melting point of the single crystal of thin film and that of the polycrystalline material. The single crystal of thin film on the surface of the polycrystalline material is used as a seed crystal, and the polycrystalline material is processed into a single crystal by a solid-phase reaction. The single crystal on the surface of the polycrystalline material, for example, is formed by irradiating it only in the vicinity of the surface layer of the polycrystalline material with laser, so that it is melted, precipitated in a solid phase and processed into a single crystal. A thin film-forming substance is partially supplied from the outside, reacted with the polycrystalline material in a proper atmosphere, and the single crystal of thin film is formed on the surface of the polycrystalline material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、単結晶の製造法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a method for producing a single crystal.

従来例の構成とその問題点 現在、無機化合物単結晶は、磁気記録用磁気ヘッド材料
のフェライト単結晶9尭振素子用の水晶単結晶、レーザ
用のYAG単結晶、センサや表面波デバイス用のLiN
bO2やL t T a O3単結晶などをはじめとし
て多数使われている。従来の単結晶製造法には、チョク
ラルスキー法やブリッジマン21” 法、ベルヌーイ法、フラックス法、水熱合成法、高温反
応法など各種の方法があり、また薄膜用結晶の作製法に
はCVD(化学反応法)や液相エピタキシー法、スパッ
ター法などがある。
Structures of conventional examples and their problems Currently, inorganic compound single crystals are used in ferrite single crystals for magnetic head materials for magnetic recording, quartz single crystals for 9-wave elements, YAG single crystals for lasers, and YAG single crystals for sensors and surface wave devices. LiN
Many materials are used, including bO2 and L t Ta O3 single crystals. Conventional single crystal manufacturing methods include various methods such as the Czochralski method, Bridgman 21'' method, Bernoulli method, flux method, hydrothermal synthesis method, and high temperature reaction method. Examples include CVD (chemical reaction method), liquid phase epitaxy method, and sputtering method.

これら方法には一長一短があり、結晶方位の制御が困難
であったり、組成が不均一であったり、量産性が低かっ
たり、あるいは均質なインゴットが作製しにくかったり
している。
These methods have advantages and disadvantages, such as difficulty in controlling crystal orientation, non-uniform composition, low mass productivity, or difficulty in producing homogeneous ingots.

発明の目的 本発明は、上述のような従来の方法に比べて組成偏析が
少なく、均質で制御された結晶方位を有する単結晶を、
大量にかつ量産性よく製造することのできる方法を提供
しようとするものである。
Purpose of the Invention The present invention provides a method for producing a single crystal with less compositional segregation and a homogeneous and controlled crystal orientation compared to the conventional methods as described above.
The purpose is to provide a method that can be manufactured in large quantities with good mass productivity.

発明の構成 本発明は、薄膜単結晶を種子結晶として使用し、この薄
膜単結晶を単結晶化すべき多結晶体の表面に形成してか
ら熱処理することによって、結晶方位の制御を可能にす
るとともに、均質な単結晶を大量にかつ量産性よく作製
できるようにしたものである。そして、この方法によれ
ば任意の組成の3ベ−3 単結晶を作製することができる。
Structure of the Invention The present invention uses a thin film single crystal as a seed crystal, forms this thin film single crystal on the surface of a polycrystalline body to be single crystallized, and then heat-treats it, thereby making it possible to control the crystal orientation. , which enables homogeneous single crystals to be produced in large quantities with good mass productivity. According to this method, a 3ba-3 single crystal of any composition can be produced.

本発明の方法は、単結晶化させるべき出発材料としての
多結晶体の表面に好ましくは厚さが0.5朋以下の薄膜
小結晶を形成してから、この薄膜単結晶と多結晶体の融
点を超えない温度で熱処理し、多結晶体表面の薄膜小結
晶を種子結晶として、多結晶体を同相反応により単結晶
化させることを特徴とする。この方法では、出発材料に
用いる多結晶体として、加熱するとある特定の温度Tc
 より多結晶体の一部の結晶粒子が急激に粒成長を起す
ような多結晶体を用い、Tc以上で融点よりも低い温度
で熱処理してもよい。
In the method of the present invention, a thin film of small crystals preferably having a thickness of 0.5 mm or less is formed on the surface of a polycrystalline material as a starting material to be single-crystallized, and then the thin film single crystal and the polycrystalline material are separated from each other. It is characterized by heat treatment at a temperature that does not exceed the melting point, and by using a thin film of small crystals on the surface of the polycrystal as a seed crystal, the polycrystal is turned into a single crystal by an in-phase reaction. In this method, the polycrystalline material used as the starting material reaches a certain temperature Tc when heated.
A polycrystalline material in which some of the crystal grains of the polycrystalline material undergo rapid grain growth may be used, and heat treatment may be performed at a temperature higher than Tc and lower than the melting point.

発明者らは、単結晶と多結晶体を接合し、これを熱処理
することにより、固相反応により多結晶体を単結晶化す
る方法について検討した結果、バルクの単結晶体を多結
晶体に接合し、熱処理すると、希望する単結晶体が得ら
れることを見出した。
The inventors investigated a method for converting a bulk single crystal into a polycrystal by bonding a single crystal and a polycrystal and heat-treating the same to form a single crystal through a solid phase reaction. It has been found that the desired single crystal can be obtained by bonding and heat treatment.

本発明はこの方法をさらに改良して、多結晶体表面に、
薄膜の単結晶を形成すれば、それを種子結晶として同相
反応により多結晶体の単結晶化が生しることを見出した
。この多結晶体表面のR膜中結晶としては、たとえは多
結晶体の表面層近傍のみをレーザ光を照射して融解・同
相析出させて、単結晶化させたもの、または薄膜形成物
質の一部を外部から供給して多結晶体と適当な雰囲気下
で反応させることにより、多結晶体の表向に形成したも
の、さらには外部より多結晶体表面に薄膜形成物質を輸
送し、析出させて形成したものでよい。
The present invention further improves this method so that on the surface of the polycrystalline material,
We discovered that once a thin single crystal film is formed, polycrystals can be made into single crystals by in-phase reactions using it as a seed crystal. For example, the crystal in the R film on the surface of the polycrystalline body may be a single crystal formed by irradiating only the vicinity of the surface layer of the polycrystalline body with a laser beam to melt and precipitate the same phase, or a single crystal of the thin film forming material. By supplying a substance from the outside and reacting with the polycrystal in an appropriate atmosphere, the material formed on the surface of the polycrystal, and furthermore, the thin film-forming substance is transported from the outside to the surface of the polycrystal and precipitated. It may be formed by

そして薄膜単結晶は、多結晶体と同一もしくはそれに近
い組成で、同じ結晶構造であっても、あるいは多結晶体
と組成、ti品溝構造異なるものであってよい。いずれ
の場合でも、組み合わせの方法多結晶体表部に形成する
薄膜単結晶の形成条件などによって、後の多結晶体の単
結晶化が左右される。そこで、発明者らは、薄膜単結晶
と多結晶の組み合わせにつbて検討した。薄膜単結晶と
多結晶との組み合わせの代表例をあげると、”0.5Z
n  FeO−Mno、5zn0.6 e24.0.5
24 MnznFeO−Nio、5Zno、5Fe2o40.
6   0.5  24 YIG−GGG、Mn。、5Zn0.5Fe204−Y
IG5ベーS゛ Mn      Zn o、es   O,5Fe204− CoF  OMn
Zn。、6 Fe2O2−NiFe2o4 であり、こ
れら薄膜単結晶はCVD法、またはスパッター法などに
より多結晶体表面に1μm〜1調の厚に形成した。これ
−らの組み合わせの複合体について、それぞれ適当な温
度、雰囲気下で熱処理を行なった。
The thin film single crystal may have the same or similar composition and crystal structure as the polycrystalline body, or may have a different composition and structure from the polycrystalline body. In any case, the subsequent single crystallization of the polycrystalline body is influenced by the method of combination, the conditions for forming the thin film single crystal formed on the surface of the polycrystalline body, and the like. Therefore, the inventors investigated the combination of thin film single crystal and polycrystal. A typical example of a combination of thin film single crystal and polycrystal is “0.5Z”.
n FeO-Mno, 5zn0.6 e24.0.5
24 MnznFeO-Nio, 5Zno, 5Fe2o40.
6 0.5 24 YIG-GGG, Mn. , 5Zn0.5Fe204-Y
IG5B S゛Mn Zno,es O,5Fe204- CoF OMn
Zn. , 6 Fe2O2-NiFe2o4, and these thin film single crystals were formed on the polycrystalline surface to a thickness of 1 μm to 1 tone by CVD or sputtering. Each of these combinations of composites was heat-treated at an appropriate temperature and atmosphere.

その結果、薄膜単結晶を形成した多結晶体表面から、数
10μmから2〜3閣にまでの範囲にわたって単結晶化
していることをX線回折、エッチピットの観察により確
認した。他の無機化合物の薄膜単結晶−多結晶の組み合
せについても検討したところ、多結晶体表面に薄膜単結
晶が形成可能なものならば、その複合体を熱処理するこ
とにより単結晶化することが見出された。
As a result, it was confirmed by X-ray diffraction and observation of etch pits that the thin film single crystal was formed from the polycrystalline surface over a range of several tens of μm to 2 to 3 square meters. We also investigated the combination of thin film single crystals and polycrystals of other inorganic compounds, and found that if a thin film single crystal can be formed on the surface of a polycrystalline material, the composite can be made into a single crystal by heat treatment. Served.

本発明の単結晶製造法の特徴は、種子結晶として、薄膜
単結晶を用いること、その薄膜単結晶は単結晶化させよ
うとする多結晶体に、CVD法、スパッター法、基板反
応等により直接析出又は付着させるという工程を用いる
こと、多結晶体は適当な熱処理により、固相反応により
単結晶化させ6ベ゛ るという点にある。従来、他の単結晶育成法、たとえば
ブリッジマン法で作製した単結晶を種子結晶に用h1こ
れと多結晶を接合し、熱処理することにより多結晶体を
単結晶化するという方法に比べて、本発明の製造方法は
高価な種子単結晶を用いることがなく、かっ、接合面同
士を鏡面に仕上げる研磨工程と接合するための熱処理工
程とが不要になる。また、接合体のクラックを防止する
ために種子単結晶と多結晶の熱膨張係数を合致させる手
数(組成のチェック、熱膨張係数の測定、同じ熱膨張係
数を持つ試料同士の選別1組み合わせ等)が不要になる
。これは、多結晶体表面に形成される単結晶が薄膜であ
るため、熱応力が小さくクラックや割れが発生しにくく
なるからである。
The feature of the single crystal manufacturing method of the present invention is that a thin film single crystal is used as a seed crystal, and the thin film single crystal is directly applied to the polycrystalline body to be single crystallized by CVD method, sputtering method, substrate reaction, etc. By using the process of precipitation or adhesion, the polycrystalline material is converted into a single crystal by a solid-phase reaction by an appropriate heat treatment, and becomes a 6-layer polycrystalline material. Conventionally, compared to other single crystal growth methods, such as the method of using a single crystal produced by the Bridgman method as a seed crystal, joining it to a polycrystal, and heat-treating the polycrystal, the polycrystal is made into a single crystal. The manufacturing method of the present invention does not use expensive seed single crystals, and also eliminates the need for a polishing step for finishing the bonding surfaces to a mirror finish and a heat treatment step for bonding. In addition, in order to prevent cracks in the bonded body, it takes a lot of effort to match the thermal expansion coefficients of the seed single crystal and polycrystal (composition check, measurement of the thermal expansion coefficient, sorting and combination of samples with the same thermal expansion coefficient, etc.) becomes unnecessary. This is because the single crystal formed on the surface of the polycrystalline body is a thin film, so the thermal stress is small and cracks and fractures are less likely to occur.

本発明によれば薄膜単結晶の形成は、CVD法。According to the present invention, the thin film single crystal is formed using the CVD method.

基板反応法、スパッター法、蒸着法等いずれにしても一
度に多量に処理すやことができるので、量産化が容易で
あるという特長もある。また、本発明で用いる多結晶体
が酸化物である場合には、若干還元性雰囲気下で熱処理
した方が、単結晶化が7ペーき゛ 促進されることもわかった。この時の熱処理温度は、同
相反応により多結晶体を単結晶化させるため、多結晶体
の融点温度より低く、かっ、薄膜単結晶の融点温度以下
であることが必要である。融点温度以上では、薄膜結晶
が溶解、または蒸発し種子結晶の役目を果さなくなるた
めである。
Regardless of the substrate reaction method, sputtering method, vapor deposition method, etc., a large amount can be processed at once, so mass production is easy. It has also been found that when the polycrystalline material used in the present invention is an oxide, single crystallization is promoted by 7 pages by heat treatment in a slightly reducing atmosphere. The heat treatment temperature at this time needs to be lower than the melting point temperature of the polycrystalline body and lower than the melting point temperature of the thin film single crystal in order to convert the polycrystalline body into a single crystal by an in-phase reaction. This is because at temperatures above the melting point, the thin film crystal melts or evaporates and ceases to function as a seed crystal.

発明者等は、さらに、実験研究を重ねた結果、多結晶体
の単結晶化をより促進するため、多結晶体を構成する結
晶粒の形状9粒径2粒径分布、気孔率、気孔の形状、気
孔の分布個所2粒界の形状、粒界層の厚さ、および粒成
長の様子等を調べ、単結晶化速度との関係を求めた。そ
の結果、結晶粒子が通常の粒成長を示す多結晶体より、
ある特定の温度Tcで、一部の結晶粒子が急激に大きく
なる多結晶体において、単結晶化速度が2〜6倍大きい
ことを見出した。特に、その熱処理が、Tcより高く融
点より低い温度、好ましくは、以下に定義するT2温度
以下の温度である方が、単結晶化速度が大きくなること
を見出した。T2は多結晶全体が巨大結晶の集合体にな
ってしまう温度であり、言葉を換えるならば全体の結晶
種子がいっせいに粒成長を開始する温度である。即ち、
熱処理温度をTとすると、TCくT<T2で示される温
度範囲で熱処理すると、単結晶化速度が大きくなること
を見出した。
As a result of repeated experimental research, the inventors further determined that in order to further promote the single crystallization of a polycrystalline body, the shape, grain size, and grain size distribution of the crystal grains constituting the polycrystalline body, porosity, and pore size were changed. The shape, the shape of the pore distribution, the shape of the two grain boundaries, the thickness of the grain boundary layer, the state of grain growth, etc. were investigated, and the relationship with the single crystallization rate was determined. As a result, compared to polycrystalline materials in which the crystal grains exhibit normal grain growth,
It has been found that, at a certain temperature Tc, in a polycrystalline body in which some crystal grains suddenly increase in size, the single crystallization rate is 2 to 6 times higher. In particular, it has been found that the single crystallization rate increases when the heat treatment is performed at a temperature higher than Tc and lower than the melting point, preferably at a temperature below T2 defined below. T2 is the temperature at which the entire polycrystal becomes an aggregate of giant crystals, or in other words, the temperature at which all the crystal seeds start grain growth at once. That is,
It has been found that the single crystallization rate increases when heat treatment is performed in a temperature range expressed by T<T2, where T is the heat treatment temperature.

実施例の説明 以下、本発明の実施例について詳述する。Description of examples Examples of the present invention will be described in detail below.

実施例1 Fe20353モル% MnO28モ/l/%およびZ
nO19モルチになるように、純度99.9%以上の高
純度原料を配合、混合しその後乾燥、造粒、成形を行な
った、成形体をホットプレス(温度13oO℃、保持時
間3時間、圧力3ooKtp/c/l ) L、密度9
9.9 %  以上の緻密なMn−Znフェライト多結
晶体(平均結晶粒径10μm1気孔率0.01チ以下)
を作製した。この多結晶体を1o■X20mmX、30
nan  の寸法に切断し、表面を洗浄し単結晶化°さ
せる出発多結晶体とする。この多結晶体の表面を炭酸ガ
スレーザでアニールし、表面から約1μmの厚さにわた
って単結晶化を行なった。このシー9ページ ザアニールでは、これ以上深く単結晶化させることはで
きなかった。一方、この多結晶体をN2中で2時間加熱
して、一部結晶種子が急激に粒成長を開始する温度Tc
 が1000℃ であること全体が粒成長を生じる温度
T2が、1360℃であることを確認しておいた。そこ
で、表面が単結晶化した多結晶体を、N2中において1
330℃で2時間加熱熱処理を行なった。熱処理後のサ
ンプルの中央部分を切断し、切断面を鏡面ラップした後
、濃塩酸でエツチングし、単結晶化が進んだ距@Itを
測定した。その結果℃は3〜5tpanであった。比較
のため同一の多結晶で表面層を単結晶化させない多結晶
体に同じ熱処理を行うと、単結晶化は進まず、表面部分
から巨大結晶(粒径2〜3闘)が多結晶体の中心へ向っ
て伸びていた。また、組成焼結条件は同一で通常な粒成
長を示す多結晶体を実施例2 実施例1と同様の形状に加工した一部結晶粒子1ot”
゛ が急激に粒成長をするYIG(イツトリウム鉄ガーネッ
ト)多結晶体(平均結晶粒径が5μm1気孔率が0.0
5%不純物としてSiO2が0.01重量%以下、Ca
 Oが0.005重量%以下)を洗浄し、この多結晶体
の表面に高周波スパッターにより厚さ10μmのMqO
薄膜単結晶を形成した。その結晶方位は表面に垂直に<
110>方向であった。一方、このYIG多結晶体のN
2ガス中での一部結晶粒子の粒成長開始温度Tc を調
べると、’rc= 1320℃であり、T2は1380
℃であった。そこで、上記複合体を1350℃ で3時
間、N2中で熱処理し、YIG多結晶体の単結晶化を試
みた。その結果、表面から多結晶体の中心部に向って単
結晶化が生じ、その結晶方位は表面に垂直にく111〉
であり、単結晶化した部分の長さaは2〜3yasであ
った。実施例1と同様に比較のため同一の多結晶体で表
面にMqO単結晶薄膜の形成していないものと、急激な
粒成長を示さない通常の粒成長点を示すYIG多結晶を
用すその表面にMqO薄膜単結晶を同一条件で形成し1
1 ベーコ゛ たものを、同一条件下で熱処理を行なった。熱処理後、
その中央部分を切断し、単結晶化長さ2を測定した。そ
の結果、MqO単結晶を表面に形成しないものでは単結
晶化はおこらず、また、正常な粒成長を示す多結晶体を
用いた場合では、10〜20μm程度しか単結晶化が進
んでいなかった。
Example 1 Fe20353mol% MnO28mol/l/% and Z
High-purity raw materials with a purity of 99.9% or more were blended and mixed to give nO19 morch, and then dried, granulated, and molded. The molded body was hot pressed (temperature 13oO℃, holding time 3 hours, pressure 3ooKtp). /c/l) L, density 9
Dense Mn-Zn ferrite polycrystal of 9.9% or more (average grain size 10 μm/porosity 0.01 inch or less)
was created. This polycrystalline body is 1o x 20mm x 30
The starting polycrystal is cut into nano-sized pieces and the surface is washed to form a single crystal. The surface of this polycrystal was annealed using a carbon dioxide laser to form a single crystal over a thickness of about 1 μm from the surface. With this sea 9 page annealing, it was not possible to form a single crystal deeper than this. On the other hand, this polycrystalline body was heated in N2 for 2 hours to a temperature Tc at which some crystal seeds suddenly started grain growth.
It has been confirmed that the temperature T2 at which grain growth occurs on the whole is 1360°C. Therefore, a polycrystal with a single crystal surface was placed in N2 at 1
Heat treatment was performed at 330° C. for 2 hours. After the heat treatment, the central part of the sample was cut, the cut surface was lapped to a mirror finish, and then etched with concentrated hydrochloric acid, and the distance @It at which single crystallization had progressed was measured. As a result, the temperature was 3 to 5 tpan. For comparison, when the same heat treatment was applied to a polycrystalline material whose surface layer was not made into a single crystal, the single crystallization did not proceed and giant crystals (grain size 2 to 3 mm) were formed from the surface part of the polycrystalline material. It was growing towards the center. In addition, a polycrystalline body with the same composition sintering conditions and normal grain growth was processed into the same shape as in Example 2 and Example 1. 1 ot''
YIG (yttrium iron garnet) polycrystal with rapid grain growth (average grain size 5 μm, porosity 0.0
5% impurities include SiO2 of 0.01% by weight or less, Ca
0.005 wt.
A thin film single crystal was formed. Its crystal orientation is perpendicular to the surface <
110> direction. On the other hand, the N of this YIG polycrystal
When examining the grain growth start temperature Tc of some crystal grains in two gases, 'rc = 1320°C, and T2 is 1380°C.
It was ℃. Therefore, the above composite was heat-treated at 1350° C. for 3 hours in N 2 in an attempt to single-crystallize the YIG polycrystal. As a result, single crystallization occurs from the surface toward the center of the polycrystalline body, and the crystal orientation becomes perpendicular to the surface111
The length a of the single crystallized portion was 2 to 3 yas. As in Example 1, for comparison, we used the same polycrystalline material with no MqO single crystal thin film formed on its surface, and one using YIG polycrystalline material with normal grain growth points that do not show rapid grain growth. A thin MqO film single crystal was formed on the surface under the same conditions.
1 bacon was heat-treated under the same conditions. After heat treatment,
The central portion was cut and the single crystallization length 2 was measured. As a result, single crystallization did not occur in the case where MqO single crystals were not formed on the surface, and when polycrystals showing normal grain growth were used, single crystallization progressed only to about 10 to 20 μm. Ta.

さらに熱処理温度について比較すると、本発明の複合体
を1300Cおよび1400℃で熱処理すると、100
0℃で熱処理したものでは、ρは0.5mm  程度で
、1400℃ で熱処理したものでは、lは0.5鰭程
度であった。これは、熱処理温度が高すぎるため、多結
晶体内部で単結晶化よりも早く結晶粒成長が生じ、単結
晶化が阻止されたためである。本発明の単結晶製造法は
、他の無機化合物のホモ接合体、ペテロ接合体において
も応用できるものである。
Furthermore, when comparing the heat treatment temperatures, when the composite of the present invention is heat treated at 1300C and 1400C, 100
For those heat-treated at 0°C, ρ was about 0.5 mm, and for those heat-treated at 1400°C, l was about 0.5 fin. This is because the heat treatment temperature was too high, so crystal grain growth occurred within the polycrystalline body faster than single crystallization, and single crystallization was inhibited. The single crystal manufacturing method of the present invention can also be applied to homozygotes and peterozygotes of other inorganic compounds.

する製造することができる。can be manufactured.

410−410-

Claims (1)

【特許請求の範囲】[Claims] 多結晶体の表面に薄膜単結晶を形成して複合体となし、
この複合体を前記薄膜単結晶および前記多結晶体の融点
を超えない温度で熱処理して、前記多結晶体表面の前記
薄膜単結晶を種子結晶として、前記多結晶体を同相反応
傾より単結晶することを特徴とする単結晶の製造法。
A thin single crystal is formed on the surface of a polycrystalline material to form a composite.
This composite is heat-treated at a temperature that does not exceed the melting points of the thin film single crystal and the polycrystalline body, and the polycrystalline body is transformed into a single crystal by using the thin film single crystal on the surface of the polycrystalline body as a seed crystal. A method for producing a single crystal characterized by:
JP2402483A 1983-02-15 1983-02-15 Preparation of single crystal Pending JPS59152285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2402483A JPS59152285A (en) 1983-02-15 1983-02-15 Preparation of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2402483A JPS59152285A (en) 1983-02-15 1983-02-15 Preparation of single crystal

Publications (1)

Publication Number Publication Date
JPS59152285A true JPS59152285A (en) 1984-08-30

Family

ID=12126957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2402483A Pending JPS59152285A (en) 1983-02-15 1983-02-15 Preparation of single crystal

Country Status (1)

Country Link
JP (1) JPS59152285A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363799A (en) * 1987-08-08 1994-11-15 Canon Kabushiki Kaisha Method for growth of crystal
US6042092A (en) * 1996-12-06 2000-03-28 Inoac Corporation Bellows cylinder
US9470316B2 (en) 2011-11-15 2016-10-18 Sumitomo Riko Company Limited Protective cover and manufacturing method thereof
US10190686B2 (en) 2013-10-11 2019-01-29 Showa Corporation Cover member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363799A (en) * 1987-08-08 1994-11-15 Canon Kabushiki Kaisha Method for growth of crystal
US6042092A (en) * 1996-12-06 2000-03-28 Inoac Corporation Bellows cylinder
US9470316B2 (en) 2011-11-15 2016-10-18 Sumitomo Riko Company Limited Protective cover and manufacturing method thereof
US10190686B2 (en) 2013-10-11 2019-01-29 Showa Corporation Cover member

Similar Documents

Publication Publication Date Title
US4402787A (en) Method for producing a single crystal
KR100655106B1 (en) Spinel substrate and heteroepitaxial growth of III-V materials thereon
EP0053481B1 (en) Method for producing a single crystal
US20030177975A1 (en) Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material
JPS59152285A (en) Preparation of single crystal
JPH0475879B2 (en)
JPS6215518B2 (en)
JPS6241797A (en) Single crystal ferrite and production thereof
JPH04300296A (en) Production of barium titanate single crystal
JPS58155719A (en) Manufacture of single crystal body
JP3683714B2 (en) Deposition substrate and electronic device
JP2000007499A (en) Method for growing langasite single crystal
JPS62113787A (en) Production of single crystal ferrite material
JPS582289A (en) Manufacture of single crystal body
JPS593091A (en) Production of oxide single crystal
JPS6335496A (en) Production of single crystal garnet
JPH11349399A (en) Magnesia single crystal substrate and magnesia single crystal
JP2563544B2 (en) Manufacturing method of zinc oxide whiskers
JP2579728B2 (en) Method for producing Mn-Zn single crystal ferrite
JP2739546B2 (en) Method for producing lithium borate single crystal
JPH04243998A (en) Production of barium beta-metaborate single crystal
JPS5918188A (en) Preparation of ferrite of single crystal
JPS59169995A (en) Preparation of single crystal of hgcdte
JPS61101484A (en) Production of single crystal ferrite
JPH0474317B2 (en)