JP3683714B2 - Deposition substrate and electronic device - Google Patents

Deposition substrate and electronic device Download PDF

Info

Publication number
JP3683714B2
JP3683714B2 JP21627398A JP21627398A JP3683714B2 JP 3683714 B2 JP3683714 B2 JP 3683714B2 JP 21627398 A JP21627398 A JP 21627398A JP 21627398 A JP21627398 A JP 21627398A JP 3683714 B2 JP3683714 B2 JP 3683714B2
Authority
JP
Japan
Prior art keywords
single crystal
substrate
film
compound semiconductor
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21627398A
Other languages
Japanese (ja)
Other versions
JP2000044391A (en
Inventor
博之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21627398A priority Critical patent/JP3683714B2/en
Publication of JP2000044391A publication Critical patent/JP2000044391A/en
Application granted granted Critical
Publication of JP3683714B2 publication Critical patent/JP3683714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化ガリウム、水銀カドミウムテルル、酸化亜鉛、窒化アルミニウム単結晶等の化合物半導体薄膜を成膜するための成膜用基板、及びそのための単結晶材料に関する。
【0002】
【従来の技術】
化合物半導体材料は、バルク体を作製することが困難であるため、成膜用基板の表面にエピタキシャル成長により成膜したものが用いられている。
【0003】
例えば、発光デバイス等に使用される化合物半導体材料である窒化ガリウム薄膜単結晶は、最も一般的には単結晶サファイアからなる成膜用基板の表面に成膜することが行われている。あるいは、他の成膜用基板として、単結晶スピネル、単結晶炭化珪素、単結晶窒化ガリウム基板も使用されている。
【0004】
同じく化合物半導体材料として、センサー等に使用される水銀カドミウムテルル薄膜単結晶は、一般的には単結晶サファイアの成膜用基板の表面に成膜される。
【0005】
圧電材料、半導体材料として用いられる化合物半導体材料である酸化亜鉛、窒化アルミ薄膜単結晶は、一般にガラスまたは単結晶サファイアの成膜用基板を使用している。
【0006】
【発明が解決しようとする課題】
上記窒化ガリウム単結晶膜を成膜する基板のうち、単結晶スピネル(MgAl2O4) 、単結晶炭化珪素(SiC) 、単結晶窒化ガリウム(GaN) 、単結晶酸化亜鉛(ZnO) 、単結晶窒化アルミニウム(AlN) は、いずれも基板の価格が非常に高価であり、質の良い結晶基板を作製することが困難であり、且つ大口径の基板を作製することが困難であるという問題があった。
【0007】
以上の基板に対して、単結晶サファイアは、窒化ガリウム単結晶膜の成膜用基板として最も一般的に使用されているが、硬度が高く加工が困難であり、欠けやすい為、生産性の悪い条件で慎重に加工を行う必要があり、生産効率が悪いものであった。また、単結晶サファイアは化学耐性が極めて高いため、一般的な化学研磨加工に高度な技術を要し、デバイスプロセスにおいて行われる腐食加工において、危険なリン酸やリン酸硫酸混合液の煮沸を行わなければならないという問題があった。
【0008】
さらに、単結晶サファイアは、融点が2000℃を越えるため、炉材が高価になり、融点まで温度を上げるために多量のエネルギーが必要であるという問題もあった。
【0009】
一方、窒化ガリウム単結晶膜以外においても、水銀カドミウムテルル、酸化亜鉛、窒化アルミニウム単結晶薄膜等を成膜するための基板においても、上記と同様の問題があった。
【0010】
本発明は、上記の問題点に対し、安価で大口径且つ、加工も容易な酸化物単結晶の基板を得ることを目的とする。
【0011】
【課題を解決するための手段】
上記問題点に鑑みて本発明は、(CaBaSr1−a−b)Al2qp+3qで表され、0≦a+b≦1、かつ1/12≦p/q≦3/2を満たす組成の単結晶材料からなり、その表面に化合物半導体膜を形成するようにしたことを特徴とする。
さらに、a=1、b=0、p=1、q=2を満たすことを特徴とする。
また、(CaBaSr1−a−b)Al2qp+3qで表され、0≦a+b≦1、かつ1/12≦p/q≦3/2を満たす組成の単結晶材料からなる基板の表面に、化合物半導体膜を形成してなることを特徴とする。
【0015】
【作用】
上記組成の単結晶材料は、単結晶サファイアに比べて低い温度で引き上げできる等、製造が容易であることから、大口径化にも対応でき、大量生産も容易である。また、この単結晶材料は、機械加工やエッチング加工を容易に行うことができ、成膜用基板として用いた場合に、成膜後の研削加工や切り出し加工を容易に行うことができる。
【0016】
【発明の実施の形態】
以下に、本発明についての詳細を説明する。
【0017】
図1に示す成膜用基板1は、詳細を後述する単結晶材料からなる板状体であり、その表面に窒化ガリウム、水銀カドミウムテルル、酸化亜鉛、窒化アルミ薄膜単結晶等の化合物半導体膜2をエピタキシャル成長させるためのものである。
【0018】
そして、これらの化合物半導体膜を成膜した後、研削加工や切り出し加工を行って所定形状とし、発光デバイス、受光デバイス、圧電電子部品等の電子デバイスとすることができる。
【0019】
上記成膜用基板1は、(Ca a Bab Sr1-a-b ) p Al2qO p+3qで表され、0≦a+b ≦1、かつ1/12≦p/q ≦3/2 を満たす組成の単結晶材料からなることを特徴とする。
【0020】
上記組成の単結晶材料は、比較的低い温度で引き上げできる等、製造が容易であることから、大口径化にも対応でき、大量生産が容易である。また、この単結晶材料は、機械加工やエッチング加工を容易に行うことができることから、成膜後の研削加工や切り出し加工を容易に行うことができる。
【0021】
なお、上記単結晶材料を安定して製造するためには、p,q は、
(1) p=3,q=2 (2) p=12,q=14 (3) p=1,q=2 (4) p=1,q=4 (5) p=1,q=12
のいずれかであることが好ましく、特に(3)(4)の組成が最も安定している。
【0022】
また、a,b の値については特に限定されるものは無いが、製造の安定上、Ca,Ba,Srのいずれか単一の元素で構成されることが好ましい。即ち、
(1) a=1,b=0 (2)a=0,b=1 (3) a=b=0
のいずれかであることが好ましい。
【0023】
さらに、好ましくは、a=1,b=0,p=1,q=2 としたもの、即ちCaAl4O7 で表される組成のものが最適である。
【0024】
次に、上記単結晶材料の製造方法を説明する。
【0025】
まず、CaCO3 粉末,SrCO3粉末,BaCO3粉末の少なくとも1つと、Al2O3 粉末を用い、上記組成範囲となるように原料を混合し、この原料を900℃以上で脱炭酸処理を行い、1300℃以上で焼成した後、ベルヌーイ法などの溶融法で一旦結晶化させ粒状とする。この処理を経た後の原料を用いて、チョクラルスキー法、EFG法、ベルヌーイ法等の溶融法により単結晶材料を作製する。
【0026】
具体的には、図2に示すように、モリブデンからなる坩堝3にモリブデンからなるダイス4を配置するとともに、原料融液5を充填し、種結晶6を用いて引き上げることによって単結晶体7を得ることができる。
【0027】
この時、原料に対して、上記のような焼成後の溶融処理を行うことによって、坩堝3への充填効率と、溶融速度を上げることができる。しかも、上記処理を行った原料は、粉末状・粒状を問わず、モリブデンやイリジウムの坩堝3にて容易に溶融する事ができる。
【0028】
上記のように、本発明における組成の原料を使用して、本発明の方法で引き上げを行うことにより、単結晶サファイアの引き上げに比べて低い加熱エネルギーで製造できるため、安価なモリブデンを炉材に使用でき、容易に大型の単結晶を得ることが可能となる。
【0029】
また、上記溶融法によって引き上げされた単結晶材料は、単結晶サファイアに比べ容易に加工でき、ウエハーに研磨できる。
【0030】
こうして得られた単結晶材料を用いて、図1に示す成膜用基板1を形成すれば、高温及び真空及び還元雰囲気にて安定であるため、窒化ガリウム、水銀カドミウムテルル、酸化亜鉛、窒化アルミ単結晶膜を良好にエピタキシャル成長させる事ができる。
【0032】
【実施例】
実施例1
(Ca a Bab Sr1-a-b ) p Al2qO p+3qにおいてa=1,b=0,p=1,q=2 となるように、炭酸カルシウム及びアルミナの粉末を混合した。炭酸カルシウムに含まれる炭酸ガスは、焼成中に揮発するものとして計算した。原料粉末の粒度は、炭酸カルシウム、アルミナともに3μmのものを使用し、湿式ミルで8時間混合し、煮沸乾燥した後、900℃にて3時間保持して脱炭酸処理して、1300℃にて焼成した。
【0033】
相変化温度についても1100℃では出発原料相の晶出が確認され、1300℃においても3時間以上保持しなければ異相が晶出し、単一相とはならなかった。
【0034】
この原料をモリブデン坩堝に充填し、アルゴン雰囲気にて高周波加熱炉で1800℃に加熱し溶融した。モリブデン坩堝を用い、アルゴン雰囲気を使用した条件に於いて、原料融液と坩堝に反応は確認されなかった。高周波誘導加熱炉に於いて1800℃に加熱する為に必要な電力は、サファイアの溶融に必要な2000℃強の温度条件に必要な電力に比べ30%以上低い電力で十分であった。
【0035】
1740〜1770℃に加熱した溶融状態の融液の液面に、種子結晶を接触させ温度を下げながら1時間当たり2mmの速度でチョクラルスキー法によって引き上げを行った。引き上げ速度は、1時間当たり0〜5mmの速度で引き上げ可能であり、サファイア単結晶に比べ早い速度で引き上げを行うことが出来た。
【0036】
その結果、直径52mm、長さ120mmの結晶を引き上げ、厚さ0.5mm、直径50mmの基板を切り出し、得られた基板を化学研磨によって鏡面加工した。
【0037】
このようにして得られた基板を、硫酸によって酸処理し、窒化ガリウム単結晶膜の成膜用基板として使用した。なお、常温のpH2の硫酸に於いて4〜5時間含浸させる事によって容易に表面をエッチングすることが出来た。
【0038】
窒化ガリウムの成膜には、トリメチルガリウムを使用した有機金属化合物気相成長法を用い、AlN またはGaN による低温バッファ相を介して均質な窒化ガリウム単結晶膜を得る事が出来た。
【0039】
実施例2
上記と同様にして、EFG法を用いた結果、所定の方位で幅50mm、長さ150mmの板状単結晶基板を作製することができた。坩堝、ダイスにはモリブデンを用いたが、融液との反応は見られなかった。
【0040】
但し、融液の組成比について、CaO:Al2O3 のモル比で、1/12〜3/2 の範囲及び純アルミナ以外の組成ではモリブデンと融液の間に反応が見られ、純粋な結晶を引くことが出来なかった。
【0041】
また、モリブデンを使用せずイリジウムを坩堝材に用いた場合に於いても、融液の組成比についてCaO:Al2O3 のモル比で、1/12〜3/2 の範囲に設定しておけば、結晶成長が可能である事が確認できた。
【0042】
また、粉末原料においても、(Ca a Bab Sr1-a-b ) p Al2qO p+3qにおいてa=1,p=1,q=2 となるように、炭酸カルシウム及び、アルミナの粉末を混合し、900℃での脱炭酸処理、1300℃焼成を経た粉末原料に対し、ベルヌーイ法によって一旦溶融・固化させ、粒度5mm程度に粉砕した原料を使用した場合、坩堝への充填量が粉末の倍以上あり、且つ溶融時間も短くなるため、短時間で溶融する事が出来、本発明の結晶引き上げに対して非常に有用な原料が製造できた。
【0043】
【発明の効果】
本発明によれば、(Ca a Bab Sr1-a-b ) p Al2qO p+3qで表され、0≦a+b ≦1、かつ1/12≦p/q ≦3/2 を満たす組成からなる単結晶材料としたことによって、高温還元雰囲気で安定しており、容易に機械加工及びエッチングする事ができ、また製造が容易であるため、量産性に優れ、大口径化にも対応できる。
【0044】
しかも本発明における単結晶材料を用いて成膜用基板を形成すれば、基板自体の作製加工が容易であるとともに、単結晶薄膜を成膜した後の加工においても、基板研削加工、切り出し加工ともに歩留まり良く容易に行うことができる。その結果、本発明の電子デバイスは安価に大量生産することができる。
【図面の簡単な説明】
【図1】本発明の成膜用基板を示す斜視図である。
【図2】本発明の成膜用基板の製造方法を説明するための図である。
【符号の説明】
1:成膜用基板
2:化合物半導体膜
3:坩堝
4:ダイス
5:原料融液
6:種結晶
7:単結晶体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film formation substrate for forming a compound semiconductor thin film such as gallium nitride, mercury cadmium tellurium, zinc oxide, and aluminum nitride single crystal, and a single crystal material therefor.
[0002]
[Prior art]
Since it is difficult to produce a bulk body, a compound semiconductor material is used that is formed by epitaxial growth on the surface of a film formation substrate.
[0003]
For example, a gallium nitride thin film single crystal, which is a compound semiconductor material used for a light emitting device or the like, is most commonly formed on the surface of a film formation substrate made of single crystal sapphire. Alternatively, a single crystal spinel, a single crystal silicon carbide, or a single crystal gallium nitride substrate is also used as another film formation substrate.
[0004]
Similarly, a mercury cadmium tellurium thin film single crystal used for a sensor or the like as a compound semiconductor material is generally formed on the surface of a single crystal sapphire film formation substrate.
[0005]
A zinc oxide or aluminum nitride thin film single crystal, which is a compound semiconductor material used as a piezoelectric material or a semiconductor material, generally uses a glass or single crystal sapphire film formation substrate.
[0006]
[Problems to be solved by the invention]
Of the substrates on which the gallium nitride single crystal film is formed, single crystal spinel (MgAl 2 O 4 ), single crystal silicon carbide (SiC), single crystal gallium nitride (GaN), single crystal zinc oxide (ZnO), single crystal All of aluminum nitride (AlN) has a problem that the price of the substrate is very expensive, it is difficult to produce a high-quality crystal substrate, and it is difficult to produce a large-diameter substrate. It was.
[0007]
In contrast to the above substrates, single crystal sapphire is most commonly used as a substrate for forming a gallium nitride single crystal film, but it is difficult to process due to its high hardness and poor productivity. It was necessary to process carefully under the conditions, and the production efficiency was poor. In addition, since single crystal sapphire has extremely high chemical resistance, it requires advanced technology for general chemical polishing processing, and boiling of dangerous phosphoric acid and phosphoric acid sulfuric acid mixed solution is performed in the corrosion processing performed in the device process. There was a problem that had to be.
[0008]
Furthermore, since the melting point of single crystal sapphire exceeds 2000 ° C., the furnace material becomes expensive, and a large amount of energy is required to raise the temperature to the melting point.
[0009]
On the other hand, other than the gallium nitride single crystal film, a substrate for forming a mercury cadmium tellurium, zinc oxide, aluminum nitride single crystal thin film, or the like has the same problem as described above.
[0010]
An object of the present invention is to obtain an oxide single crystal substrate that is inexpensive, has a large diameter, and is easy to process.
[0011]
[Means for Solving the Problems]
In view of the above problems, the present invention is represented by (Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q , and 0 ≦ a + b ≦ 1 and 1/12 ≦ p / q ≦ 3/2. A compound semiconductor film is formed on the surface of a single crystal material having a composition that satisfies the above.
Further, a = 1, b = 0, p = 1, and q = 2 are satisfied.
Further, it is represented by (Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q , and is made of a single crystal material having a composition satisfying 0 ≦ a + b ≦ 1 and 1/12 ≦ p / q ≦ 3/2 A compound semiconductor film is formed on the surface of the substrate.
[0015]
[Action]
The single crystal material having the above composition can be pulled up at a lower temperature than single crystal sapphire and is easy to manufacture. Therefore, the single crystal material can cope with a large diameter and is easily mass-produced. Further, this single crystal material can be easily machined and etched, and when used as a film-forming substrate, grinding and cutting after film-forming can be easily performed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
[0017]
A film-forming substrate 1 shown in FIG. 1 is a plate-like body made of a single crystal material, the details of which will be described later, and a compound semiconductor film 2 such as gallium nitride, mercury cadmium tellurium, zinc oxide, or aluminum nitride thin film single crystal on the surface thereof. Is for epitaxial growth.
[0018]
Then, after these compound semiconductor films are formed, grinding and cutting are performed to obtain a predetermined shape, and an electronic device such as a light emitting device, a light receiving device, or a piezoelectric electronic component can be obtained.
[0019]
The film-forming substrate 1 is represented by (Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q , and 0 ≦ a + b ≦ 1 and 1/12 ≦ p / q ≦ 3/2. It consists of the single crystal material of the composition which satisfy | fills.
[0020]
Since the single crystal material having the above composition can be pulled up at a relatively low temperature and is easy to manufacture, it can cope with a large diameter and is easily mass-produced. In addition, since this single crystal material can be easily machined and etched, it can be easily subjected to grinding and cutting after film formation.
[0021]
In addition, in order to stably manufacture the single crystal material, p and q are
(1) p = 3, q = 2 (2) p = 12, q = 14 (3) p = 1, q = 2 (4) p = 1, q = 4 (5) p = 1, q = 12
Any of the above is preferable, and the compositions (3) and (4) are most stable.
[0022]
Further, the values of a and b are not particularly limited, but are preferably composed of any one element of Ca, Ba and Sr in terms of production stability. That is,
(1) a = 1, b = 0 (2) a = 0, b = 1 (3) a = b = 0
It is preferable that it is either.
[0023]
More preferably, a = 1, b = 0, p = 1, q = 2, that is, a composition represented by CaAl 4 O 7 is optimal.
[0024]
Next, a method for producing the single crystal material will be described.
[0025]
First, at least one of CaCO 3 powder, SrCO 3 powder, BaCO 3 powder and Al 2 O 3 powder are mixed with raw materials so that the above composition range is reached, and this raw material is decarboxylated at 900 ° C. or higher. After firing at 1300 ° C. or higher, it is once crystallized by a melting method such as the Bernoulli method to form a granule. A single crystal material is produced by a melting method such as the Czochralski method, the EFG method, or the Bernoulli method using the raw material after this treatment.
[0026]
Specifically, as shown in FIG. 2, the molybdenum 4 is disposed in the crucible 3 made of molybdenum, filled with the raw material melt 5, and pulled up by using the seed crystal 6, thereby pulling the single crystal 7. Can be obtained.
[0027]
At this time, it is possible to increase the filling efficiency into the crucible 3 and the melting speed by subjecting the raw material to the melting treatment after firing as described above. And the raw material which performed the said process can be easily fuse | melted with the crucible 3 of molybdenum or iridium regardless of powder form and a granular form.
[0028]
As described above, by using the raw material having the composition according to the present invention and performing the pulling by the method of the present invention, it can be produced with lower heating energy than the pulling of single crystal sapphire. It can be used and a large single crystal can be easily obtained.
[0029]
In addition, the single crystal material pulled by the melting method can be easily processed as compared with single crystal sapphire and polished to a wafer.
[0030]
If the film-forming substrate 1 shown in FIG. 1 is formed using the single crystal material thus obtained, it is stable at high temperatures, in vacuum, and in a reducing atmosphere. Therefore, gallium nitride, mercury cadmium tellurium, zinc oxide, aluminum nitride A single crystal film can be satisfactorily epitaxially grown.
[0032]
【Example】
Example 1
Calcium carbonate and alumina powder were mixed so that a = 1, b = 0, p = 1, q = 2 in (Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q . The carbon dioxide gas contained in calcium carbonate was calculated as being volatilized during firing. The particle size of the raw material powder is 3 μm for both calcium carbonate and alumina, mixed for 8 hours in a wet mill, boiled and dried, then kept at 900 ° C. for 3 hours and decarboxylated, at 1300 ° C. Baked.
[0033]
As for the phase change temperature, crystallization of the starting raw material phase was confirmed at 1100 ° C., and a different phase was crystallized unless it was maintained at 1300 ° C. for 3 hours or more, and it did not become a single phase.
[0034]
This raw material was filled in a molybdenum crucible and melted by heating to 1800 ° C. in a high-frequency heating furnace in an argon atmosphere. No reaction was confirmed between the raw material melt and the crucible under the conditions using a molybdenum crucible and an argon atmosphere. The electric power required for heating to 1800 ° C. in a high-frequency induction heating furnace was sufficient with an electric power lower by 30% or more than the electric power required for a temperature condition of slightly over 2000 ° C. required for melting sapphire.
[0035]
The seed crystal was brought into contact with the melt surface heated to 1740 to 1770 ° C., and the temperature was lowered to pull up by the Czochralski method at a rate of 2 mm per hour. The pulling speed was 0-5 mm per hour, and the pulling speed was higher than that of the sapphire single crystal.
[0036]
As a result, a crystal having a diameter of 52 mm and a length of 120 mm was pulled up, a substrate having a thickness of 0.5 mm and a diameter of 50 mm was cut out, and the obtained substrate was mirror-finished by chemical polishing.
[0037]
The substrate thus obtained was acid-treated with sulfuric acid and used as a substrate for forming a gallium nitride single crystal film. The surface could be easily etched by impregnation with sulfuric acid having a pH of 2 at room temperature for 4 to 5 hours.
[0038]
For the deposition of gallium nitride, a homogeneous metal gallium nitride single crystal film was obtained through a low-temperature buffer phase of AlN or GaN by using a metal organic compound vapor phase growth method using trimethylgallium.
[0039]
Example 2
In the same manner as described above, as a result of using the EFG method, a plate-like single crystal substrate having a width of 50 mm and a length of 150 mm in a predetermined direction could be produced. Molybdenum was used for the crucible and die, but no reaction with the melt was observed.
[0040]
However, with regard to the composition ratio of the melt, a molar ratio of CaO: Al 2 O 3 in the range of 1/12 to 3/2 and a composition other than pure alumina, a reaction was observed between molybdenum and the melt, and it was pure. I couldn't draw crystals.
[0041]
Even when iridium is used for the crucible material without using molybdenum, the composition ratio of the melt is set to a range of 1/12 to 3/2 with the molar ratio of CaO: Al 2 O 3. If so, it was confirmed that crystal growth was possible.
[0042]
Also in the powder raw material, calcium carbonate and alumina powder were mixed so that a = 1, p = 1, q = 2 in (Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q When the raw material powder that has been decarboxylated at 900 ° C. and baked at 1300 ° C. is once melted and solidified by Bernoulli method and then pulverized to a particle size of about 5 mm, the filling amount in the crucible is double that of the powder As described above, since the melting time is shortened, the material can be melted in a short time, and a very useful raw material for the crystal pulling of the present invention can be produced.
[0043]
【The invention's effect】
According to the present invention, a composition represented by (Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q and satisfying 0 ≦ a + b ≦ 1 and 1/12 ≦ p / q ≦ 3/2 Because it is made of a single crystal material, it is stable in a high-temperature reducing atmosphere, can be easily machined and etched, and is easy to manufacture, so it has excellent mass productivity and can cope with large diameters. .
[0044]
Moreover, if the film-forming substrate is formed using the single crystal material in the present invention, the substrate itself can be easily fabricated, and both the substrate grinding process and the cutting process can be performed in the process after forming the single crystal thin film. It can be performed easily with a good yield. As a result, the electronic device of the present invention can be mass-produced at low cost.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a film formation substrate of the present invention.
FIG. 2 is a diagram for explaining a method for manufacturing a film formation substrate according to the present invention.
[Explanation of symbols]
1: substrate for film formation 2: compound semiconductor film 3: crucible 4: die 5: raw material melt 6: seed crystal 7: single crystal

Claims (3)

(CaBaSr1−a−b)Al2qp+3qで表され、0≦a+b≦1、かつ1/12≦p/q≦3/2を満たす組成の単結晶材料からなり、その表面に化合物半導体膜を形成するようにしたことを特徴とする成膜用基板。(Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q , a single crystal material having a composition satisfying 0 ≦ a + b ≦ 1 and 1/12 ≦ p / q ≦ 3/2, A film forming substrate characterized in that a compound semiconductor film is formed on a surface. a=1、b=0、p=1、q=2を満たすことを特徴とする請求項記載の成膜用基板。a = 1, b = 0, p = 1, q = 2 deposition substrate according to claim 1, wherein a satisfying. (CaBaSr1−a−b)Al2qp+3qで表され、0≦a+b≦1、かつ1/12≦p/q≦3/2を満たす組成の単結晶材料からなる基板の表面に、化合物半導体膜を形成してなる電子デバイス。(Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q , a substrate made of a single crystal material having a composition satisfying 0 ≦ a + b ≦ 1 and 1/12 ≦ p / q ≦ 3/2 An electronic device having a compound semiconductor film formed on the surface.
JP21627398A 1998-07-30 1998-07-30 Deposition substrate and electronic device Expired - Fee Related JP3683714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21627398A JP3683714B2 (en) 1998-07-30 1998-07-30 Deposition substrate and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21627398A JP3683714B2 (en) 1998-07-30 1998-07-30 Deposition substrate and electronic device

Publications (2)

Publication Number Publication Date
JP2000044391A JP2000044391A (en) 2000-02-15
JP3683714B2 true JP3683714B2 (en) 2005-08-17

Family

ID=16685965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21627398A Expired - Fee Related JP3683714B2 (en) 1998-07-30 1998-07-30 Deposition substrate and electronic device

Country Status (1)

Country Link
JP (1) JP3683714B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4806251B2 (en) * 2005-11-14 2011-11-02 日立化成工業株式会社 Oxidation catalyst, ionic conductor and method for producing the same
JP4941405B2 (en) * 2008-02-01 2012-05-30 日立化成工業株式会社 Method for removing aluminum oxide from crucible inner surface and crucible regeneration method

Also Published As

Publication number Publication date
JP2000044391A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
JP4647525B2 (en) Method for producing group III nitride crystal
US5530267A (en) Article comprising heteroepitaxial III-V nitride semiconductor material on a substrate
JP4817350B2 (en) Method for producing zinc oxide semiconductor member
JP5146310B2 (en) Method for producing ZnO single crystal by liquid phase growth method
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
CN101583745A (en) Process for production of GaN crystals, GaN crystals, GaN crystal substrate, semiconductor devices, and apparatus for production of GaN crystals
EP1490307B1 (en) Spinel substrate and heteroepitaxial growth of iii-v materials thereon
WO2008072751A1 (en) Method for producing group iii nitride-based compound semiconductor crystal
CN101006207A (en) Method for producing AIN single crystal and aln single crystal
CN111575796A (en) Method for producing group III nitride crystal
CN107230737B (en) Group III-nitride substrate and the manufacturing method of group III-nitride crystallization
CN107190324A (en) Group III-nitride crystallization manufacture method and containing RAMO4Substrate
Bockowski Growth and doping of GaN and AlN single crystals under high nitrogen pressure
JP5123423B2 (en) Method for producing group III nitride compound semiconductor
JP3683714B2 (en) Deposition substrate and electronic device
CN111593400A (en) Method for producing group III nitride crystal and seed crystal substrate
WO2018047844A1 (en) Method for producing gallium nitride laminate
CN107794567A (en) Method for manufacturing III nitride semiconductor
CN112779603A (en) High-quality low-defect silicon carbide single crystal, and preparation method and application thereof
RU2369669C2 (en) Substrate for growing of epitaxial layers of gallium nitride
JP2000247790A (en) Substrate for semiconductor element, semiconductor element and production of nitrogen compound single crystal substrate
JP2007506641A (en) Spinel article and manufacturing method thereof
JP2009234825A (en) METHOD FOR MANUFACTURING ZnO SINGLE CRYSTAL AND SELF-SUPPORTING WAFER OF ZnO SINGLE CRYSTAL OBTAINED BY IT
TWI345002B (en) Nitride single crystal and producing method thereof
KR20240045295A (en) Method for manufacturing β-Ga2O3/β-Ga2O3 laminate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050526

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees