JP2000044391A - Single crystal material and its production and substrate for film formation and electronic device using the same - Google Patents

Single crystal material and its production and substrate for film formation and electronic device using the same

Info

Publication number
JP2000044391A
JP2000044391A JP21627398A JP21627398A JP2000044391A JP 2000044391 A JP2000044391 A JP 2000044391A JP 21627398 A JP21627398 A JP 21627398A JP 21627398 A JP21627398 A JP 21627398A JP 2000044391 A JP2000044391 A JP 2000044391A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
powder
crystal material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21627398A
Other languages
Japanese (ja)
Other versions
JP3683714B2 (en
Inventor
Hiroyuki Kinoshita
博之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21627398A priority Critical patent/JP3683714B2/en
Publication of JP2000044391A publication Critical patent/JP2000044391A/en
Application granted granted Critical
Publication of JP3683714B2 publication Critical patent/JP3683714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an inexpensive, large-diameter oxide single crystal substrate easy to work by subjecting at least one of CaCO3, SrCO3 and BaCO3 and Al2O3 to decarbonation treatment followed by baking to afford a feedstock which is then melted and pulled up into a single crystal. SOLUTION: The subject single crystal material consisting of a single crystal body 7 is obtained according to the following procedure: at least one kind of powder selected from CaCO3 powder, SrCO3 powder and BaCO3 powder and Al2O3 powder are mixed with each other so as to effect a composition of the formula (CaaBabSr1-a-b)pAl2qOp+3q (0<=(a+b)<=1; 1/12<=p/q<=3/2), which is then subjected to decarbonation treatment at >=900 deg.C and subsequently baked under heating at >=1,300 deg.C followed by crystallization by a melting method such as Bernoulli method to afford a granular feedstock; the feedstock is then melted under heating into a melt 5, which, in turn, is filled in a crucible 3 with a molybdenum die 4 set up therein, and pulled up using a seed crystal 6. The 2nd objective substrate consists of the above single crystal material. The 3rd objective electronic device is obtained by forming a compound semiconductor on the surface of the above-mentioned substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化ガリウム、水
銀カドミウムテルル、酸化亜鉛、窒化アルミニウム単結
晶等の化合物半導体薄膜を成膜するための成膜用基板、
及びそのための単結晶材料に関する。
The present invention relates to a film-forming substrate for forming a compound semiconductor thin film such as gallium nitride, mercury cadmium tellurium, zinc oxide, aluminum nitride single crystal, etc.
And a single crystal material therefor.

【0002】[0002]

【従来の技術】化合物半導体材料は、バルク体を作製す
ることが困難であるため、成膜用基板の表面にエピタキ
シャル成長により成膜したものが用いられている。
2. Description of the Related Art Since it is difficult to prepare a bulk body of a compound semiconductor material, a material formed by epitaxial growth on the surface of a film forming substrate is used.

【0003】例えば、発光デバイス等に使用される化合
物半導体材料である窒化ガリウム薄膜単結晶は、最も一
般的には単結晶サファイアからなる成膜用基板の表面に
成膜することが行われている。あるいは、他の成膜用基
板として、単結晶スピネル、単結晶炭化珪素、単結晶窒
化ガリウム基板も使用されている。
For example, a gallium nitride thin film single crystal, which is a compound semiconductor material used for a light emitting device or the like, is most commonly formed on a surface of a film forming substrate made of single crystal sapphire. . Alternatively, as another film formation substrate, a single crystal spinel, a single crystal silicon carbide, or a single crystal gallium nitride substrate is also used.

【0004】同じく化合物半導体材料として、センサー
等に使用される水銀カドミウムテルル薄膜単結晶は、一
般的には単結晶サファイアの成膜用基板の表面に成膜さ
れる。
Similarly, as a compound semiconductor material, a mercury-cadmium tellurium thin film single crystal used for a sensor or the like is generally formed on the surface of a single crystal sapphire film forming substrate.

【0005】圧電材料、半導体材料として用いられる化
合物半導体材料である酸化亜鉛、窒化アルミ薄膜単結晶
は、一般にガラスまたは単結晶サファイアの成膜用基板
を使用している。
[0005] In general, zinc oxide and aluminum nitride thin film single crystals, which are compound semiconductor materials used as piezoelectric materials and semiconductor materials, use a glass or single crystal sapphire film-forming substrate.

【0006】[0006]

【発明が解決しようとする課題】上記窒化ガリウム単結
晶膜を成膜する基板のうち、単結晶スピネル(MgAl
2O4)、単結晶炭化珪素(SiC) 、単結晶窒化ガリウム(Ga
N) 、単結晶酸化亜鉛(ZnO) 、単結晶窒化アルミニウム
(AlN) は、いずれも基板の価格が非常に高価であり、質
の良い結晶基板を作製することが困難であり、且つ大口
径の基板を作製することが困難であるという問題があっ
た。
Among the substrates on which the gallium nitride single crystal film is formed, a single crystal spinel (MgAl
2 O 4 ), single crystal silicon carbide (SiC), single crystal gallium nitride (Ga
N), single crystal zinc oxide (ZnO), single crystal aluminum nitride
(AlN) has a problem that the cost of the substrate is very high, and it is difficult to produce a high-quality crystal substrate, and it is difficult to produce a large-diameter substrate.

【0007】以上の基板に対して、単結晶サファイア
は、窒化ガリウム単結晶膜の成膜用基板として最も一般
的に使用されているが、硬度が高く加工が困難であり、
欠けやすい為、生産性の悪い条件で慎重に加工を行う必
要があり、生産効率が悪いものであった。また、単結晶
サファイアは化学耐性が極めて高いため、一般的な化学
研磨加工に高度な技術を要し、デバイスプロセスにおい
て行われる腐食加工において、危険なリン酸やリン酸硫
酸混合液の煮沸を行わなければならないという問題があ
った。
In contrast to the above substrates, single crystal sapphire is most commonly used as a substrate for forming a gallium nitride single crystal film, but has a high hardness and is difficult to process.
Since it is easy to chip, it is necessary to carefully process under conditions of low productivity, resulting in poor production efficiency. In addition, since single crystal sapphire has extremely high chemical resistance, advanced technology is required for general chemical polishing, and dangerous phosphoric acid and phosphoric acid-sulfuric acid mixed solution are boiled in corrosion processing performed in the device process. There was a problem that had to be.

【0008】さらに、単結晶サファイアは、融点が20
00℃を越えるため、炉材が高価になり、融点まで温度
を上げるために多量のエネルギーが必要であるという問
題もあった。
Further, single crystal sapphire has a melting point of 20
Since the temperature exceeds 00 ° C., the furnace material becomes expensive, and there is a problem that a large amount of energy is required to raise the temperature to the melting point.

【0009】一方、窒化ガリウム単結晶膜以外において
も、水銀カドミウムテルル、酸化亜鉛、窒化アルミニウ
ム単結晶薄膜等を成膜するための基板においても、上記
と同様の問題があった。
On the other hand, other than the gallium nitride single crystal film, the same problem as described above also occurs in a substrate for forming a mercury cadmium tellurium, zinc oxide, aluminum nitride single crystal thin film or the like.

【0010】本発明は、上記の問題点に対し、安価で大
口径且つ、加工も容易な酸化物単結晶の基板を得ること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an oxide single crystal substrate which is inexpensive, has a large diameter, and is easy to process.

【0011】[0011]

【課題を解決するための手段】本発明は、(Ca a Bab Sr
1-a-b ) p Al2qO p+3qで表され、0≦a+b ≦1、かつ1/
12≦p/q ≦3/2 を満たす組成からなる単結晶材料を特徴
とする。
SUMMARY OF THE INVENTION The present invention relates to (Ca a Ba b Sr
1-ab ) p Al 2q O p + 3q , 0 ≦ a + b ≦ 1, and 1 / ab
A single crystal material having a composition satisfying 12 ≦ p / q ≦ 3/2 is characterized.

【0012】また、本発明は、上記組成からなる原料を
混合し、900℃以上で脱炭酸処理し、1300℃以上
にて焼成した後、得られた原料を溶融させて単結晶体を
引き上げる工程からなる単結晶材料の製造方法を特徴と
する。
Further, the present invention provides a process of mixing raw materials having the above composition, decarboxylating at 900 ° C. or more, firing at 1300 ° C. or more, melting the obtained raw material, and pulling up a single crystal. The method is characterized by a method for producing a single crystal material comprising:

【0013】さらに、本発明は、上記単結晶材料からな
り、その表面に化合物半導体膜を形成するようにした成
膜用基板を特徴とする。
Further, the present invention is characterized by a film-forming substrate formed of the above-mentioned single crystal material and having a compound semiconductor film formed on the surface thereof.

【0014】また、本発明は、上記単結晶材料からなる
基板の表面に、化合物半導体膜を形成した電子デバイス
を特徴とする。
Further, the present invention is characterized by an electronic device in which a compound semiconductor film is formed on a surface of a substrate made of the above-mentioned single crystal material.

【0015】[0015]

【作用】上記組成の単結晶材料は、単結晶サファイアに
比べて低い温度で引き上げできる等、製造が容易である
ことから、大口径化にも対応でき、大量生産も容易であ
る。また、この単結晶材料は、機械加工やエッチング加
工を容易に行うことができ、成膜用基板として用いた場
合に、成膜後の研削加工や切り出し加工を容易に行うこ
とができる。
The single crystal material having the above composition is easy to manufacture, for example, it can be pulled at a lower temperature than single crystal sapphire. Therefore, it is possible to cope with a large diameter, and mass production is easy. In addition, the single crystal material can be easily machined or etched, and when used as a film formation substrate, can be easily ground or cut out after film formation.

【0016】[0016]

【発明の実施の形態】以下に、本発明についての詳細を
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail.

【0017】図1に示す成膜用基板1は、詳細を後述す
る単結晶材料からなる板状体であり、その表面に窒化ガ
リウム、水銀カドミウムテルル、酸化亜鉛、窒化アルミ
薄膜単結晶等の化合物半導体膜2をエピタキシャル成長
させるためのものである。
The film-forming substrate 1 shown in FIG. 1 is a plate-like body made of a single crystal material, which will be described in detail later, and has a surface on which a compound such as gallium nitride, mercury cadmium tellurium, zinc oxide, or aluminum nitride thin film single crystal is formed. This is for epitaxially growing the semiconductor film 2.

【0018】そして、これらの化合物半導体膜を成膜し
た後、研削加工や切り出し加工を行って所定形状とし、
発光デバイス、受光デバイス、圧電電子部品等の電子デ
バイスとすることができる。
After these compound semiconductor films are formed, they are ground or cut out into a predetermined shape.
An electronic device such as a light emitting device, a light receiving device, and a piezoelectric electronic component can be used.

【0019】上記成膜用基板1は、(Ca a Bab S
r1-a-b ) p Al2qO p+3qで表され、0≦a+b≦1、かつ1/
12≦p/q ≦3/2 を満たす組成の単結晶材料からなること
を特徴とする。
The film forming substrate 1 is made of (Ca a Ba b S
r 1-ab ) p Al 2q O p + 3q , 0 ≦ a + b ≦ 1 and 1 /
It is made of a single crystal material having a composition satisfying 12 ≦ p / q ≦ 3/2.

【0020】上記組成の単結晶材料は、比較的低い温度
で引き上げできる等、製造が容易であることから、大口
径化にも対応でき、大量生産が容易である。また、この
単結晶材料は、機械加工やエッチング加工を容易に行う
ことができることから、成膜後の研削加工や切り出し加
工を容易に行うことができる。
The single crystal material having the above composition can be easily manufactured, for example, it can be pulled up at a relatively low temperature. Therefore, it is possible to cope with a large diameter, and mass production is easy. In addition, since the single crystal material can be easily machined and etched, grinding and cutting after film formation can be easily performed.

【0021】なお、上記単結晶材料を安定して製造する
ためには、p,q は、 (1) p=3,q=2 (2) p=12,q=14 (3) p=1,q=2 (4) p=1,q
=4 (5) p=1,q=12 のいずれかであることが好ましく、特に(3)(4)の組成が
最も安定している。
In order to stably produce the single crystal material, p and q are as follows: (1) p = 3, q = 2 (2) p = 12, q = 14 (3) p = 1 , q = 2 (4) p = 1, q
= 4 (5) It is preferable that either p = 1 or q = 12, and particularly the compositions (3) and (4) are the most stable.

【0022】また、a,b の値については特に限定される
ものは無いが、製造の安定上、Ca,Ba,Srのいずれか単一
の元素で構成されることが好ましい。即ち、 (1) a=1,b=0 (2)a=0,b=1 (3) a=b=0 のいずれかであることが好ましい。
The values of a and b are not particularly limited, but are preferably composed of any one of Ca, Ba, and Sr from the viewpoint of production stability. That is, it is preferable that either (1) a = 1, b = 0, (2) a = 0, b = 1, (3) a = b = 0.

【0023】さらに、好ましくは、a=1,b=0,p=1,q=2 と
したもの、即ちCaAl4O7 で表される組成のものが最適で
ある。
Further, preferably, a = 1, b = 0, p = 1, q = 2, that is, a composition represented by CaAl 4 O 7 is optimal.

【0024】次に、上記単結晶材料の製造方法を説明す
る。
Next, a method for producing the single crystal material will be described.

【0025】まず、CaCO3 粉末,SrCO3粉末,BaCO3粉末の
少なくとも1つと、Al2O3 粉末を用い、上記組成範囲と
なるように原料を混合し、この原料を900℃以上で脱
炭酸処理を行い、1300℃以上で焼成した後、ベルヌ
ーイ法などの溶融法で一旦結晶化させ粒状とする。この
処理を経た後の原料を用いて、チョクラルスキー法、E
FG法、ベルヌーイ法等の溶融法により単結晶材料を作
製する。
First, a raw material is mixed with at least one of CaCO 3 powder, SrCO 3 powder and BaCO 3 powder and Al 2 O 3 powder so as to have the above composition range, and the raw material is decarbonated at 900 ° C. or more. After performing the treatment and firing at 1300 ° C. or more, the particles are once crystallized by a melting method such as the Bernoulli method to be granular. Using the raw material after this treatment, Czochralski method, E
A single crystal material is manufactured by a melting method such as the FG method and the Bernoulli method.

【0026】具体的には、図2に示すように、モリブデ
ンからなる坩堝3にモリブデンからなるダイス4を配置
するとともに、原料融液5を充填し、種結晶6を用いて
引き上げることによって単結晶体7を得ることができ
る。
Specifically, as shown in FIG. 2, a crucible 3 made of molybdenum is provided with a die 4 made of molybdenum, a raw material melt 5 is filled, and a single crystal is pulled up by using a seed crystal 6. The body 7 can be obtained.

【0027】この時、原料に対して、上記のような焼成
後の溶融処理を行うことによって、坩堝3への充填効率
と、溶融速度を上げることができる。しかも、上記処理
を行った原料は、粉末状・粒状を問わず、モリブデンや
イリジウムの坩堝3にて容易に溶融する事ができる。
At this time, by performing the above-mentioned melting treatment after firing on the raw material, the filling efficiency into the crucible 3 and the melting rate can be increased. Moreover, the raw material subjected to the above treatment can be easily melted in the crucible 3 made of molybdenum or iridium irrespective of powdery or granular form.

【0028】上記のように、本発明における組成の原料
を使用して、本発明の方法で引き上げを行うことによ
り、単結晶サファイアの引き上げに比べて低い加熱エネ
ルギーで製造できるため、安価なモリブデンを炉材に使
用でき、容易に大型の単結晶を得ることが可能となる。
As described above, by using the raw material having the composition according to the present invention and performing pulling by the method of the present invention, it is possible to produce with less heating energy than pulling single crystal sapphire. It can be used as a furnace material, and a large single crystal can be easily obtained.

【0029】また、上記溶融法によって引き上げされた
単結晶材料は、単結晶サファイアに比べ容易に加工で
き、ウエハーに研磨できる。
The single crystal material pulled up by the melting method can be processed more easily than single crystal sapphire, and can be polished on a wafer.

【0030】こうして得られた単結晶材料を用いて、図
1に示す成膜用基板1を形成すれば、高温及び真空及び
還元雰囲気にて安定であるため、窒化ガリウム、水銀カ
ドミウムテルル、酸化亜鉛、窒化アルミ単結晶膜を良好
にエピタキシャル成長させる事ができる。
When the single-crystal material thus obtained is used to form the film-forming substrate 1 shown in FIG. 1, it is stable at high temperature, in a vacuum and in a reducing atmosphere, and is therefore made of gallium nitride, mercury cadmium telluride, zinc oxide. In addition, an aluminum nitride single crystal film can be favorably grown epitaxially.

【0031】なお、以上は成膜用基板について述べた
が、本発明の単結晶材料はその他に、窓材や構造材料等
のさまざまな用途に用いることができる。
Although the substrate for film formation has been described above, the single crystal material of the present invention can be used for various applications such as window materials and structural materials.

【0032】[0032]

【実施例】実施例1 (Ca a Bab Sr1-a-b ) p Al2qO p+3qにおいてa=1,b=0,p=
1,q=2 となるように、炭酸カルシウム及びアルミナの粉
末を混合した。炭酸カルシウムに含まれる炭酸ガスは、
焼成中に揮発するものとして計算した。原料粉末の粒度
は、炭酸カルシウム、アルミナともに3μmのものを使
用し、湿式ミルで8時間混合し、煮沸乾燥した後、90
0℃にて3時間保持して脱炭酸処理して、1300℃に
て焼成した。
EXAMPLES Example 1 (Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q , a = 1, b = 0, p =
Calcium carbonate and alumina powders were mixed so that 1, q = 2. Carbon dioxide contained in calcium carbonate is
Calculated as volatilizing during firing. The particle size of the raw material powder is 3 μm for both calcium carbonate and alumina, mixed in a wet mill for 8 hours, and dried by boiling.
It was kept at 0 ° C. for 3 hours, decarbonated, and fired at 1300 ° C.

【0033】相変化温度についても1100℃では出発
原料相の晶出が確認され、1300℃においても3時間
以上保持しなければ異相が晶出し、単一相とはならなか
った。
Regarding the phase change temperature, crystallization of the starting material phase was confirmed at 1100 ° C., and even at 1300 ° C., if the temperature was not maintained for 3 hours or more, a different phase was crystallized and did not become a single phase.

【0034】この原料をモリブデン坩堝に充填し、アル
ゴン雰囲気にて高周波加熱炉で1800℃に加熱し溶融
した。モリブデン坩堝を用い、アルゴン雰囲気を使用し
た条件に於いて、原料融液と坩堝に反応は確認されなか
った。高周波誘導加熱炉に於いて1800℃に加熱する
為に必要な電力は、サファイアの溶融に必要な2000
℃強の温度条件に必要な電力に比べ30%以上低い電力
で十分であった。
This raw material was filled in a molybdenum crucible and heated and melted at 1800 ° C. in a high-frequency heating furnace in an argon atmosphere. Under the conditions using a molybdenum crucible and an argon atmosphere, no reaction was confirmed between the raw material melt and the crucible. The electric power required for heating to 1800 ° C. in the high-frequency induction heating furnace is 2000 times required for melting sapphire.
An electric power lower by 30% or more than the electric power required for the temperature condition of slightly over ℃ was sufficient.

【0035】1740〜1770℃に加熱した溶融状態
の融液の液面に、種子結晶を接触させ温度を下げながら
1時間当たり2mmの速度でチョクラルスキー法によっ
て引き上げを行った。引き上げ速度は、1時間当たり0
〜5mmの速度で引き上げ可能であり、サファイア単結
晶に比べ早い速度で引き上げを行うことが出来た。
A seed crystal was brought into contact with the liquid surface of the melt in a molten state heated to 1740 to 1770 ° C., and the temperature was lowered by a Czochralski method at a rate of 2 mm per hour while lowering the temperature. Lifting speed is 0 per hour
Pulling was possible at a speed of about 5 mm, and pulling could be performed at a speed higher than that of a sapphire single crystal.

【0036】その結果、直径52mm、長さ120mm
の結晶を引き上げ、厚さ0.5mm、直径50mmの基
板を切り出し、得られた基板を化学研磨によって鏡面加
工した。
As a result, a diameter of 52 mm and a length of 120 mm
Was pulled out, a substrate having a thickness of 0.5 mm and a diameter of 50 mm was cut out, and the obtained substrate was mirror-finished by chemical polishing.

【0037】このようにして得られた基板を、硫酸によ
って酸処理し、窒化ガリウム単結晶膜の成膜用基板とし
て使用した。なお、常温のpH2の硫酸に於いて4〜5
時間含浸させる事によって容易に表面をエッチングする
ことが出来た。
The substrate thus obtained was acid-treated with sulfuric acid and used as a substrate for forming a gallium nitride single crystal film. In addition, 4 ~ 5 in sulfuric acid of pH2 at normal temperature
The surface could be easily etched by impregnating for a time.

【0038】窒化ガリウムの成膜には、トリメチルガリ
ウムを使用した有機金属化合物気相成長法を用い、AlN
またはGaN による低温バッファ相を介して均質な窒化ガ
リウム単結晶膜を得る事が出来た。
For the gallium nitride film formation, an organometallic compound vapor deposition method using trimethylgallium is used,
Alternatively, a uniform gallium nitride single crystal film could be obtained via a low-temperature buffer phase of GaN.

【0039】実施例2 上記と同様にして、EFG法を用いた結果、所定の方位
で幅50mm、長さ150mmの板状単結晶基板を作製
することができた。坩堝、ダイスにはモリブデンを用い
たが、融液との反応は見られなかった。
Example 2 In the same manner as described above, as a result of using the EFG method, a plate-like single crystal substrate having a width of 50 mm and a length of 150 mm in a predetermined orientation could be produced. Molybdenum was used for the crucible and the die, but no reaction with the melt was observed.

【0040】但し、融液の組成比について、CaO:Al2O3
のモル比で、1/12〜3/2 の範囲及び純アルミナ以外の組
成ではモリブデンと融液の間に反応が見られ、純粋な結
晶を引くことが出来なかった。
However, regarding the composition ratio of the melt, CaO: Al 2 O 3
With a molar ratio of 1/12 to 3/2 and a composition other than pure alumina, a reaction was observed between molybdenum and the melt, and pure crystals could not be drawn.

【0041】また、モリブデンを使用せずイリジウムを
坩堝材に用いた場合に於いても、融液の組成比について
CaO:Al2O3 のモル比で、1/12〜3/2 の範囲に設定してお
けば、結晶成長が可能である事が確認できた。
In the case where iridium is used for the crucible material without using molybdenum, the composition ratio of the melt is
When the molar ratio of CaO: Al 2 O 3 was set in the range of 1/12 to 3/2, it was confirmed that crystal growth was possible.

【0042】また、粉末原料においても、(Ca a Bab Sr
1-a-b ) p Al2qO p+3qにおいてa=1,p=1,q=2 となるよう
に、炭酸カルシウム及び、アルミナの粉末を混合し、9
00℃での脱炭酸処理、1300℃焼成を経た粉末原料
に対し、ベルヌーイ法によって一旦溶融・固化させ、粒
度5mm程度に粉砕した原料を使用した場合、坩堝への
充填量が粉末の倍以上あり、且つ溶融時間も短くなるた
め、短時間で溶融する事が出来、本発明の結晶引き上げ
に対して非常に有用な原料が製造できた。
Also, in the case of powder raw materials, (Ca a Ba b Sr
1-ab ) p Al 2q O Mix the calcium carbonate and alumina powders so that a = 1, p = 1, q = 2 in p + 3q ;
Decarbonation treatment at 00 ° C, powdered material that has been baked at 1300 ° C, once melted and solidified by the Bernoulli method, and when the raw material ground to about 5 mm is used, the filling amount in the crucible is more than twice the powder. In addition, since the melting time was shortened, melting was possible in a short time, and a very useful raw material for crystal pulling of the present invention was produced.

【0043】[0043]

【発明の効果】本発明によれば、(Ca a Bab Sr1-a-b )
p Al2qO p+3qで表され、0≦a+b ≦1、かつ1/12≦p/q
≦3/2 を満たす組成からなる単結晶材料としたことによ
って、高温還元雰囲気で安定しており、容易に機械加工
及びエッチングする事ができ、また製造が容易であるた
め、量産性に優れ、大口径化にも対応できる。
According to the present invention, (Ca a Ba b Sr 1-ab )
p Al 2q O p + 3q , 0 ≦ a + b ≦ 1, and 1/12 ≦ p / q
By using a single crystal material having a composition that satisfies ≦ 3/2, it is stable in a high-temperature reducing atmosphere, can be easily machined and etched, and is easy to manufacture. It can handle large diameters.

【0044】しかも本発明における単結晶材料を用いて
成膜用基板を形成すれば、基板自体の作製加工が容易で
あるとともに、単結晶薄膜を成膜した後の加工において
も、基板研削加工、切り出し加工ともに歩留まり良く容
易に行うことができる。その結果、本発明の電子デバイ
スは安価に大量生産することができる。
In addition, when a substrate for film formation is formed using the single crystal material according to the present invention, the substrate itself can be easily formed and processed. Both the cutting process can be easily performed with good yield. As a result, the electronic device of the present invention can be mass-produced at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の成膜用基板を示す斜視図である。FIG. 1 is a perspective view showing a film formation substrate of the present invention.

【図2】本発明の単結晶材料の製造方法を説明するため
の図である。
FIG. 2 is a diagram for explaining a method for producing a single crystal material according to the present invention.

【符号の説明】[Explanation of symbols]

1:成膜用基板 2:化合物半導体膜 3:坩堝 4:ダイス 5:原料融液 6:種結晶 7:単結晶体 1: film formation substrate 2: compound semiconductor film 3: crucible 4: die 5: raw material melt 6: seed crystal 7: single crystal

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】(Ca a Bab Sr1-a-b ) p Al2qO p+3qで表さ
れ、0≦a+b ≦1、かつ1/12≦p/q ≦3/2 を満たす組成
からなる単結晶材料。
1. A composition represented by (Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q and satisfying 0 ≦ a + b ≦ 1 and 1/12 ≦ p / q ≦ 3/2. Single crystal material.
【請求項2】(Ca a Bab Sr1-a-b ) p Al2qO p+3qで表さ
れ、0≦a+b ≦1、かつ1/12≦p/q ≦3/2 を満たす組成
からなる原料を混合し、900℃以上で脱炭酸処理し、
1300℃以上にて焼成した後、得られた原料を溶融さ
せて単結晶体を引き上げる工程からなる単結晶材料の製
造方法。
2. A composition represented by (Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q which satisfies 0 ≦ a + b ≦ 1 and 1/12 ≦ p / q ≦ 3/2. Raw materials are mixed and decarbonated at 900 ° C. or higher,
A method for producing a single crystal material, comprising a step of baking at 1300 ° C. or higher, melting the obtained raw material and pulling up a single crystal.
【請求項3】(Ca a Bab Sr1-a-b ) p Al2qO p+3qで表さ
れ、0≦a+b ≦1、かつ1/12≦p/q ≦3/2 を満たす組成
の単結晶材料からなり、その表面に化合物半導体膜を形
成するようにしたことを特徴とする成膜用基板。
3. A composition represented by (Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q and satisfying 0 ≦ a + b ≦ 1 and 1/12 ≦ p / q ≦ 3/2. A film formation substrate comprising a single crystal material and a compound semiconductor film formed on a surface thereof.
【請求項4】a=1、b=0、p=1、q=2を満たす
ことを特徴とする請求項3記載の成膜用基板。
4. The film forming substrate according to claim 3, wherein a = 1, b = 0, p = 1, and q = 2 are satisfied.
【請求項5】(Ca a Bab Sr1-a-b ) p Al2qO p+3qで表さ
れ、0≦a+b ≦1、かつ1/12≦p/q ≦3/2 を満たす組成
の単結晶材料からなる基板の表面に、化合物半導体膜を
形成してなる電子デバイス。
5. A composition represented by (Ca a Ba b Sr 1-ab ) p Al 2q O p + 3q and satisfying 0 ≦ a + b ≦ 1 and 1/12 ≦ p / q ≦ 3/2. An electronic device in which a compound semiconductor film is formed on a surface of a substrate made of a single crystal material.
JP21627398A 1998-07-30 1998-07-30 Deposition substrate and electronic device Expired - Fee Related JP3683714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21627398A JP3683714B2 (en) 1998-07-30 1998-07-30 Deposition substrate and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21627398A JP3683714B2 (en) 1998-07-30 1998-07-30 Deposition substrate and electronic device

Publications (2)

Publication Number Publication Date
JP2000044391A true JP2000044391A (en) 2000-02-15
JP3683714B2 JP3683714B2 (en) 2005-08-17

Family

ID=16685965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21627398A Expired - Fee Related JP3683714B2 (en) 1998-07-30 1998-07-30 Deposition substrate and electronic device

Country Status (1)

Country Link
JP (1) JP3683714B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137684A (en) * 2005-11-14 2007-06-07 Hitachi Chem Co Ltd Calcia-alumina based oxide crystal and its production method
JP2009203150A (en) * 2008-02-01 2009-09-10 Hitachi Chem Co Ltd Method for removing aluminum oxide from inside surface of crucible and method for regenerating crucible

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137684A (en) * 2005-11-14 2007-06-07 Hitachi Chem Co Ltd Calcia-alumina based oxide crystal and its production method
JP2009203150A (en) * 2008-02-01 2009-09-10 Hitachi Chem Co Ltd Method for removing aluminum oxide from inside surface of crucible and method for regenerating crucible

Also Published As

Publication number Publication date
JP3683714B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP5374381B2 (en) Aluminum nitride single crystal polygonal column and method for producing plate-like aluminum nitride single crystal using the same
CN101583745A (en) Process for production of GaN crystals, GaN crystals, GaN crystal substrate, semiconductor devices, and apparatus for production of GaN crystals
JP4629341B2 (en) Spinel substrate and heteroepitaxial growth of III-V material on the spinel substrate
WO2008072751A1 (en) Method for producing group iii nitride-based compound semiconductor crystal
JP5396569B1 (en) Method for producing group 13 element nitride crystal and melt composition
US7294199B2 (en) Nitride single crystal and producing method thereof
CN107230737B (en) Group III-nitride substrate and the manufacturing method of group III-nitride crystallization
JP6241831B2 (en) Group III nitride crystal production method and RAMO4-containing substrate
JP4930166B2 (en) Method for producing aluminum oxide single crystal
Chedzey et al. A study of the melt growth of single-crystal thiogallates
JP3683714B2 (en) Deposition substrate and electronic device
CN111593400A (en) Method for producing group III nitride crystal and seed crystal substrate
JP2007506639A (en) Spinel boules, wafers and methods for their production
WO2021005731A1 (en) Monocrystalline gallium arsenide substrate
JP2000247790A (en) Substrate for semiconductor element, semiconductor element and production of nitrogen compound single crystal substrate
RU2369669C2 (en) Substrate for growing of epitaxial layers of gallium nitride
JP2016047786A (en) Crystal material and method of manufacturing the same
JP2007506641A (en) Spinel article and manufacturing method thereof
JP6812413B2 (en) Free-standing substrate and laminate
Wu Bridgman growth of langasite‐type piezoelectric crystals
JPH09263496A (en) Production of barium titanate single crystal
KR20240045295A (en) Method for manufacturing β-Ga2O3/β-Ga2O3 laminate
JP2002167296A (en) Substrate for film forming
CN117448962A (en) Lead magnesium niobate lead titanate piezoelectric monocrystal and preparation method thereof
CN118206079A (en) Inorganic semiconductor material with plastic deformation capability and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050526

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees