JP2692613B2 - Method for producing rare earth vanadate single crystal - Google Patents

Method for producing rare earth vanadate single crystal

Info

Publication number
JP2692613B2
JP2692613B2 JP28617494A JP28617494A JP2692613B2 JP 2692613 B2 JP2692613 B2 JP 2692613B2 JP 28617494 A JP28617494 A JP 28617494A JP 28617494 A JP28617494 A JP 28617494A JP 2692613 B2 JP2692613 B2 JP 2692613B2
Authority
JP
Japan
Prior art keywords
raw material
rare earth
single crystal
heat treatment
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28617494A
Other languages
Japanese (ja)
Other versions
JPH08119797A (en
Inventor
泰彦 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28617494A priority Critical patent/JP2692613B2/en
Publication of JPH08119797A publication Critical patent/JPH08119797A/en
Application granted granted Critical
Publication of JP2692613B2 publication Critical patent/JP2692613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光学用に用いられる希土
類バナデイト単結晶の製造方法に関し、特に結晶育成後
にるつぼ内に残された残存原料の再生方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth vanadate single crystal used for optics, and more particularly to a method for regenerating a raw material left in a crucible after crystal growth.

【0002】[0002]

【従来の技術】希土類バナデイト単結晶は偏光子や固体
レーザなどの光学デバイス用結晶として有用なもので、
主としてCZ法(チョクラルスキイ法、引き上げ法)に
より育成されている。原料には希土類の酸化物(R2
3 、R:希土元素)と五酸化バナジウム(V25 )が
用いられるが、通常両者を混合焼成して、固相反応によ
り希土類バナデイト(RVO4 )を生成させ、これを溶
解して育成原料としている。
2. Description of the Related Art Rare earth vanadate single crystals are useful as crystals for optical devices such as polarizers and solid-state lasers.
It is mainly grown by the CZ method (Czochralski method, pulling method). Rare earth oxide (R 2 O
3 , R: rare earth element) and vanadium pentoxide (V 2 O 5 ) are usually used, but both are usually mixed and fired to produce a rare earth vanadate (RVO 4 ) by a solid phase reaction, which is then dissolved. It is used as a growing material.

【0003】また融点が高いことから、るつぼはもっぱ
らイリジウム製のものが用いられ、そのるつぼ保護の観
点から、結晶育成は中性ないしわずかに酸化性の雰囲気
中で行われている。工業的な結晶製造においては、結晶
育成終了後、消費した重量分の新たな原料を補給して、
いわゆる追いチャージして第2回目以降引き続き育成を
行う方法がとられてきた。
Further, since the melting point is high, a crucible made exclusively of iridium is used, and from the viewpoint of protecting the crucible, crystal growth is carried out in a neutral or slightly oxidizing atmosphere. In the industrial crystal production, after the crystal growth is completed, the consumed weight is replenished with new raw material,
The so-called additional charge has been adopted to continue the training from the second time.

【0004】[0004]

【発明が解決しようとする課題】上述した従来のCZ法
による希土類バナデイト結晶育成では、結晶育成中に原
料が徐々に分解飛散するために全体として組成がストイ
キオメトリー(Sttoichiometry;化学量論比)からずれ
ていく。そしてそのずれによって本来無色透明であるべ
き結晶が着色して光学用として使用できなくなったり、
甚だしい場合は育成結晶にインクルージョン(包含物)
や割れを生じさせていた。
In the rare earth vanadate crystal growth by the above-mentioned conventional CZ method, since the raw materials are gradually decomposed and scattered during the crystal growth, the composition as a whole is stoichiometry (stoichiometry ratio). Deviate from it. And due to the shift, the crystals that should be colorless and transparent originally become colored and cannot be used for optics,
Inclusion (inclusion) in the grown crystal in extreme cases
It was causing cracks.

【0005】通常、高純度原料を用いた場合には第1回
目の育成においてこのような不都合を生じることはまず
ないが、追いチャージ育成を数回行うと残存原料が不良
となるためにそのような問題が顕著に生じるようにな
る。そこで、通常数回の結晶育成後残存原料を取り出
し、廃棄するかあるいは再生して再利用する方法が採ら
れてきた。後者の場合、室温にまで冷却した後、るつぼ
から残存原料を別の容器に移し、電気炉中にて酸素ガス
雰囲気中1100〜1200℃程度の熱処理によって再
生し、再び育成用るつぼに戻して結晶育成用原料として
用いてきた。
Usually, when a high-purity raw material is used, such an inconvenience is unlikely to occur in the first growth, but when the additional charge growth is performed several times, the residual raw material becomes defective, which is the case. Problems will occur remarkably. Therefore, usually, a method of taking out the remaining raw material after growing the crystal several times and discarding it or regenerating it for reuse has been adopted. In the latter case, after cooling to room temperature, the remaining raw material is transferred from the crucible to another container, regenerated by heat treatment in an electric furnace in an oxygen gas atmosphere at about 1100 to 1200 ° C., and returned to the growing crucible to crystallize again. It has been used as a growing material.

【0006】しかしこの原料取り出し操作には多大な時
間と熟練を要するので、るつぼに入ったままの状態で残
存原料を再生する方法が開発されることが望まれてい
た。しかし、再生は酸化性雰囲気での高温の熱処理が必
要であり、従来方法ではイリジウム製のるつぼが損傷を
受けてしまうため、るつぼ内での再生は不可能と考えら
れてきた。本発明はこの点に鑑みてなされたものであっ
て、その目的は、るつぼを損傷することなくるつぼ内で
の再生を可能ならしめて作業性を大幅に改善することで
ある。
However, since this raw material take-out operation requires a great deal of time and skill, it has been desired to develop a method for regenerating the residual raw material in the state of being kept in the crucible. However, regeneration requires high-temperature heat treatment in an oxidizing atmosphere, and the conventional method damages the iridium crucible, so it has been considered that regeneration in the crucible is impossible. The present invention has been made in view of this point, and an object thereof is to enable regeneration in a crucible without damaging the crucible and to greatly improve workability.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、CZ法による希土類バナデイト
(化学式RVO4 、R:希土類元素)の単結晶育成後
に、イリジウムるつぼ内に残った組成のずれた原料を、
るつぼごと空気中で、850℃以上1000℃以下の温
度で1〜40時間熱処理を行って再生し、再び育成原料
として用いることを特徴とする希土類バナデイト単結晶
の製造方法、が提供される。ここで、残存原料再生の熱
処理は、結晶育成終了後一旦室温まで徐冷しその後再生
熱処理温度にまで昇温するか、あるいは結晶育成終了後
再生熱処理温度にまで徐冷し、雰囲気ガスを空気に切り
換えてそのまま再生処理に入ることによって行う。
In order to achieve the above object, according to the present invention, the composition remaining in the iridium crucible after the growth of a single crystal of rare earth vanadate (chemical formula RVO 4 , R: rare earth element) by the CZ method. Misaligned ingredients,
Provided is a method for producing a rare earth vanadate single crystal, which comprises performing heat treatment at a temperature of 850 ° C. or higher and 1000 ° C. or lower for 1 to 40 hours in a crucible together with air to regenerate it and using it again as a growth raw material. Here, in the heat treatment for regenerating the residual material, after the crystal growth is finished, the temperature is gradually cooled to room temperature and then raised to the regenerative heat treatment temperature, or after the crystal growth is gradually cooled to the regenerative heat treatment temperature, the atmosphere gas is changed to air. This is performed by switching and directly entering the reproduction process.

【0008】[0008]

【作用】本発明はイリジウムが損傷を受けずにかつ希土
類バナデイト残存原料が再生される条件を見いだしたこ
とにより、従来困難とされていた残存原料をるつぼごと
酸化性雰囲気で再生熱処理を行いうる方法を提供するも
のである。従来イリジウムるつぼは酸化性雰囲気では損
傷を受けるため用いることができないとされてきた。そ
のため、酸化物の単結晶を育成する場合でも不活性ない
し中性のガスの雰囲気を主体とし、酸素を混入させる場
合でもせいぜい1〜2%の含有率が限度であった。
The present invention has found a condition that iridium is not damaged and that rare earth vanadate residual raw material is regenerated. Therefore, it is possible to perform regenerative heat treatment of the residual raw material together with the crucible in an oxidizing atmosphere, which has been conventionally difficult. Is provided. It has been conventionally considered that an iridium crucible cannot be used because it is damaged in an oxidizing atmosphere. Therefore, even in the case of growing an oxide single crystal, an atmosphere of an inert or neutral gas is mainly used, and even when oxygen is mixed, the content rate is at most 1 to 2%.

【0009】しかしイリジウムの損傷が温度と酸素濃度
にどのように依存するかは未だ詳細には理解されていな
かった。一方、希土類バナデイト結晶育成後の残存原料
の再生に必要な処理条件も詳細は不明であった。そこで
まず、るつぼにとって有利となる観点すなわちできるだ
け低温、低酸素濃度という条件下で残存原料の有効処理
が可能かどうかについて調べたところ、雰囲気を空気と
し、温度が900℃ならば20時間以上、950℃なら
ば3時間以上、1000℃で1時間程度で良好に再生で
きることがわかった。
However, how iridium damage depends on temperature and oxygen concentration has not yet been understood in detail. On the other hand, the processing conditions necessary for regenerating the residual raw material after the growth of the rare earth vanadate crystal were not known in detail. Therefore, first of all, it was examined whether it is possible to effectively treat the residual raw material under the condition that it is advantageous for the crucible, that is, under the condition that the temperature is as low as possible and the oxygen concentration is as low as possible. It was found that good regeneration can be performed at 3 ° C for 3 hours or more, and at 1000 ° C for about 1 hour.

【0010】一方、イリジウムの酸化性雰囲気での挙動
については、雰囲気を空気に限定して温度との関係を調
べたところ、900℃で処理したものは表面が酸化され
黒色になりその分重量が増加するが、ある程度以上反応
が進行せず、またその後中性に近い雰囲気で高温下に置
かれると、例えば結晶育成時の条件下に置かれると元に
戻り、重量や金属色も回復されることがわかった。すな
わち、この酸化還元反応は可逆的に起きるのでイリジウ
ムるつぼにとって何ら支障がないことがわかった。
On the other hand, regarding the behavior of iridium in an oxidizing atmosphere, when the atmosphere was restricted to air and the relationship with temperature was examined, the surface treated with 900 ° C. was oxidized to a black color and its weight was reduced. Although it increases, the reaction does not proceed to a certain extent, and if it is subsequently placed under high temperature in an atmosphere close to neutrality, for example, it will return to its original state under the conditions of crystal growth, and the weight and metallic color will be restored. I understand. That is, it was found that this redox reaction occurs reversibly, so that there is no problem for the iridium crucible.

【0011】次に、イリジウムるつぼがどの程度高温に
まで可逆的に復元しうるのかを空気中で調査したとこ
ろ、960℃までは900℃の場合と同様の挙動である
ことがわかった。960℃を越えると表面に形成される
酸化膜が徐々に荒れるようになるが、なお1000℃近
くまでは還元が可能である。しかし、1000℃を越え
ると表面に形成された酸化物が処理中に飛散するように
なり、結果的には重量が処理前より減少した。その重量
減少量は処理時間に依存し、飛散が定常化することがわ
かった。1000℃以上での熱処理後のイリジウムの表
面状態は960℃以下での処理の場合のように滑らかで
はなく、がさがさした状態で黒い粉状の酸化物の粉がは
がれ落ちる状態となった。このような状態となったるつ
ぼを結晶育成時の温度や雰囲気下で熱処理しても、表面
状態や重量を復元することはできなかった。
Next, when the iridium crucible was reversibly restored to a high temperature, it was found in the air that the behavior was the same as that at 900 ° C. up to 960 ° C. When the temperature exceeds 960 ° C, the oxide film formed on the surface gradually becomes rough, but reduction is possible up to around 1000 ° C. However, when the temperature exceeded 1000 ° C., the oxide formed on the surface became scattered during the treatment, and as a result, the weight was reduced from that before the treatment. It was found that the amount of weight loss depends on the treatment time and the scattering becomes steady. The surface state of the iridium after the heat treatment at 1000 ° C. or higher was not smooth as in the case of the treatment at 960 ° C. or lower, and the black powdery oxide powder was peeled off in the clogged state. Even if the crucible in such a state was heat-treated under the temperature and atmosphere during crystal growth, the surface state and weight could not be restored.

【0012】すなわち、1000℃を越える空気中での
雰囲気では可逆的な酸化・還元反応の域を脱してしまう
変化があることがわかった。以上の実験結果から、希土
類バナデイト結晶育成後の残存原料のるつぼごとの空気
中における再生処理は1000℃以下であれば可能であ
り、より好ましくは960℃以下で行うことであること
がわかった。
That is, it has been found that there is a change that leaves the reversible oxidation / reduction reaction range in an atmosphere in the air exceeding 1000 ° C. From the above experimental results, it was found that the regenerating treatment of the remaining raw material after growing the rare earth vanadate crystal in the crucible in air can be performed at 1000 ° C or lower, and more preferably at 960 ° C or lower.

【0013】一方、900℃以下の再生熱処理ではイリ
ジウムるつぼの酸化は軽微であるため再生熱処理条件と
して採用することができる。しかし、850℃以下では
再生のための熱処理時間が長くなりすぎるため工業的に
実施がこのましくない。必要とする熱処理時間は熱処理
温度に依存する。850℃では40時間程度のの熱処理
が必要であり、1000℃では1時間程度で十分であ
る。
On the other hand, since the oxidation of the iridium crucible is slight in the regenerative heat treatment at 900 ° C. or lower, it can be adopted as the regenerative heat treatment condition. However, if the temperature is 850 ° C. or lower, the heat treatment time for regeneration becomes too long, which is not preferable industrially. The required heat treatment time depends on the heat treatment temperature. At 850 ° C., heat treatment for about 40 hours is required, and at 1000 ° C., about 1 hour is sufficient.

【0014】[0014]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。 [第1の実施例]図1は、本発明の実施例を行うための
高周波誘導加熱方式の酸化物単結晶引き上げ装置の断面
図である。同図において、1は結晶育成炉筐体、2は誘
導加熱用高周波コイル、3はイリジウムるつぼ、6は保
温耐火物、7はガス流入口、8はガス排出口である。こ
こで、るつぼ3は直径50mm、深さ50mmで、純度
99.99%の原料を用いて作製されたものを用いた。
Next, embodiments of the present invention will be described with reference to the drawings. [First Embodiment] FIG. 1 is a sectional view of a high frequency induction heating type oxide single crystal pulling apparatus for carrying out an embodiment of the present invention. In the figure, 1 is a crystal growth furnace housing, 2 is a high-frequency coil for induction heating, 3 is an iridium crucible, 6 is a heat-resistant refractory, 7 is a gas inlet, and 8 is a gas outlet. Here, the crucible 3 used had a diameter of 50 mm, a depth of 50 mm, and was manufactured using a raw material having a purity of 99.99%.

【0015】イリジウムるつぼ内に結晶育成原料として
YVO4 を投入しバナデイト単結晶の育成を行った。育
成速度は1mm/h、育成雰囲気は酸素0.1%を含む
窒素中とした。c軸シードを用い、直径約220mm、
長さ約30mmの育成結晶4を得た。るつぼ内に残され
た残留原料に育成結晶と同じ重量の原料を追加して同様
の結晶育成を4回行った。
YVO 4 was introduced into the iridium crucible as a crystal growth raw material to grow a vanadate single crystal. The growth rate was 1 mm / h, and the growth atmosphere was nitrogen containing 0.1% oxygen. Using c-axis seed, diameter about 220mm,
A grown crystal 4 having a length of about 30 mm was obtained. The same weight of raw material as the grown crystal was added to the residual raw material left in the crucible, and the same crystal growth was performed four times.

【0016】4回目の結晶育成の終了後、室温まで冷却
ししかる後るつぼを育成炉内より取り出し、残留原料を
別の電気炉でるつぼごと空気中で940℃、15時間の
熱処理を行った。処理後黒灰色の残留原料は黄緑色に変
化し再生されたことが確認された。イリジウムるつぼは
黒色になってはいたが、その表面は滑らかで可逆性のも
のであることを示していた。このるつぼにさらに育成結
晶分の新原料を追加して同様の結晶育成を行ったとこ
ろ、第1回目と同様の良質な結晶を得ることができた。
After the fourth crystal growth was completed, the crucible was cooled to room temperature, taken out of the growth furnace, and the remaining raw material was heat-treated in a separate electric furnace together with the crucible in air at 940 ° C. for 15 hours. After the treatment, it was confirmed that the black-gray residual raw material changed to yellow-green and was regenerated. Although the iridium crucible was black, it showed that the surface was smooth and reversible. When a new raw material for the grown crystal was further added to this crucible and the same crystal growth was carried out, a good quality crystal similar to the first time could be obtained.

【0017】[第2の実施例]図1に示す高周波誘導加
熱方式の酸化物単結晶引き上げ装置を用い、第1の実施
例の場合と同様の方法でYVO4 の結晶育成を、追いチ
ャージを間に挟みながら連続して4回行った。4回目の
結晶育成終了後、室温まで降温し、結晶育成によって失
われた重量分の追いチャージを行った後、880℃まで
昇温し、引き続きその温度で空気中25時間の熱処理を
行った。その後、この育成原料を用いて結晶育成を行っ
たところ、第1回目と同様の良質なバナデイト単結晶を
得ることができた。
[Second Embodiment] Using the high-frequency induction heating type oxide single crystal pulling apparatus shown in FIG. 1, crystal growth of YVO 4 and additional charge are carried out in the same manner as in the first embodiment. It carried out 4 times continuously, sandwiching it. After the completion of the fourth crystal growth, the temperature was lowered to room temperature, additional charge for the weight lost by the crystal growth was performed, the temperature was raised to 880 ° C., and then heat treatment was performed in the air at that temperature for 25 hours. After that, when crystal growth was performed using this growth material, it was possible to obtain a good-quality vanadate single crystal similar to the first time.

【0018】[第3の実施例]図1に示した高周波誘導
加熱方式の酸化物単結晶引き上げ装置を用い、0.1%
の酸素を含む窒素雰囲気中でのYVO4 単結晶育成を、
追いチャージを間に挟んで連続5回行った。第5回目の
育成終了後、図1に示すように、育成結晶4を原料融液
から切り離し、その状態で、図2に示すように、雰囲気
ガスを育成時のまま200℃/時の下降率で徐冷し、9
00℃に達したとき、温度下降を中断して雰囲気ガスを
1時間かけて徐々に空気に切り換え、そのまま、20時
間放置し、その後再び200℃/時で下降させ室温まで
徐冷した。
[Third Embodiment] Using the high frequency induction heating type oxide single crystal pulling apparatus shown in FIG.
YVO 4 single crystal growth in a nitrogen atmosphere containing oxygen,
It was done five times in a row with an additional charge in between. After completion of the fifth growth, the grown crystal 4 was separated from the raw material melt as shown in FIG. 1, and in that state, as shown in FIG. Slowly cool with 9
When the temperature reached 00 ° C., the temperature decrease was interrupted and the atmosphere gas was gradually changed to air over 1 hour, left as it was for 20 hours, and then decreased again at 200 ° C./hour and gradually cooled to room temperature.

【0019】以上の熱処理により残留原料の再生が行わ
れるとともに5回目の育成結晶に対して図2に示すアニ
ールが行われたことになる。得られた結晶を観察したと
ころ部分的に割れやインクルージョンが観察された。こ
れは5回目の育成なので当然の結果であった。しかし結
晶の色調は通常の追いチャージ5回目の育成結晶のよう
な黒褐色ではなく黄褐色で本発明による酸素雰囲気での
熱処理の効果で光学特性が改善されたことが示されてい
た。
By the above heat treatment, the residual raw material was regenerated and the annealing shown in FIG. 2 was performed on the grown crystal for the fifth time. When the obtained crystal was observed, cracks and inclusions were partially observed. This was the fifth training, so it was a natural result. However, the color tone of the crystal was yellow brown rather than black brown like the crystal grown after the usual fifth charge, and it was shown that the optical characteristics were improved by the effect of the heat treatment in the oxygen atmosphere according to the present invention.

【0020】次に、るつぼ内の残存原料に追いチャージ
を行い、同様の第6回目の結晶育成を行ったところ、得
られた結晶に割れやインクルージョンは観察されず、第
5回目の育成結晶の品質を上回った。これにより本発明
による残存原料の再生の効果が確認された。
Next, when the remaining raw material in the crucible was recharged and the sixth crystal growth was conducted in the same manner, no cracks or inclusions were observed in the obtained crystal, and the fifth crystal growth was performed. Exceeded the quality. This confirmed the effect of regenerating the residual raw material according to the present invention.

【0021】なお、以上の実施例では、YVO4 単結晶
育成の場合について説明したが、本発明は、これに限定
されるものではなくYVO4 以外の希土類バナデイト結
晶の育成の場合にも同様に適用が可能で同様の効果がえ
られるものである。
In the above embodiments, the case of growing a YVO 4 single crystal was explained, but the present invention is not limited to this, and the same applies to the case of growing a rare earth vanadate crystal other than YVO 4. It is applicable and the same effect can be obtained.

【0022】[0022]

【発明の効果】以上説明したように、本発明は、希土類
バナデイトのCZ法による育成後のるつぼ内の残存原料
の再生操作を空気中1000℃以下の熱処理で行うもの
であるので、残存原料をるつぼごと熱処理することが可
能となり、従来多くの時間と熟練を要していた原料取り
出し操作が不要となり、また従来必要としていた別の電
気炉も省略することが可能となった。
As described above, according to the present invention, since the operation of regenerating the residual raw material in the crucible after the growth of the rare earth vanadate by the CZ method is performed by the heat treatment at 1000 ° C. or less in the air, the residual raw material is removed. It became possible to heat-treat the crucible, the raw material take-out operation, which conventionally required a lot of time and skill, became unnecessary, and it became possible to omit another electric furnace which was required in the past.

【0023】さらに育成炉内で結晶育成後の徐冷時に残
存原料の再生熱処理を行う実施例によれば、育成結晶の
アニールを同時に行うことが可能となりその結晶性を向
上させてその光学的性質例えば光吸収特性を改善するこ
とも可能となる。また、このようにして再生された残留
原料を再び育成用として有効に活用することができるた
め、材料費を削減して結晶製造コストを低減することが
できる。
Further, according to the embodiment in which the regenerated heat treatment of the remaining raw material is carried out during the slow cooling after the crystal growth in the growth furnace, the grown crystal can be annealed at the same time, and its crystallinity is improved to improve its optical properties. For example, it becomes possible to improve the light absorption characteristics. Moreover, since the residual raw material regenerated in this way can be effectively utilized again for growth, the material cost can be reduced and the crystal production cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を説明するための高周波誘導加
熱方式の酸化物単結晶引き上げ装置の断面図。
FIG. 1 is a cross-sectional view of a high frequency induction heating type oxide single crystal pulling apparatus for explaining an embodiment of the present invention.

【図2】本発明の第3の実施例を説明するための熱処理
プログラム図。
FIG. 2 is a heat treatment program diagram for explaining a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 結晶育成炉筐体 2 誘導加熱用高周波コイル 3 イリジウムるつぼ 4 育成結晶 5 残存原料 6 保温耐火物 7 ガス流入口 8 ガス排出口 1 Crystal growth furnace housing 2 Induction heating high-frequency coil 3 Iridium crucible 4 Growth crystal 5 Remaining raw material 6 Insulating refractory 7 Gas inlet 8 Gas outlet

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 CZ法による希土類バナデイト(化学式
RVO4 、R:希土類元素)の単結晶育成後に、イリジ
ウムるつぼ内に残った組成のずれた原料を、るつぼごと
空気中で、850℃以上1000℃以下の温度で1〜4
0時間熱処理を行って再生し、再び育成原料として用い
ることを特徴とする希土類バナデイト単結晶の製造方
法。
1. A raw material having a different composition remaining in an iridium crucible after growing a single crystal of a rare earth vanadate (chemical formula RVO 4 , R: rare earth element) by a CZ method in an air at 850 ° C. or more and 1000 ° C. 1-4 at the following temperatures
A method for producing a rare earth vanadate single crystal, which comprises performing a heat treatment for 0 hour to regenerate it, and using it again as a growing material.
【請求項2】 単結晶育成が終了し育成結晶を原料融液
から切り離した後、原料再生温度にまで徐冷し、雰囲気
ガスを育成用のガスから空気に切り換えてそのまま原料
再生の熱処理を行うことを特徴とする請求項1記載の希
土類バナデイト単結晶の製造方法。
2. After the single crystal growth is completed and the grown crystal is separated from the raw material melt, it is gradually cooled to the raw material regeneration temperature, and the atmosphere gas is changed from the growth gas to air and the heat treatment for the raw material regeneration is performed as it is. The method for producing a rare earth vanadate single crystal according to claim 1, wherein
【請求項3】 単結晶育成が終了し育成結晶を原料融液
から切り離した後、室温にまで徐冷し、その後原料再生
温度にまで昇温して原料再生の熱処理を行うことを特徴
とする請求項1記載の希土類バナデイト単結晶の製造方
法。
3. The single crystal growth is completed, the grown crystal is separated from the raw material melt, then gradually cooled to room temperature, and then heated to the raw material regeneration temperature to perform the heat treatment for the raw material regeneration. The method for producing a rare earth vanadate single crystal according to claim 1.
【請求項4】 室温にまで徐冷した後、るつぼを他の加
熱炉に移し原料再生の熱処理を行うことを特徴とする請
求項3記載の希土類バナデイト単結晶の製造方法。
4. The method for producing a rare earth vanadate single crystal according to claim 3, wherein the crucible is gradually cooled to room temperature and then the crucible is transferred to another heating furnace to perform heat treatment for regenerating the raw material.
【請求項5】 室温にまで徐冷した後、残存原料に新た
に原料を追加し、その後再生の熱処理を行うことを特徴
とする請求項3記載の希土類バナデイト単結晶の製造方
法。
5. The method for producing a rare earth vanadate single crystal according to claim 3, wherein after the material is gradually cooled to room temperature, a new raw material is added to the remaining raw material and then a heat treatment for regeneration is performed.
JP28617494A 1994-10-27 1994-10-27 Method for producing rare earth vanadate single crystal Expired - Fee Related JP2692613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28617494A JP2692613B2 (en) 1994-10-27 1994-10-27 Method for producing rare earth vanadate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28617494A JP2692613B2 (en) 1994-10-27 1994-10-27 Method for producing rare earth vanadate single crystal

Publications (2)

Publication Number Publication Date
JPH08119797A JPH08119797A (en) 1996-05-14
JP2692613B2 true JP2692613B2 (en) 1997-12-17

Family

ID=17700907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28617494A Expired - Fee Related JP2692613B2 (en) 1994-10-27 1994-10-27 Method for producing rare earth vanadate single crystal

Country Status (1)

Country Link
JP (1) JP2692613B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100379902C (en) * 2006-08-16 2008-04-09 中国科学技术大学 Low-temperature solvent heat growth method of cadmium telluride single-crystal

Also Published As

Publication number Publication date
JPH08119797A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
EP1136596B1 (en) Silicon wafer and its method of fabrication
JP2692613B2 (en) Method for producing rare earth vanadate single crystal
JP2976967B1 (en) Langasite single crystal growth method
JP2682458B2 (en) Method for growing rare earth vanadate single crystal
JPS639745B2 (en)
JP7271841B2 (en) Manufacturing method of lithium niobate substrate
JPH02196082A (en) Production of silicon single crystal
JPS63210100A (en) Production of single-domain lithium tantalate single crystal
JPH09278592A (en) Production of aluminum oxide single crystal containing titanium
JP3128173B2 (en) Method and apparatus for producing bismuth germanate single crystal
JPH06157187A (en) Single crystal growth furnace and production of single crystal
JPS63274694A (en) Production of titanium sapphire single crystal having high quality
JPH07101800A (en) Production of i-iii-vi2 compound single crystal
JPH0411513B2 (en)
JPH06116082A (en) Production of single crystal
JPH039173B2 (en)
JP2007001775A (en) Method for production of ferroelectric crystal
JPS5837926A (en) Manufacture of substrate for semiconductor element
JPH06316500A (en) Production of cdmnte single crystal
JPH06256091A (en) (nd,la)gao3 single crystal free from twin crystal and its production
JP3011497B2 (en) Method for producing potassium salt single crystal
JP2002020196A (en) Quartz crucible and method of improving the same
JPS62162687A (en) Production of indium phosphide
JPH08290999A (en) Method for producing raw material for growing single crystal, single crystal growing raw material and single crystal
CN117684264A (en) Terbium fluoride potassium crystal material and growth method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees