JP2682458B2 - Method for growing rare earth vanadate single crystal - Google Patents

Method for growing rare earth vanadate single crystal

Info

Publication number
JP2682458B2
JP2682458B2 JP6190450A JP19045094A JP2682458B2 JP 2682458 B2 JP2682458 B2 JP 2682458B2 JP 6190450 A JP6190450 A JP 6190450A JP 19045094 A JP19045094 A JP 19045094A JP 2682458 B2 JP2682458 B2 JP 2682458B2
Authority
JP
Japan
Prior art keywords
raw material
rare earth
single crystal
crystal
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6190450A
Other languages
Japanese (ja)
Other versions
JPH0859399A (en
Inventor
泰彦 桑野
誠一 斎藤
鉄人 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6190450A priority Critical patent/JP2682458B2/en
Publication of JPH0859399A publication Critical patent/JPH0859399A/en
Application granted granted Critical
Publication of JP2682458B2 publication Critical patent/JP2682458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光学用の希土バナデイト
単結晶の育成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a rare earth vanadate single crystal for optics.

【0002】[0002]

【従来の技術】希土バナデイト単結晶は偏光子や固体レ
ーザーなどの光学デバイス用結晶として有用なもので、
主にCZ法(チョクラルスキイ法,引き上げ法)により
育成されている。原料には希土類の酸化物(R2 3
R:希土元素)と五酸化バナジウム(V2 5 )が用い
られるが、通常両者を混合焼成して、固相反応によりバ
ナデイト(RVO4 )を生成させ、これを溶解して育成
原料としている。また、融点が高いことからるつぼはも
っぱらイリジウム製のものが用いられ、そのるつぼ保護
の観点から結晶育成は中性ないしわずかに酸化性の雰囲
気中で行われている。
2. Description of the Related Art Rare earth vanadate single crystals are useful as crystals for optical devices such as polarizers and solid-state lasers.
It is mainly grown by the CZ method (Czochralski method, pulling method). Rare earth oxides (R 2 O 3 ,
R: rare earth element) and vanadium pentoxide (V 2 O 5 ) are used. Usually, both are mixed and fired to produce vanadate (RVO 4 ) by a solid-phase reaction, which is melted and used as a growth material. There is. In addition, since the melting point is high, the crucible is made of iridium exclusively, and from the viewpoint of protecting the crucible, crystal growth is performed in a neutral or slightly oxidizing atmosphere.

【0003】工業的な結晶製造においては、結晶育成終
了後消費した重量分の新たな原料を補給(追いチャー
ジ)して2回目以降引き続き育成を行なう方法がとられ
てきた。
In the industrial production of crystals, a method has been adopted in which after the crystal growth, a new raw material corresponding to the weight consumed is replenished (additional charge) to continue the crystal growth from the second time.

【0004】[0004]

【発明が解決しようとする課題】CZ法による希土バナ
デイト結晶育成では、結晶育成中に原料が徐々に分解飛
散するために、全体として組成がストイキオメトリー
(化学量論比)からずれてゆく。そしてそのずれによっ
て結晶が着色して光学用として使用出来なくなったり、
甚だしい場合は育成結晶にインクルージョン(包含物)
や割れを生じる原因となっていた。通常、新しい高純度
原料を用いた場合には1回目の育成においてこのような
不都合を生じることはまずないが、追いチャージ育成を
重ねていくと何回目かで必ずこのような問題が生じてく
る。したがって、いつかは追いチャージをやめて原料を
更新しなければならないが、何回の追いチャージが出来
るかは、希土類結晶の種類はもとより、わずかの育成条
件の相違で大きく影響されるため予測は困難であった。
また、たとえ育成結晶に割れやインクルージョンのよう
な巨視的欠陥が生じなかったとしても、着色すなわち光
学素子としての不要吸収が許容値以上であるならばその
結晶は役にたたない。
In the rare earth vanadate crystal growth by the CZ method, since the raw materials are gradually decomposed and scattered during the crystal growth, the composition as a whole deviates from the stoichiometry (stoichiometric ratio). . And due to the deviation, the crystals are colored and cannot be used for optics.
Inclusion (inclusion) in the grown crystal in extreme cases
It was a cause of cracks. Usually, when a new high-purity raw material is used, such an inconvenience is unlikely to occur in the first growth, but as the additional charge growth is repeated, such a problem always occurs in the number of times. . Therefore, it is necessary to stop the supplementary charge and renew the raw material at some point, but it is difficult to predict how many supplemental charges can be made because it is greatly affected not only by the type of rare earth crystal but also by a slight difference in the growth conditions. there were.
Further, even if macroscopic defects such as cracks and inclusions do not occur in the grown crystal, the crystal is useless if coloring, that is, unnecessary absorption as an optical element is more than the allowable value.

【0005】そこで従来は、育成後の残存原料の有効性
を判断する手立てがないため、安全を見積もって2〜3
回の追いチャージ育成後に一律に原料を更新することが
行なわれてきた。しかし、原料の有効利用や原料を更新
するための手間の観点から、結晶を用いたデバイスの性
能に影響がでる限度まで追いチャージ育成を続けること
が望まれていた。
Therefore, conventionally, there is no way to judge the effectiveness of the remaining raw material after the growth, so that the safety is estimated to be 2-3.
It has been practiced to uniformly update the raw material after the additional charge has been cultivated. However, from the viewpoint of the effective use of the raw material and the labor for updating the raw material, it has been desired to continue the charge growth to the extent that the performance of the device using the crystal is affected.

【0006】本発明の目的は、結晶育成後の簡単な処理
によって、その残存原料の更新時期を明確にできる希土
バナデイト単結晶の育成方法を提供することにある。
An object of the present invention is to provide a method for growing a rare earth vanadate single crystal in which the renewal time of the remaining raw material can be clarified by a simple treatment after growing the crystal.

【0007】[0007]

【課題を解決するための手段】第1の発明による残留原
料の有効性の確認は次の手順で行なう。育成終了後結晶
を融液から切り離し、200℃/h以下の温度下降率で
るつぼを徐冷する。冷却後るつぼを取り出し、固化状態
を観察すると図1に示すように、上層2に透明ないし半
透明の層が見える。その下の部分には黒色の層3がある
が、それは上層2の透明度が低い場合は確認出来ないこ
ともある。ここで必要なのは上層2の厚さであるが、こ
れを測定するには、図4に示したように、堅い素材から
なる破砕具4で表面に衝撃を与えて一角を崩すか図3
(a),(b)に示したように、超音波ロータリー加工
機5で細い試料棒6をくりぬきその様子を調べる。上層
2の透明度がよければ光学的手法で厚さを計るなどの手
段もある。そのようにして上層2の厚さt1 が分かれ
ば、全体の厚さ(t1 +t2 )に対するt1 の比率が分
かる。もしt1 が全体の30%以上であればこの残留原
料は有効で、追いチャージすれば次回も良質な結晶が得
られる。その値が30%以下であれば原料を全て更新す
る必要がある。
The effectiveness of the residual raw material according to the first invention is confirmed by the following procedure. After the growth is completed, the crystal is separated from the melt, and the crucible is gradually cooled at a temperature decrease rate of 200 ° C./h or less. After cooling, the crucible was taken out and the solidified state was observed. As shown in FIG. 1, a transparent or translucent layer was visible on the upper layer 2. There is a black layer 3 in the lower part, but it may not be confirmed when the transparency of the upper layer 2 is low. What is needed here is the thickness of the upper layer 2, but in order to measure this, as shown in FIG. 4, the crushing tool 4 made of a hard material should be used to impact the surface to break a corner.
As shown in (a) and (b), a thin sample rod 6 is hollowed out by the ultrasonic rotary machine 5 and the state is examined. If the transparency of the upper layer 2 is good, it is possible to measure the thickness by an optical method. Thus, if the thickness t 1 of the upper layer 2 is known, the ratio of t 1 to the total thickness (t 1 + t 2 ) can be known. If t 1 is 30% or more of the whole, this residual raw material is effective, and if it is recharged, a good crystal can be obtained next time. If the value is 30% or less, it is necessary to update all raw materials.

【0008】[0008]

【0009】[0009]

【作用】本発明は、希土バナデイト結晶育成後のるつぼ
内の残留原料融体が冷却条件を選定することにより、2
層に分離して固化することを見いだしたことを基になさ
れたものである。図1は、希土バナデイト結晶育成後、
育成結晶を原料融液から切り離し、るつぼを徐冷して原
料融液を固化させたときの状況を模式的に表したもの
で、明らかに性質の異なる2層よりなっている。組成的
には上層2はほぼRVO4 で、下層3はRVO4-x で平
均的にはRVO4 とRVO3 との固溶物に近いものにな
っている。またこの両層は色が異なり、たとえばYVO
4 育成の例では上層は淡黄色ないし褐色の透明ないし半
透明の結晶状、下層は黒色の金属光沢状のものとなって
いる。そして、育成回数が増すにつれて上層2の厚さが
減り下層3の厚さが増すことが見いだされた。さらに、
育成結晶の割れなどの巨視的欠陥や微視的欠陥や不純物
に起因する結晶の着色などはこの2層の厚さの比率に関
係があり、実験の結果、光学素子としての結晶品質を確
保するためには上層2の厚さが全体の30%以上である
ことが必要なことがわかった。したがって、この数値
を、残留原料がなお有効か、原料を更新する必要がある
かの判断基準にすることができる。
According to the present invention, the residual raw material melt in the crucible after the growth of the rare earth vanadate crystal is selected by the cooling condition.
It is based on the fact that it was found to separate into layers and solidify. Figure 1 shows that after growing rare earth vanadate crystals,
The grown crystal is separated from the raw material melt, and the crucible is gradually cooled to solidify the raw material melt, which schematically shows two layers having different properties. In terms of composition, the upper layer 2 is almost RVO 4 , and the lower layer 3 is RVO 4-x, which is on average close to a solid solution of RVO 4 and RVO 3 . Also, these two layers have different colors, for example, YVO
In the example of 4 growth, the upper layer has a pale yellow or brown transparent or translucent crystal form, and the lower layer has a black metallic luster form. Then, it was found that the thickness of the upper layer 2 decreased and the thickness of the lower layer 3 increased as the number of growing times increased. further,
Macroscopic defects such as cracks in grown crystals, microscopic defects, and coloring of crystals caused by impurities are related to the ratio of the thickness of these two layers, and as a result of experiments, the crystal quality as an optical element is secured. Therefore, it was found that the thickness of the upper layer 2 needs to be 30% or more of the entire thickness in order to achieve the above. Therefore, this numerical value can be used as a criterion for determining whether the residual raw material is still effective or the raw material needs to be renewed.

【0010】[0010]

【0011】[0011]

【実施例】次に本発明の実施例について説明する。図1
は本発明の第1の実施例を説明する為のるつぼの断面図
である。
Next, an embodiment of the present invention will be described. FIG.
FIG. 1 is a sectional view of a crucible for explaining a first embodiment of the present invention.

【0012】高周波誘導加熱方式の酸化物単結晶引き上
げ装置を用いて、YVO4 の育成を行なった。るつぼは
図1に示すように、直径50mm,深さ50mmのイリ
ジウム製とし、純度99.999%のYVO4 粉末を育
成原料とした。育成速度は1mm/h、育成雰囲気は酸
素0.1%を含む窒素中とした。c軸シードを用い、直
径約25mm、長さ約40mmの単結晶を育成後、育成
結晶と同じ重量の原料を追加して同様の結晶育成を2回
行なった。200℃/h以下の温度下降率でるつぼを徐
冷して上層2及び下層3を形成した後、図3(a),
(b)に示した方法で直径2mmの試料棒6をるつぼ内
の固化原料より切り出し上層2および下層3の厚さ
1 ,t2 を測定したところそれぞれt1 =14mm、
2 =29mmで上層の厚さt1 は全体の32.6%で
あった。このt1 /(t1 +t2 )の比率が30%以上
であったので残留原料に追いチャージをして結晶育成を
おこなったところ、割れやインクルージョンのない良質
な結晶が育成され、また透過特性も良好でたとえば波長
500nmでの吸収係数は0.16cm-1であった。
YVO 4 was grown using a high frequency induction heating type oxide single crystal pulling apparatus. As shown in FIG. 1, the crucible was made of iridium having a diameter of 50 mm and a depth of 50 mm, and YVO 4 powder having a purity of 99.999% was used as a growth raw material. The growth rate was 1 mm / h, and the growth atmosphere was nitrogen containing 0.1% oxygen. After growing a single crystal having a diameter of about 25 mm and a length of about 40 mm by using a c-axis seed, the same weight of raw material as that of the grown crystal was added and the same crystal growth was performed twice. After the crucible was gradually cooled at a temperature decrease rate of 200 ° C./h or less to form the upper layer 2 and the lower layer 3, FIG.
The sample rod 6 having a diameter of 2 mm was cut out from the solidified raw material in the crucible by the method shown in (b), and the thicknesses t 1 and t 2 of the upper layer 2 and the lower layer 3 were measured, respectively, t 1 = 14 mm,
At t 2 = 29 mm, the thickness t 1 of the upper layer was 32.6% of the whole. Since the ratio of t 1 / (t 1 + t 2 ) was 30% or more, when a crystal was grown by charging the residual raw material, a high quality crystal without cracks or inclusions was grown and the transmission characteristics were improved. The absorption coefficient at a wavelength of 500 nm was 0.16 cm −1 .

【0013】本発明の有効性の確認のため引き続き追い
チャージ育成を行ない6回目の育成後の状況をしらべた
ところt1 の比率は30%以下の26.9%で、本発明
における更新領域の値であった。念のため、さらに1回
育成を行なったところ、育成結晶には大きな割れとイン
クルージョンが観察された。また、結晶の着色も見られ
波長500nmでの吸収係数は0.20cm-1に増加し
ていた。
When confirming the effectiveness of the present invention, the follow-up charge growth was continued and the situation after the sixth growth was examined. The ratio of t 1 was 30% or less, 26.9%. It was a value. As a precaution, when the crystal was further grown once, large cracks and inclusions were observed in the grown crystal. Also, coloring of the crystals was observed, and the absorption coefficient at a wavelength of 500 nm increased to 0.20 cm -1 .

【0014】なお参考までに、以下に残留原料を用いた
単結晶の育成方法を示す。図2はその際の温度プログラ
ムを示す図である。従来るつぼから取り出された残留原
料は再生不可能とみなされ廃棄されていた。再生が難し
いと考えられていた理由は、結晶育成中に起きる原料の
分解はRVO 4 が単に還元されてRVO 4-x になるだけ
でなく、RV y z で示されるさまざまなバナジウム化
合物が飛散してゆくので残されたものも複雑なバナジウ
ム化合物の混合物と考えられていたためである。しか
し、残留物を酸素中で熱処理したところ、粉末X線回折
でRVO 4 のピークが主要で他のピークがわずかに残る
程度に復元した。引き続き空気中での熱処理でもほぼ同
様の結果を得、最良ではないが、結晶育成に用いる許容
度以内には回復することがわかった。
For reference, the following residual raw materials were used.
A method for growing a single crystal is shown. Figure 2 shows the temperature program at that time.
FIG. Residual raw material conventionally taken from crucibles
The fee was considered non-renewable and was discarded. Difficult to reproduce
The reason why it was thought to be
Degradation will RVO 4-x is simply reduction RVO 4 only
But various vanadiumizations indicated by RV y O z
Since the compound scatters, the leftover is also complicated
This is because it was considered to be a mixture of the murine compounds. Only
Then, the residue was heat treated in oxygen, powder X-ray diffraction
In RVO 4, the main peak is and other peaks remain slightly
Restored to a degree. Subsequent heat treatment in air is almost the same.
Although it is not the best, it is acceptable to use for crystal growth
It turned out to recover within a few degrees.

【0015】まず、高周波誘導加熱方式の酸化物単結晶
引き上げ装置を用い、直径50mm、深さ50mmのイ
リジュムるつぼによるYVO4 単結晶育成を、追いチャ
ージで連続5回行なった。結晶育成終了後、再び種結晶
を用いて残存原料の引き出しを行なった。引き上げ速度
は平均30mm/hとし、約5時間で残留原料の全量3
40gを回収した。この回収物は黒灰色をしており、粉
末X線回折の結果YVO4 ,YVO3 のピークが確認さ
れた。この残留原料を電気炉に移し、図2に示した温度
プログラムにより空気中で1000℃8時間熱処理し
た。熱処理後試料は淡黄緑色になり、粉末X線回折では
YVO4 のピークが優勢でそのほか、わずかの同定でき
ないピークが認められた。この処理物280gと新たな
YVO4 粉末原料100gを合わせた380gを直径5
0mm、深さ50mmのるつぼに充填し結晶育成を行な
ったところ、割れやインクルージョンのない良質なYV
4単結晶が育成された。
First, using a high-frequency induction heating type oxide single crystal pulling apparatus, YVO 4 single crystal growth was carried out 5 times continuously by additional charge using an iridium crucible having a diameter of 50 mm and a depth of 50 mm. After the crystal growth was completed, the remaining raw material was extracted again using the seed crystal. The pulling speed was 30 mm / h on average, and the total amount of residual raw material was 3 in about 5 hours.
40 g was recovered. The recovered product had a blackish gray color, and powder X-ray diffraction confirmed YVO 4 and YVO 3 peaks. The residual raw material was transferred to an electric furnace and heat-treated at 1000 ° C. for 8 hours in air according to the temperature program shown in FIG. After the heat treatment, the sample became pale yellowish green, and the powder X-ray diffraction showed a dominant YVO 4 peak and a few unidentifiable peaks. A total of 280 g of this treated product and 100 g of the new YVO 4 powder raw material was combined to obtain a diameter of 5 g.
When a crystal was grown by filling it in a crucible with a depth of 0 mm and a depth of 50 mm, it was a good quality YV with no cracks or inclusions.
An O 4 single crystal was grown.

【0016】尚、上記実施例においては希土類元素とし
てYを用いた場合について説明したが、GdやYbを用
いても同様の結果が得られた。
In the above examples, the case where Y was used as the rare earth element was explained, but the same result was obtained even when Gd or Yb was used.

【0017】[0017]

【発明の効果】以上説明したように本発明は、単結晶育
成終了後原料を2層に分離して固化し、この2層の厚さ
を比較することにより希土バナデイト結晶の追いチャー
ジ育成における原料更新時期を明確にできるという効果
がある。この為、原料利用効率が増大するばかりでな
く、原料更新回数を減らすことによる工数の削減を計る
ことができる。
As described above, according to the present invention, after the single crystal growth is completed, the raw material is separated into two layers and solidified, and the thicknesses of these two layers are compared to increase the additional charge growth of rare earth vanadate crystals. The effect is that the timing of renewing the raw material can be specified. Therefore, not only the raw material utilization efficiency is increased, but also the number of man-hours can be reduced by reducing the number of times of renewing the raw material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を説明する為のるつぼの
断面図。
FIG. 1 is a cross-sectional view of a crucible for explaining a first embodiment of the present invention.

【図2】参考例を説明する為の温度プログラムを示す
図。
FIG. 2 is a diagram showing a temperature program for explaining a reference example .

【図3】残留原料の層の厚さを測る為の試料採取方法を
説明する為のるつぼの断面図。
FIG. 3 is a cross-sectional view of a crucible for explaining a sampling method for measuring the thickness of a layer of residual raw material.

【図4】残留原料の層の厚さを測る為の他の試料採取方
法を説明する為のるつぼの断面図。
FIG. 4 is a cross-sectional view of a crucible for explaining another sampling method for measuring the thickness of a layer of residual raw material.

【符号の説明】[Explanation of symbols]

1 イリジウムるつぼ 2 上層 3 下層 4 破砕具 5 超音波ロータリー加工機 6 試料棒 1 Iridium crucible 2 Upper layer 3 Lower layer 4 Crushing tool 5 Ultrasonic rotary processing machine 6 Sample rod

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】CZ法による希土バナデイト(化学式RV
4 ,R:希土類元素)単結晶の育成方法において、結
晶育成終了後るつぼ内の熔融原料を定められた温度降下
率で徐冷し異なる物理的化学的性質を持つ2層に分離し
た形で固化せしめ、その上下の層の厚さの比の数値をも
って引き続き行なう次回の育成の際に、この残存原料を
そのまま用いるかあるいは更新するかの判断基準とする
ことを特徴とする希土バナデイト単結晶の育成方法。
1. Rare earth vanadate (Chemical formula RV
In the method for growing a single crystal (O 4 , R: rare earth element), after the completion of the crystal growth, the molten raw material in the crucible is gradually cooled at a predetermined temperature drop rate and separated into two layers having different physical and chemical properties. A rare earth vanadate single crystal characterized by being solidified and using this remaining raw material as a criterion for the next growth, which is carried out next time with the numerical value of the thickness ratio of the upper and lower layers. How to grow.
【請求項2】上層の厚さが原料固化層の30%以上の場
合残存原料をそのまま用いる請求項1記載の希土バナデ
イト単結晶の育成方法。
2. The method for growing a rare earth vanadate single crystal according to claim 1, wherein the remaining raw material is used as it is when the thickness of the upper layer is 30% or more of the solidified raw material layer.
JP6190450A 1994-08-12 1994-08-12 Method for growing rare earth vanadate single crystal Expired - Fee Related JP2682458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6190450A JP2682458B2 (en) 1994-08-12 1994-08-12 Method for growing rare earth vanadate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6190450A JP2682458B2 (en) 1994-08-12 1994-08-12 Method for growing rare earth vanadate single crystal

Publications (2)

Publication Number Publication Date
JPH0859399A JPH0859399A (en) 1996-03-05
JP2682458B2 true JP2682458B2 (en) 1997-11-26

Family

ID=16258341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6190450A Expired - Fee Related JP2682458B2 (en) 1994-08-12 1994-08-12 Method for growing rare earth vanadate single crystal

Country Status (1)

Country Link
JP (1) JP2682458B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238897A (en) * 1992-02-21 1993-09-17 Tokin Corp Rare earth vanadate single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238897A (en) * 1992-02-21 1993-09-17 Tokin Corp Rare earth vanadate single crystal

Also Published As

Publication number Publication date
JPH0859399A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
CA1124991A (en) Process for purifying metallurgical-grade silicon
Schunemann et al. Single crystal growth of large, crack-free CdGeAs2
Nassau et al. Strontium titanate: An index to the literature on properties and the growth of single crystals
CN110029397B (en) Compound lithium cesium germanate and lithium cesium germanate nonlinear optical crystal as well as preparation method and application thereof
US6514336B1 (en) Method of growing piezoelectric lanthanide gallium crystals
JPS62212298A (en) Method of increasing ti-al203 synchronizable laser crystal fluorescence by controlling crystal growth atomosphere
JP2682458B2 (en) Method for growing rare earth vanadate single crystal
Ovanesyan et al. Single crystal growth and characterization of LaLuO3
Chedzey et al. A study of the melt growth of single-crystal thiogallates
Chani et al. Growth of mixed crystals of the KTiOPO4 (KTP) family
JP6635366B2 (en) Piezoelectric material, manufacturing method thereof, piezoelectric element and combustion pressure sensor
Polgar et al. Crystal growth and preparation of colourless MgNb2O6 single crystals
JPH0597569A (en) Production of oxide laser single crystal
JP6102687B2 (en) Method for producing complex oxide single crystal
JP2692613B2 (en) Method for producing rare earth vanadate single crystal
JP3223597B2 (en) Single crystal manufacturing method
JP2976967B1 (en) Langasite single crystal growth method
JPH06157187A (en) Single crystal growth furnace and production of single crystal
KR950006635B1 (en) METHOD OF PREPARATION LiTaO3 POWDER FOR GROWING SINGLE CRYSTAL
WO2007145110A1 (en) Method for producing lithium tantalate single crystal
JPH05238897A (en) Rare earth vanadate single crystal
JPH0411513B2 (en)
JP2881737B2 (en) Manufacturing method of optical single crystal
JPS5849516B2 (en) Method for manufacturing silicon single crystal with few impurities
KR950007601B1 (en) Method for preparing crystallized linbo3 powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970708

LAPS Cancellation because of no payment of annual fees