JP4596307B2 - Single crystal materials for electronic devices - Google Patents

Single crystal materials for electronic devices Download PDF

Info

Publication number
JP4596307B2
JP4596307B2 JP2004146344A JP2004146344A JP4596307B2 JP 4596307 B2 JP4596307 B2 JP 4596307B2 JP 2004146344 A JP2004146344 A JP 2004146344A JP 2004146344 A JP2004146344 A JP 2004146344A JP 4596307 B2 JP4596307 B2 JP 4596307B2
Authority
JP
Japan
Prior art keywords
single crystal
laalo
electronic devices
value
xsrtio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004146344A
Other languages
Japanese (ja)
Other versions
JP2005325002A (en
Inventor
武司 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004146344A priority Critical patent/JP4596307B2/en
Publication of JP2005325002A publication Critical patent/JP2005325002A/en
Application granted granted Critical
Publication of JP4596307B2 publication Critical patent/JP4596307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

この発明は、準マイクロ波、マイクロ波・ミリ波領域において、通信用フィルタ、発信器などに用いられる電子デバイス用誘電体に適した特性を有する電子デバイス用単結晶材料に関する。 The present invention relates to a single crystal material for electronic devices having characteristics suitable for a dielectric for electronic devices used in communication filters, transmitters and the like in the quasi-microwave, microwave and millimeter wave regions.

誘電体材料は、マイクロ波、ミリ波等の高周波領域において広く利用されている。これらに要求される特性としては、特に、高周波での誘電損失が小さいこと、すなわち高Qf値を有することが要求される。   Dielectric materials are widely used in high frequency regions such as microwaves and millimeter waves. The characteristics required for these are particularly required to have a low dielectric loss at high frequencies, that is, to have a high Qf value.

このような高周波用誘電体材料として、LaAlO3-SrTiO3系誘電体磁器(特許文献1)が提案されている。この材料は、原料となる酸化物粉末を仮焼後、粉砕、成形を経て焼結することによって得られ、その構造は、LaAlO3-SrTiO3固溶体からなるペロブスカイト型結晶を主相とする多結晶体である。 As such a high-frequency dielectric material, a LaAlO 3 —SrTiO 3 dielectric ceramic (Patent Document 1) has been proposed. This material is obtained by calcining, sintering, and sintering oxide powder as a raw material, and its structure is polycrystalline with a perovskite crystal composed of LaAlO 3 -SrTiO 3 solid solution as the main phase Is the body.

一方、高周波用高温超伝導フィルタなどに用いられる材料として、MgO単結晶やLaAlO3単結晶が知られている(非特許文献1)。
特開平11-71171号公報 MWE 2000 Microwave Workshop Digest 337-340 「High Temperature Superconducting Filter For Wireless Base Station」
On the other hand, MgO single crystals and LaAlO 3 single crystals are known as materials used for high-frequency high-temperature superconducting filters (Non-patent Document 1).
Japanese Patent Laid-Open No. 11-71171 MWE 2000 Microwave Workshop Digest 337-340 `` High Temperature Superconducting Filter For Wireless Base Station ''

近年、通信周波数の高周波化が進むにつれ、電子デバイスにおける損失の低減が要求されている。また、準ミリ波以上の高周波帯域では、誘電体の損失が電子デバイスの損失へ強い影響を与えるため、誘電体材料の高Qf化が望まれている。   In recent years, as the communication frequency increases, there is a demand for reduction in loss in electronic devices. In addition, in the high frequency band of quasi-millimeter wave or higher, loss of the dielectric material has a strong influence on the loss of the electronic device.

しかしながら、特許文献1にかかるLaAlO3-SrTiO3系誘電体磁器は、高いQf値を有するものの、多結晶体であるため、高温超伝導フィルタに用いることはできない。 However, although the LaAlO 3 —SrTiO 3 dielectric ceramic according to Patent Document 1 has a high Qf value, it is a polycrystal and cannot be used for a high-temperature superconducting filter.

また、MgO単結晶は大気中の水分と反応して劣化し易いため、耐久性に劣るという問題がある。さらに、LaAlO3単結晶は、耐久性には優れるものの、現状のQf値ではMgO単結晶の値より低いという問題がある。 In addition, MgO single crystals react with moisture in the atmosphere and easily deteriorate, so that there is a problem that the durability is poor. Furthermore, although the LaAlO 3 single crystal is excellent in durability, there is a problem that the current Qf value is lower than that of the MgO single crystal.

この発明は、従来の誘電体材料が有する問題を解決し、高Qf値を有する電子デバイス用誘電体に適した特性を有する電子デバイス用単結晶材料の提供を目的とする。 An object of the present invention is to solve the problems of conventional dielectric materials and to provide a single crystal material for an electronic device having characteristics suitable for an electronic device dielectric having a high Qf value.

発明者は、高Qf値を有する電子デバイス用誘電体材料を目的に、LaAlO3-SrTiO3系誘電体磁器について鋭意検討を加えた結果、LaAlO3に少量のSrTiO3を添加した組成物より複合酸化物の単結晶が得られ、その特定組成の(1-X)LaAlO3-XSrTiO3単結晶材料は、誘電体材料としてQf値が大幅に向上するとともに高温超伝導フィルタに適用できることを知見し、発明を完成した。 Inventors, for the purpose of dielectric material for electronic devices having a high Qf value, result of adding an extensive study on LaAlO 3 -SrTiO 3 based dielectric ceramic, composite over compositions obtained by adding a small amount of SrTiO 3 on LaAlO 3 A single crystal of oxide was obtained, and (1-X) LaAlO 3 -XSrTiO 3 single crystal material of that specific composition was found to be able to be applied to high-temperature superconducting filters as the dielectric material with a significantly improved Qf value. Completed the invention.

すなわち、この発明は、組成式を(1-X)LaAlO3-XSrTiO3と表し、0<X≦0.2を満足する焼結体又は溶融液より、フローティング・ゾーン法(以下、FZ法という。)又はチョクラルスキー法(以下、CZ法という。)によって不活性ガス雰囲気中で育成したもので、組成式を(1-X)LaAlO3-XSrTiO3と表し、0.025≦X≦0.2を満足し、誘電率が24.7以上、且つQf値が360,491GHz以上の誘電体特性を有することを特徴とする電子デバイス用単結晶材料である。 That is, according to the present invention, a floating zone method (hereinafter referred to as FZ method) is obtained from a sintered body or a melt that represents a composition formula of (1-X) LaAlO 3 —XSrTiO 3 and satisfies 0 <X ≦ 0.2. Alternatively , it is grown in an inert gas atmosphere by the Czochralski method (hereinafter referred to as CZ method), the composition formula is expressed as (1-X) LaAlO 3 —XSrTiO 3, and 0.025 ≦ X ≦ 0.2 is satisfied, dielectric constant of 24.7 or more and Qf value is a single crystal material for an electronic device, characterized by having the above dielectric properties 360,491 GHz.

また、この発明の電子デバイス用単結晶材料は、少なくともφ5mm×3mmの大きさを有している。また、種結晶にLaAlO 3 単結晶を用いて育成することが好ましい。 Moreover, the single crystal material for electronic devices of this invention has a size of at least φ5 mm × 3 mm. Further, it is preferable to grow using a LaAlO 3 single crystal as a seed crystal .

この発明によると、FZ法またはCZ法を不活性ガス雰囲気中で実施することにより、容易に複合酸化物からなる電子デバイス用単結晶材料を製造することができ、この単結晶材料は、高いQf値を有して電子デバイス用誘電体材料として最適である。 According to the present invention, by performing the FZ method or the CZ method in an inert gas atmosphere, it is possible to easily produce a single crystal material for an electronic device made of a composite oxide, and this single crystal material has a high Qf Therefore, it is suitable as a dielectric material for electronic devices.

この発明による電子デバイス用単結晶材料は、単結晶の電界面を(110)面にすることにより、更に高いQf値を得ることができ、さらに高温超伝導フィルタなどに用いることにより、デバイスの損失を大幅に低減することができる。 The single crystal material for an electronic device according to the present invention can obtain a higher Qf value by making the electric field plane of the single crystal (110) plane, and can be used for a high-temperature superconducting filter. Can be greatly reduced.

この発明による電子デバイス用単結晶材料は、LaAlO3に特定量のSrTiO3をドープすることで単結晶化したもので、従来のLaAlO3単結晶に比べ、誘電体特性のQf値が大幅に向上する効果を有し、組成式を(1-X)LaAlO3-XSrTiO3と表し、0.025≦X≦0.2を満足することを特徴とする。 The single crystal material for electronic devices according to the present invention is a single crystal formed by doping LaAlO 3 with a specific amount of SrTiO 3, and the Qf value of dielectric properties is greatly improved compared to conventional LaAlO 3 single crystals. The composition formula is expressed as (1-X) LaAlO 3 —XSrTiO 3 and satisfies 0.025 ≦ X ≦ 0.2.

(1-X)LaAlO3-XSrTiO3 の組成式において、Xが0ではQf値が向上せず、Xが0.2を超えると単結晶が生成されず、かつQf値の向上が望めないので好ましくない。xが0.025≦X≦0.2の範囲で誘電率が24.7以上、且つQf値が360,491GHz以上の誘電体特性を有するより好ましい範囲は、0.075≦X≦0.2である。 In the composition formula of (1-X) LaAlO 3 -XSrTiO 3 , when X is 0, the Qf value is not improved, and when X exceeds 0.2, a single crystal is not formed, and an improvement in Qf value cannot be expected, which is not preferable. . A more preferable range in which x is in the range of 0.025 ≦ X ≦ 0.2 and the dielectric constant is 24.7 or more and the Qf value is 360,491 GHz or more is 0.075 ≦ X ≦ 0.2.

この発明による電子デバイス用単結晶材料は、組成式を(1-X)LaAlO 3 -XSrTiO 3 と表し、0<X≦0.2を満足する焼結体又は溶融液より、FZ法またはCZ法を不活性ガス雰囲気中で複合酸化物の単結晶として育成する。 Monocrystalline material for electronic devices according to this invention, represents a composition equation (1-X) LaAlO 3 -XSrTiO 3, 0 < than sintered or melt satisfies X ≦ 0.2, FZ method or CZ method not Growing as a single crystal of a complex oxide in an active gas atmosphere .

FZ法の場合、(a)組成式を(1-X)LaAlO3-XSrTiO3と表し、0<X≦0.2を満足する焼結体を準備する工程、(b)該焼結体の下部に種結晶を対向配置する工程、(c)焼結体と種結晶を加熱溶融する工程、(d)焼結体と種結晶とを接触させる工程、(e)種結晶を回転させながら引き下げる工程からなる。 In the case of the FZ method, (a) a composition formula is represented as (1-X) LaAlO 3 -XSrTiO 3 and a step of preparing a sintered body satisfying 0 <X ≦ 0.2, (b) below the sintered body From the step of disposing the seed crystal oppositely, (c) the step of heating and melting the sintered body and the seed crystal, (d) the step of bringing the sintered body and the seed crystal into contact, and (e) the step of pulling down the seed crystal while rotating. Become.

FZ法における、(a)焼結体を準備する工程における焼結体は、上述の限定理由に基づく組成式を満足する必要がある。焼結体を準備する工程として、例えば、以下のような製造方法を採用することができる。
(1)出発原料となる各酸化物粉末を所望の割合となるように秤量する。
(2)各酸化物粉末に純水またはアルコールを加え混合・粉砕を行う。
(3)混合物を仮焼する。
(4)仮焼粉を粉砕する。
(5)粉砕粉を所望の成形手段によって成形する。
(6)成形体を焼結する。
The sintered body in the step of preparing the (a) sintered body in the FZ method needs to satisfy the composition formula based on the above-mentioned reasons for limitation. As a process for preparing the sintered body, for example, the following manufacturing method can be employed.
(1) Weigh each oxide powder as a starting material so as to have a desired ratio.
(2) Add pure water or alcohol to each oxide powder and mix and grind.
(3) The mixture is calcined.
(4) Grind the calcined powder.
(5) The pulverized powder is formed by a desired forming means.
(6) Sinter the compact.

上記の(a)準備工程における好ましい実施形態として、(2)の工程における混合・粉砕後の混合粉の平均粒径は、0.7μm〜1.4μmが好ましい。(3)の工程における焼結温度は1100℃〜1400℃が好ましく、仮焼時間は2〜6時間が好ましい。(4)の工程における粉砕粉の平均粒径は、0.8μm〜4.0μmが好ましい。(5)の工程における成形密度は3.0g/cm3〜5.2g/cm3が好ましい。(6)の工程において、焼結雰囲気は、大気中あるいは酸素濃度50%〜100%の雰囲気中が好ましく、焼結温度は1500℃〜1700℃、特に1550℃〜1650℃が好ましく、焼結時間は1〜50時間が好ましい。これらの好ましい条件を選定することにより、得られる電子デバイス用誘電体単結晶のQf値を向上させることができる。 As a preferred embodiment in the preparation step (a), the average particle diameter of the mixed powder after mixing and pulverization in the step (2) is preferably 0.7 μm to 1.4 μm. The sintering temperature in the step (3) is preferably 1100 ° C. to 1400 ° C., and the calcining time is preferably 2 to 6 hours. The average particle size of the pulverized powder in the step (4) is preferably 0.8 μm to 4.0 μm. (5) forming density in step of 3.0g / cm 3 ~5.2g / cm 3 are preferred. (6) In the process of the sintering atmosphere is preferably an atmosphere of 50% to 100% in air or oxygen concentration, the sintering temperature is 1500 ° C. to 1700 ° C., in particular 1550 ° C. to 1650 ° C. are preferred, the sintering time Is preferably 1 to 50 hours. By selecting these preferable conditions, the Qf value of the obtained dielectric single crystal for electronic devices can be improved.

FZ法において、焼結体および種結晶は、白金線により装置に固定することが望ましい。白金線を用いることによって、白金と焼結体および種結晶との反応を防止することができる。FZ法における(b)〜(e)工程については、公知の手段を適宜採用することができる。   In the FZ method, the sintered body and the seed crystal are preferably fixed to the apparatus by a platinum wire. By using a platinum wire, reaction of platinum with the sintered body and the seed crystal can be prevented. For the steps (b) to (e) in the FZ method, known means can be appropriately employed.

CZ法の場合、(イ)組成式を(1-X)LaAlO3-XSrTiO3と表し、0<X≦0.2を満足する原料を準備する工程、(ロ)原料をるつぼに挿入し、加熱して融液となす工程、(ハ)該融液に種結晶を接触させる工程、(ニ)種結晶を回転させながら引き上げる工程からなる。 In the case of the CZ method, (b) a step of preparing a raw material satisfying the composition formula (1-X) LaAlO 3 -XSrTiO 3 and satisfying 0 <X ≦ 0.2, and (b) inserting the raw material into a crucible and heating. And (c) a step of bringing the seed crystal into contact with the melt, and (d) a step of pulling the seed crystal while rotating.

CZ法において、種結晶は白金線により装置に固定することが望ましい。白金線を用いることによって、種結晶との反応を防止することができる。CZ法における(ロ)〜(ニ)各工程については、公知の手段を適宜採用することができる。   In the CZ method, the seed crystal is preferably fixed to the apparatus with a platinum wire. By using a platinum wire, the reaction with the seed crystal can be prevented. For each step (b) to (d) in the CZ method, known means can be appropriately employed.

この発明による電子デバイス用単結晶材料において、FZ法及びCZ法は、不活性ガス雰囲気中で実施する。不活性ガス雰囲気中で行うことにより、Qf値をさらに増加させることができるとともに、るつぼの損傷防止、固定用白金線の反応防止などを図ることができる。不活性ガスとしては、窒素、アルゴン、ヘリウムなどが好ましい。 In single crystal material for electronic devices according to the present invention, FZ method and CZ method, it carried out in an inert gas atmosphere. By carrying out in an inert gas atmosphere, the Qf value can be further increased, the crucible can be prevented from being damaged, and the reaction of the fixing platinum wire can be prevented. As the inert gas, nitrogen, argon, helium and the like are preferable.

FZ法及びCZ法において、種結晶にはLaAlO3単結晶を用いることが好ましい。LaAlO3単結晶を種結晶として用いることにより、均質な(1-X)LaAlO3-XSrTiO3単結晶を得ることができる。もちろん、育成した(1-X)LaAlO3-XSrTiO3単結晶を使用することもできる。 In the FZ method and the CZ method, it is preferable to use a LaAlO 3 single crystal as a seed crystal. By using a LaAlO 3 single crystal as a seed crystal, a homogeneous (1-X) LaAlO 3 —XSrTiO 3 single crystal can be obtained. Of course, a grown (1-X) LaAlO 3 —XSrTiO 3 single crystal can also be used.

上述のこの発明によって得られる、組成式を(1-X)LaAlO3-XSrTiO3と表し、0.025≦X≦0.2を満足する単結晶材料は、電子デバイス用誘電体材料として高いQf値を有するが、当該単結晶の(110)面を電界面とすることによって、さらにQf値を向上させることができる。(110)面を電界面とするには、例えばX線回折法により単結晶材料の結晶面を特定し、それに基づいて切断加工を行うとよい。
A single crystal material obtained by the above-described invention and having a composition formula of (1-X) LaAlO 3 —XSrTiO 3 and satisfying 0.025 ≦ X ≦ 0.2 has a high Qf value as a dielectric material for electronic devices. By setting the (110) plane of the single crystal as the electric field plane, the Qf value can be further improved. In order to set the (110) plane as the electric field plane, for example, the crystal plane of the single crystal material is specified by X-ray diffraction, and cutting is performed based on the specified plane.

実施例1
出発原料として、La2O3、Al2O3、SrCO3、TiO2の粉末を準備した。組成式(1-X)LaAlO3-XSrTiO3のXが、それぞれ0、0.025、0.05、0.075、0.1、0.2、0.3となるように配合し、純水中で混合した後に乾燥し、平均粒径1.1μmの混合粉を得た。
Example 1
As starting materials, powders of La 2 O 3 , Al 2 O 3 , SrCO 3 and TiO 2 were prepared. The composition formula (1-X) LaAlO 3 -XSrTiO 3 is compounded so that X is 0, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3 respectively, mixed in pure water, dried, and average particle size A mixed powder of 1.1 μm was obtained.

次いで、該混合粉を組成に応じて1400℃で4時間仮焼した。得られた仮焼粉を湿式粉砕によって中心粒径が1.7μmに粉砕した後、粉砕粉を乾燥させた。乾燥粉にPVAを添加、混合した後、造粒装置によって造粒した。   Next, the mixed powder was calcined at 1400 ° C. for 4 hours depending on the composition. The obtained calcined powder was pulverized to a center particle size of 1.7 μm by wet pulverization, and then the pulverized powder was dried. After adding and mixing PVA to dry powder, it granulated with the granulator.

得られた造粒粉を一軸プレス装置により、成形密度3.5g/cm3に成形した。成形体を300℃〜700℃で脱バインダー後、酸素濃度80%の雰囲気中において、1650℃で10時間焼結し、焼結体を得た。 The obtained granulated powder was molded to a molding density of 3.5 g / cm 3 using a uniaxial press machine. The molded body was debindered at 300 ° C. to 700 ° C. and then sintered at 1650 ° C. for 10 hours in an atmosphere having an oxygen concentration of 80% to obtain a sintered body.

得られた焼結体を、不活性ガス雰囲気中でFZ法により単結晶を製造した。具体的には、得られた焼結体をφ5mm×10mmに加工し、白金ワイヤーによって赤外線加熱装置に固定した。また、焼結体の下部にLaAlO3単結晶を種結晶として固定し、双方を赤外線イメージ炉で溶融させた。溶融後、焼結体と種結晶とを接触させ、互いに逆方向に回転させながら種結晶を引き下げ、複合酸化物単結晶を成長させた。 A single crystal was produced from the obtained sintered body by the FZ method in an inert gas atmosphere. Specifically, the obtained sintered body was processed into φ5 mm × 10 mm and fixed to an infrared heating device with a platinum wire. In addition, a LaAlO 3 single crystal was fixed as a seed crystal at the bottom of the sintered body, and both were melted in an infrared image furnace. After melting, the sintered body and the seed crystal were brought into contact and the seed crystal was pulled down while rotating in opposite directions to grow a composite oxide single crystal.

得られた複合酸化物単結晶をφ5mm×3mmに加工し、試験片を得た。得られた試験片をネットワークアナライザを用いてH&C法によって誘電率、Qf値、τf値を測定した。測定結果を表1に示す。なお、表1において、番号の横に*印を付したものは比較例であり、Xが0及び0.3の場合である。   The obtained complex oxide single crystal was processed into φ5 mm × 3 mm to obtain a test piece. The obtained specimen was measured for dielectric constant, Qf value, and τf value by a H & C method using a network analyzer. Table 1 shows the measurement results. In Table 1, an asterisk (*) beside the number is a comparative example, and X is 0 and 0.3.

実施例2
酸素雰囲気中でFZ法を実施する以外は、実施例1と同じ方法で複合酸化物単結晶を製造した。得られた単結晶をφ5mm×3mmに加工し、試験片を得た。実施例1と同じ方法によって得られた試験片の誘電率、Qf値、τf値を測定した。測定結果を表2に示す。なお、表2において、番号の横に*印を付したものは比較例であり、Xが0及び0.3の場合である。
Example 2
A composite oxide single crystal was produced in the same manner as in Example 1 except that the FZ method was carried out in an oxygen atmosphere. The obtained single crystal was processed into φ5 mm × 3 mm to obtain a test piece. The dielectric constant, Qf value, and τf value of the test piece obtained by the same method as in Example 1 were measured. The measurement results are shown in Table 2. In Table 2, an asterisk (*) beside the number is a comparative example, and X is 0 and 0.3.

表1及び表2から明らかなように、この発明による複合酸化物単結晶は、比較例に比べ、Qf値が大幅に向上しており、特に、0.075≦X≦0.2の範囲において顕著である。また、結晶面が(110)面の場合にQf値が向上していることが分かる。   As is apparent from Tables 1 and 2, the complex oxide single crystal according to the present invention has a significantly improved Qf value as compared with the comparative example, and is particularly remarkable in the range of 0.075 ≦ X ≦ 0.2. It can also be seen that the Qf value is improved when the crystal plane is the (110) plane.

また、実施例2のように、酸素雰囲気中でFZ法を実施しても優れたQf値を有するが、実施例1のように、不活性ガス雰囲気中でFZ法を実施すると、さらにQf値を高めることができる。   Also, as in Example 2, it has an excellent Qf value even when the FZ method is performed in an oxygen atmosphere, but when the FZ method is performed in an inert gas atmosphere as in Example 1, the Qf value is further increased. Can be increased.

実施例3
出発原料として、La2O3、Al2O3、SrCO3、TiO2の粉末を準備した。組成式(1-X)LaAlO3-XSrTiO3のXが、それぞれ0、0.025、0.05、0.075、0.1、0.2、0.3となるように配合し、純水中で混合した後に乾燥し、平均粒径1.1μmの混合粉を得た。
Example 3
As starting materials, powders of La 2 O 3 , Al 2 O 3 , SrCO 3 and TiO 2 were prepared. The composition formula (1-X) LaAlO 3 -XSrTiO 3 is compounded so that X is 0, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3 respectively, mixed in pure water, dried, and average particle size A mixed powder of 1.1 μm was obtained.

得られた混合粉末を、不活性ガス雰囲気中でCZ法により単結晶を製造した。具体的には、得られた混合粉末をるつぼに挿入し、不活性ガス雰囲気中で高周波誘導加熱して融液となした後、LaAlO3単結晶を種結晶として該融液に接触させ、種結晶を回転させながら引き上げて、複合酸化物単結晶を成長させた。 A single crystal was produced from the obtained mixed powder by a CZ method in an inert gas atmosphere. Specifically, the obtained mixed powder is inserted into a crucible, and after high-frequency induction heating in an inert gas atmosphere to form a melt, a LaAlO 3 single crystal is brought into contact with the melt as a seed crystal, The composite oxide single crystal was grown by pulling up while rotating the crystal.

得られた複合酸化物単結晶をφ5mm×3mmに加工し、試験片を得た。得られた試験片をネットワークアナライザを用いてH&C法によって誘電率、Qf値、τf値を測定した。測定結果は、実施例1の表1に示す各試験片と同等の特性を示すことを確認した。
The obtained complex oxide single crystal was processed into φ5 mm × 3 mm to obtain a test piece. The obtained specimen was measured for dielectric constant, Qf value, and τf value by a H & C method using a network analyzer. It was confirmed that the measurement results showed the same characteristics as the test pieces shown in Table 1 of Example 1.

Figure 0004596307
Figure 0004596307

Figure 0004596307
Figure 0004596307

この発明によると、FZ法またはCZ法により、容易に複合酸化物単結晶材料を製造することができ、近年要求されるQf値が高い電子デバイス用誘電体単結晶が得られるので、準マイクロ波、マイクロ波・ミリ波領域の通信用フィルタ、発信器などに適しており、特に、準ミリ波以上の帯域の高温超伝導フィルタ用として最適であり、それら電子デバイスの性能を向上させることができる。   According to the present invention, a composite oxide single crystal material can be easily manufactured by the FZ method or the CZ method, and a dielectric single crystal for electronic devices having a high Qf value required in recent years can be obtained. Suitable for communication filters and transmitters in the microwave / millimeter wave region, especially suitable for high-temperature superconducting filters in the sub-millimeter wave band and higher, and can improve the performance of these electronic devices .

Claims (3)

組成式を(1-X)LaAlO3-XSrTiO3と表し、0<X≦0.2を満足する焼結体又は溶融液より、フローティング・ゾーン法又はチョクラルスキー法によって不活性ガス雰囲気中で育成したものであって、組成式を(1-X)LaAlO3-XSrTiO3と表し、0.025≦X≦0.2を満足し、誘電率が24.7以上、且つQf値が360,491GHz以上の誘電体特性を有することを特徴とする電子デバイス用単結晶材料。 The composition formula is expressed as (1-X) LaAlO 3 -XSrTiO 3 and grown in an inert gas atmosphere by a floating zone method or a Czochralski method from a sintered body or a melt satisfying 0 <X ≦ 0.2. be those, represents a composition equation (1-X) LaAlO 3 -XSrTiO 3, satisfies 0.025 ≦ X ≦ 0.2, a dielectric constant of 24.7 or more and Qf value of more than 360,491 GHz dielectric properties A single crystal material for an electronic device, comprising: 前記単結晶材料は少なくともφ5mm×3mmの大きさであることを特徴とする請求項に記載の電子デバイス用単結晶材料。 The single crystal material for electronic devices according to claim 1 , wherein the single crystal material has a size of at least φ5 mm × 3 mm. 種結晶にLaAlO3単結晶を用いて育成したことを特徴とする請求項1または2に記載の電子デバイス用単結晶材料。 Monocrystalline material for electronic devices as claimed in claim 1 or 2, characterized in that grown using LaAlO 3 single crystal seed crystal.
JP2004146344A 2004-05-17 2004-05-17 Single crystal materials for electronic devices Expired - Fee Related JP4596307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146344A JP4596307B2 (en) 2004-05-17 2004-05-17 Single crystal materials for electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146344A JP4596307B2 (en) 2004-05-17 2004-05-17 Single crystal materials for electronic devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010074624A Division JP2010208938A (en) 2010-03-29 2010-03-29 Dielectric for electronic device

Publications (2)

Publication Number Publication Date
JP2005325002A JP2005325002A (en) 2005-11-24
JP4596307B2 true JP4596307B2 (en) 2010-12-08

Family

ID=35471650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146344A Expired - Fee Related JP4596307B2 (en) 2004-05-17 2004-05-17 Single crystal materials for electronic devices

Country Status (1)

Country Link
JP (1) JP4596307B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166958A (en) * 2011-02-09 2012-09-06 Ohara Inc Method for producing oxide single crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183497A (en) * 1988-01-14 1989-07-21 Chichibu Cement Co Ltd Production of large-diameter strontium titanate single crystal
JPH05163098A (en) * 1991-12-18 1993-06-29 Mitsubishi Kasei Corp Method for growing lanthanum aluminate crystal
JPH06279174A (en) * 1993-03-23 1994-10-04 Natl Inst For Res In Inorg Mater Production of oxide single crystal
US5602080A (en) * 1991-09-16 1997-02-11 International Business Machines Corporation Method for manufacturing lattice-matched substrates for high-Tc superconductor films

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183497A (en) * 1988-01-14 1989-07-21 Chichibu Cement Co Ltd Production of large-diameter strontium titanate single crystal
US5602080A (en) * 1991-09-16 1997-02-11 International Business Machines Corporation Method for manufacturing lattice-matched substrates for high-Tc superconductor films
JPH05163098A (en) * 1991-12-18 1993-06-29 Mitsubishi Kasei Corp Method for growing lanthanum aluminate crystal
JPH06279174A (en) * 1993-03-23 1994-10-04 Natl Inst For Res In Inorg Mater Production of oxide single crystal

Also Published As

Publication number Publication date
JP2005325002A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
Liu et al. Crystal structure, infrared reflectivity spectra and microwave dielectric properties of CaAl2O4 ceramics with low permittivity
Duran et al. Fabrication and electrical properties of textured Sr0. 53Ba0. 47Nb2O6 ceramics by templated grain growth
Tseng Microwave dielectric properties of a new Cu0. 5Ti0. 5NbO4 ceramics
Chen et al. SrLnAlO 4 (Ln= Nd and Sm) microwave dielectric ceramics
Li et al. Low-fired microwave dielectrics in ZnO-TiO 2 ceramics doped with CuO and B 2 O 3
Chen et al. Microwave dielectric properties and microstructures of Ca1-xNd2x/3TiO3–Li1/2Nd1/2TiO3 ceramics
Bhuyan et al. Structural and microwave dielectric properties of Mg 2 TiO 4 ceramics synthesized by mechanical method
JP4596307B2 (en) Single crystal materials for electronic devices
Cai et al. A microwave dielectric material Mg0. 5Zn0. 5ZrNb2O8
Guo et al. Sintering characteristic and microwave dielectric properties of ultra-low loss Li 2 Mg 3 TiO 6 ceramic prepared by reaction-sintering process
US8241420B2 (en) Single crystal material and process for producing the same
JP2010208938A (en) Dielectric for electronic device
Li et al. Low-Temperature Sintering Behavior and Dielectric Properties of Li 2 O-Nb 2 O 5-TiO 2 Ceramics with Li-B-Si-O Glass
Zhang et al. Effects of Y2O3/CeO2 co-doping on microwave dielectric properties of Ba (Co0. 6Zn38) 1/3Nb2/3O3 ceramics
CN111825445B (en) High-dielectric-constant microwave dielectric ceramic material, preparation and application thereof
JPH0542762B2 (en)
JP2004256360A (en) Microwave dielectric porcelain composition and its manufacturing method
Wang et al. Synthesis and microwave dielectric properties of CaO–MgO–SiO2 submicron powders doped with Li2O–Bi2O3 by sol–gel method
US20070027022A1 (en) High-frequency porcelain compostion, process for producing the same and planar high-frequency circuit
CN112079631A (en) Low-dielectric LTCC material with near-zero temperature coefficient and preparation method thereof
KR20080056145A (en) Single crystal material and process for producing the same
Zhang et al. Low‐Temperature sintering and electromagnetic properties of copper‐modified Z‐type hexaferrite
Selvam et al. Superconducting, microstructural, and grain boundary properties of hot‐pressed PbMo6S8
Chen et al. THE SINTERING BEHAVIOUR, MICROSTRUCTURE AND MICROWAVE DIELECTRIC PROPERTIES OF Li2Zn3Ti4O12 CERAMICS DOPED BY LiF
JP4524527B2 (en) Method for producing Langasite single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070606

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees