JPH0676609B2 - Method for producing fine copper powder - Google Patents

Method for producing fine copper powder

Info

Publication number
JPH0676609B2
JPH0676609B2 JP20825088A JP20825088A JPH0676609B2 JP H0676609 B2 JPH0676609 B2 JP H0676609B2 JP 20825088 A JP20825088 A JP 20825088A JP 20825088 A JP20825088 A JP 20825088A JP H0676609 B2 JPH0676609 B2 JP H0676609B2
Authority
JP
Japan
Prior art keywords
powder
copper
reaction
temperature
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20825088A
Other languages
Japanese (ja)
Other versions
JPH0257623A (en
Inventor
研一 大塚
博之 石川
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP20825088A priority Critical patent/JPH0676609B2/en
Publication of JPH0257623A publication Critical patent/JPH0257623A/en
Priority to AU75399/91A priority patent/AU632227B2/en
Priority to AU75900/91A priority patent/AU627993B2/en
Publication of JPH0676609B2 publication Critical patent/JPH0676609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Devices For Dispensing Beverages (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は平均粒径が0.1μmから数μmの範囲にある銅
微粉の製造方法に関するもので、これらの粉末は実質的
に単結晶であるため安定性があり、高純度とすることが
できるため導電ペースト用フィラーとして好適である。
TECHNICAL FIELD The present invention relates to a method for producing fine copper powder having an average particle size in the range of 0.1 μm to several μm, and these powders are substantially single crystals. Therefore, it is stable and can be highly purified, so that it is suitable as a filler for conductive paste.

〔従来の技術〕[Conventional technology]

銅粉は従来、電解法および噴霧法により製造されてい
る。
Copper powder is conventionally produced by an electrolytic method and a spraying method.

電解法によるものは高純度であるが、樹枝状で粒径は10
数μm以上であり、それらに適した用途(粉末冶金用、
遮蔽塗料用など)もあるが、高温焼成型の導電ペースト
用フィラーには適していない。
The electrolytic method has high purity, but is dendritic and has a particle size of 10
It has a size of several μm or more and is suitable for them (for powder metallurgy,
(For shielding paints, etc.), but is not suitable as a filler for conductive paste of high temperature baking type.

噴霧法では溶解時に不純物が混入し易く、噴霧時に酸化
も受け、形は球状ないし葡萄の房状であり、粒径が10μ
m程度にもなり、この粉末もまた粒径が大きいことと酸
化していることからフィラー粉末としては好ましいとは
言えない。
In the spraying method, impurities are likely to be mixed in when dissolved, and they are also oxidized during spraying, and the shape is spherical or a tuft of grapes, and the particle size is 10μ.
Since this powder also has a large particle size and is oxidized, it cannot be said to be preferable as a filler powder.

液相で銅イオンを還元剤により還元析出させる方法(例
えば特公昭57−155302)もあり、導電ペーストに適した
粒径と形状も得られるが、液相からの不純物の混入、再
酸化し易い、回分式の方法で製造価格が高い等の欠点が
ある。
There is also a method of reducing and precipitating copper ions in a liquid phase with a reducing agent (for example, Japanese Patent Publication No. 57-155302), and a particle size and shape suitable for a conductive paste can be obtained, but impurities from the liquid phase are easily mixed and reoxidized. However, the batch type method has drawbacks such as high manufacturing cost.

気相化学反応による方法で粒状銅分を製造した例が開示
されているが(特公昭59−7765)、反応温度は1100℃で
あり、多結晶粒状粉末となっており、この粉末も好まし
いものとは言えない。
An example of producing a granular copper component by a method by a gas phase chemical reaction is disclosed (Japanese Patent Publication No. 59-7765), but the reaction temperature is 1100 ° C., and it is a polycrystalline granular powder. This powder is also preferable. It can not be said.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は高温焼成型銅導電ペースト用フィラー粉に適し
た0.1〜数μm(高導電性ペーストには好ましくは1〜
数μm)の高純度で酸化しにくい粉末を提供し、従来の
方法では微細粒径と安定性とを同時に満たす銅粉が得難
いという問題点を解決しようとするものである。
The present invention is suitable for high-temperature firing type copper conductive paste filler powder of 0.1 to several μm (preferably 1 to several μm for high conductive paste).
It is intended to provide a powder having a high purity of several μm and which is hard to oxidize, and to solve the problem that it is difficult to obtain a copper powder satisfying a fine particle size and stability at the same time by the conventional method.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は上記課題を解決するために、塩化第1銅蒸気と
還元性ガスとの反応により銅微粉を製造する際に、反応
温度を700℃以上900℃未満に限定したことにより、実質
的に単結晶であるため安定性があり、高純度の銅微粉が
得られたものである。
The present invention, in order to solve the above problems, when producing copper fine powder by the reaction of cuprous chloride vapor and reducing gas, by limiting the reaction temperature to 700 ℃ or more and less than 900 ℃, substantially Since it is a single crystal, it is stable and high-purity fine copper powder is obtained.

〔作用〕[Action]

本発明者らは、上記課題を解決するために、1〜数μm
の平均粒径を有する銅微粉を、塩化第1銅を原料とする
気相化学反応法により製造する際の反応温度について研
究を重ねた結果、900℃未満で反応させると反応率は低
下するが、粉末形状は晶癖を有するものとなり、より高
温では反応率は100%近くになるが、多結晶の球形粒子
が得られた。
In order to solve the above problems, the present inventors have
As a result of repeated research on the reaction temperature when producing fine copper powder having an average particle size of 1 by the vapor phase chemical reaction method using cuprous chloride as a raw material, the reaction rate decreases when reacted below 900 ° C. , The powder had a crystal habit, and the reaction rate was close to 100% at higher temperatures, but polycrystalline spherical particles were obtained.

粉末の生成機構は高温反応においては反応速度が速く、
凝集過程が律速として説明されている。この場合もこの
理論が適用でき、さらに球状となるのは銅の融点に近い
温度で成長するためと考えられる。
The powder generation mechanism has a high reaction rate in high temperature reactions,
The aggregation process is described as rate limiting. This theory can be applied in this case as well, and it is considered that the spherical shape is caused by the growth at a temperature close to the melting point of copper.

低温においては反応速度が遅いため既に生成した粒子へ
の析出が継続して進行する(CVD反応)ので、十分に粒
成長した晶癖を有する実質的に単結晶の粉末ができると
思われる。
Since the reaction rate is slow at low temperature and the precipitation on the already formed particles continues (CVD reaction), it is considered that a substantially single-crystal powder having a crystal habit with sufficient grain growth can be formed.

本発明はこの現象を見出したことにより可能となったの
である。
The present invention has been made possible by the discovery of this phenomenon.

従って、1〜数μmの実質的に単結晶の銅粉(結晶性良
好のため表面安定で酸化し難い)を製造する要件は、塩
化第1銅の気相還元において900℃未満の反応温度で製
造することである。しかし余りに温度が低過ぎると反応
速度が低下するため銅が析出し難くなるので700℃以上
は必要となる。ただしこの条件は反応部での温度を規定
するもので、塩化第1銅の蒸発部での温度を規定するも
のではない。
Therefore, the requirement for producing a substantially single-crystal copper powder of 1 to several μm (surface stability and difficult to oxidize due to good crystallinity) is at a reaction temperature of less than 900 ° C. in the vapor phase reduction of cuprous chloride. It is to manufacture. However, if the temperature is too low, the reaction rate decreases and copper is less likely to precipitate. Therefore, 700 ° C or higher is required. However, this condition defines the temperature in the reaction part, not the temperature in the evaporation part of cuprous chloride.

また、反応部での塩化第1銅蒸気の滞留時間は0.05〜5
秒が好ましく、0.05秒より小なる場合は非晶質となり易
く、5秒より大であると得られる銅微粉の粒径の分布が
大となる。
The residence time of the cuprous chloride vapor in the reaction section is 0.05 to 5
Seconds are preferable, and if it is less than 0.05 seconds, it tends to be amorphous, and if it is more than 5 seconds, the particle size distribution of the obtained copper fine powder becomes large.

本発明を好適に実施する装置は例えば第1図のようにな
る。
An apparatus for suitably implementing the present invention is, for example, as shown in FIG.

塩化第1銅は石英ボート3に収容され、独立した蒸発部
2で加熱されて蒸発し、アルゴン等の不活性ガスをキャ
リアガス4として反応部5に送られる。そこでノズル6
より送入された水素ガス等の還元性ガス7と混合して気
相反応が起こり、銅微粉が生成する。反応部の温度を70
0℃以上900℃未満とすることにより、実質的に単結晶で
ある0.1〜数μmの銅微粉が得られる。ただしこの反応
温度では反応速度が遅いため、蒸発した塩化第1銅のか
なりの部分は反応せず、銅微粉中に混入する。しかしな
がら銅微粉の1個の粒子内部には存在しないため、洗浄
等により塩化第1銅は除去できるので、十分に高純度の
銅微粉が得られる。
The cuprous chloride is accommodated in a quartz boat 3, heated in an independent evaporation section 2 and evaporated, and sent to a reaction section 5 as an inert gas such as argon as a carrier gas 4. So nozzle 6
When mixed with the reducing gas 7 such as hydrogen gas that has been fed in, a gas phase reaction occurs and copper fine powder is generated. The reaction temperature is 70
By setting the temperature to 0 ° C. or higher and lower than 900 ° C., a fine copper powder of 0.1 to several μm that is substantially a single crystal is obtained. However, since the reaction rate is slow at this reaction temperature, a considerable part of the evaporated cuprous chloride does not react and is mixed in the copper fine powder. However, since it does not exist inside one particle of the copper fine powder, the cuprous chloride can be removed by washing or the like, so that copper fine powder of sufficiently high purity can be obtained.

反応温度が900℃以上となると球状粒子の存在が顕著と
なってくる。また700℃未満になると未反応の塩化第1
銅が大量に冷却部8および捕集部(図示せず)に析出し
てくるので、銅微粉製造の効率が低下する。
When the reaction temperature is 900 ° C or higher, the presence of spherical particles becomes remarkable. When the temperature is below 700 ° C, unreacted first chloride
Since a large amount of copper is deposited in the cooling section 8 and the collection section (not shown), the efficiency of producing fine copper powder is reduced.

なお、本発明を実施する装置としては、第1図に示した
型式の装置のほか、縦型炉などの種々の型式が考えられ
る。
As an apparatus for carrying out the present invention, in addition to the apparatus of the type shown in FIG. 1, various types such as a vertical furnace can be considered.

〔実施例〕〔Example〕

実施例1 第1図に示した装置を用い、石英ボートに約5gの塩化第
1銅を入れ、蒸発部、反応部ともに850℃に保ち、キャ
リアガスとしてアルゴンを4l/min、還元性ガスは水素を
2l/min流し、気相反応により生成した銅微粉を捕集し
た。
Example 1 Using the apparatus shown in FIG. 1, about 5 g of cuprous chloride was put into a quartz boat, both the evaporation part and the reaction part were kept at 850 ° C., argon was used as a carrier gas at 4 l / min, and the reducing gas was Hydrogen
Flowing at 2 l / min, the fine copper powder generated by the gas phase reaction was collected.

得られた銅微粉の透過電子顕微鏡写真を第2図に示し
た。面取りされた(truncated)多面体であり、面心立
方金属の単結晶、双晶粒子であることが分かる。すなわ
ち粒界が少ないことから実質的に単結晶粒といえるもの
である。
A transmission electron micrograph of the obtained copper fine powder is shown in FIG. It can be seen that it is a truncated polyhedron, single crystal or twin crystal of face-centered cubic metal. That is, since it has few grain boundaries, it can be said to be substantially a single crystal grain.

捕集した銅微粉には塩化第1銅が含まれ、塩素量が5.0
重量%(以下単に%と記す)であったが、洗浄除去後は
塩素量は0.002%となった。また、酸素含有量は0.05%
で、乾燥大気中に数日間放置しておいても酸素含有量は
0.05%で変わらず表面は極めて安定であった。
The collected copper fine powder contains cuprous chloride and has a chlorine content of 5.0.
Although the content was weight% (hereinafter simply referred to as%), the chlorine content after cleaning and removal was 0.002%. The oxygen content is 0.05%
So, even if left in a dry atmosphere for several days, the oxygen content is
The surface remained extremely stable at 0.05%.

実施例2 蒸発部、反応部を共に750℃とし、他は実施例1と全く
同じ条件で銅微粉を製造した。
Example 2 Copper fine powder was produced under the same conditions as in Example 1 except that both the evaporation section and the reaction section were set to 750 ° C.

塩素量が12.5%と高い銅微粉が得られたが、洗浄後は実
施例1と殆ど変わらない銅微粉となった。
A fine copper powder having a high chlorine content of 12.5% was obtained, but after cleaning, the fine copper powder was almost the same as in Example 1.

実施例3 蒸発部を925℃、反応部を800℃とし、他は実施例1と全
く同じ条件で銅微粉末を製造し、実施例1、2と変わら
ない銅微粉をより高い生産性(蒸発部の温度が高く、塩
化第1銅の供給速度が大きい)で得られた。
Example 3 A fine copper powder was produced under exactly the same conditions as in Example 1 except that the evaporation part was set to 925 ° C. and the reaction part was set to 800 ° C., and copper fine powder similar to those in Examples 1 and 2 had higher productivity (evaporation). Part temperature is high and the supply rate of cuprous chloride is high).

比較例1 蒸発部、反応部を共に900℃とし、他は実施例1と全く
同じ条件で銅微粉を製造したところ、第3図に透過電子
顕微鏡写真を示した銅微粉となり、球状粒子も混在して
おり、これらの粒子は多結晶体であった。
Comparative Example 1 Copper fine powder was manufactured under the same conditions as in Example 1 except that the evaporation part and the reaction part were both set to 900 ° C., and the copper fine powder shown in the transmission electron microscope photograph in FIG. And these particles were polycrystalline.

本比較例1で得られた銅微粉のX線回折結果を第4図に
示す。
The X-ray diffraction result of the fine copper powder obtained in Comparative Example 1 is shown in FIG.

比較例2 蒸発部を750℃、反応部を675℃とし、他は実施例1と全
く同じ条件で銅微粉を製造したが、反応率が極めて悪
く、製造した銅微粉の塩素量は20%を超えた。
Comparative Example 2 Copper fine powder was produced under exactly the same conditions as in Example 1 except that the evaporation part was 750 ° C. and the reaction part was 675 ° C. However, the reaction rate was extremely poor and the amount of chlorine in the copper fine powder produced was 20%. Beyond.

〔発明の効果〕〔The invention's effect〕

本発明により、実質的に単結晶で、純度が高く、かつ安
定した高温焼成型の導電ペーストに適した銅微粉が得ら
れた。
INDUSTRIAL APPLICABILITY According to the present invention, a fine copper powder that is substantially single crystal, has high purity, and is suitable for a stable high-temperature firing type conductive paste was obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施に好適に使用し得る反応器の縦断
面図、第2図は本発明の実施例における銅微粉の透過電
子顕微鏡写真、第3図は比較例における銅微粉の透過電
子顕微鏡写真、第4図は第3図に透過電子顕微鏡写真を
示した銅微粉のX線回折図である。 1…反応器、2…蒸発部 3…石英ボート、4…キャリアガス 5…反応部、6…ノズル 7…還元性ガス、8…冷却部 9…銅微粉
FIG. 1 is a longitudinal sectional view of a reactor which can be suitably used for carrying out the present invention, FIG. 2 is a transmission electron micrograph of copper fine powder in an example of the present invention, and FIG. 3 is a transmission of copper fine powder in a comparative example. An electron micrograph, FIG. 4 is an X-ray diffraction diagram of the fine copper powder whose transmission electron micrograph is shown in FIG. DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... Evaporation part 3 ... Quartz boat, 4 ... Carrier gas 5 ... Reaction part, 6 ... Nozzle 7 ... Reducing gas, 8 ... Cooling part 9 ... Copper fine powder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】塩化第1銅蒸気と還元性ガスとの気相反応
により金属銅粉を生成させる方法において、反応温度を
700℃以上900℃未満とすることにより、単結晶銅微粉を
製造することを特徴とする銅微粉の製造方法。
1. A method for producing a copper metal powder by a vapor phase reaction between cuprous chloride vapor and a reducing gas, wherein the reaction temperature is
A method for producing a copper fine powder, which comprises producing a single crystal copper fine powder by setting the temperature to 700 ° C or higher and lower than 900 ° C.
JP20825088A 1987-08-24 1988-08-24 Method for producing fine copper powder Expired - Fee Related JPH0676609B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20825088A JPH0676609B2 (en) 1988-08-24 1988-08-24 Method for producing fine copper powder
AU75399/91A AU632227B2 (en) 1987-08-24 1991-04-24 Draught beer dispensing system
AU75900/91A AU627993B2 (en) 1987-08-24 1991-04-24 Draught beer dispensing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20825088A JPH0676609B2 (en) 1988-08-24 1988-08-24 Method for producing fine copper powder

Publications (2)

Publication Number Publication Date
JPH0257623A JPH0257623A (en) 1990-02-27
JPH0676609B2 true JPH0676609B2 (en) 1994-09-28

Family

ID=16553142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20825088A Expired - Fee Related JPH0676609B2 (en) 1987-08-24 1988-08-24 Method for producing fine copper powder

Country Status (2)

Country Link
JP (1) JPH0676609B2 (en)
AU (2) AU632227B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3042224B2 (en) * 1992-10-09 2000-05-15 昭栄化学工業株式会社 Manufacturing method of multilayer ceramic capacitor
JP2004124257A (en) 2002-09-11 2004-04-22 Sumitomo Metal Mining Co Ltd Metal copper particulate, and production method therefor
KR101613601B1 (en) * 2013-01-24 2016-04-19 미쓰이금속광업주식회사 Copper powder
JP6278969B2 (en) * 2013-10-24 2018-02-14 三井金属鉱業株式会社 Silver coated copper powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413752A (en) * 1979-01-04 1983-11-08 The Cornelius Company Apparatus for dispensing a carbonated beverage
DK150063C (en) * 1984-02-28 1987-05-25 Kai Soenksen FADOEL DRAINING SYSTEM
US4678100A (en) * 1985-06-17 1987-07-07 Loctite Corporation Variable flow rate dispensing valve assembly

Also Published As

Publication number Publication date
AU7590091A (en) 1991-08-08
AU632227B2 (en) 1992-12-17
AU7539991A (en) 1991-08-08
JPH0257623A (en) 1990-02-27
AU627993B2 (en) 1992-09-03

Similar Documents

Publication Publication Date Title
US6036741A (en) Process for producing high-purity ruthenium
US20090202415A1 (en) Process for producing high-purity silicon and apparatus
US2745735A (en) Method of producing titanium
JP2018035064A (en) Production method of pure carbon, and composition and method thereof
KR100411578B1 (en) Method for producing metal powder
JP4132526B2 (en) Method for producing powdered titanium
US6869461B2 (en) Fine powder of metallic copper and process for producing the same
US4810285A (en) Process for preparing spherical copper fine powder
CN113493191B (en) Method for preparing high-purity alpha-silicon nitride powder and high-purity alpha-silicon nitride powder
JPH0676609B2 (en) Method for producing fine copper powder
KR101780306B1 (en) method of preparing a silver nanowire and a silver nanowire prepared by using the same
US4254093A (en) Solar energy grade cadmium sulfide
JPH02164711A (en) Manufacture of high-purity boron
JP2021508311A (en) Silicon granules for preparing trichlorosilane, and related manufacturing methods
JPWO2011125402A1 (en) Metal titanium manufacturing apparatus and metal titanium manufacturing method
JPH08505350A (en) Method for forging fine ceramic powder and product thereof
JPH0524824A (en) Alumina sol and production thereof
RU2052528C1 (en) Scandium obtaining method
JPS5855315A (en) Manufacture of silicone nitride powder
JPS62188709A (en) Production of pulverized spherical silver powder
JPH028304A (en) Manufacture of tungsten powder
JP2000119709A (en) Production of metallic powder
JPS62192507A (en) Production of pulverized metallic powder
JP3564852B2 (en) Method for producing high purity metal ruthenium powder
JP2000096110A (en) Production of metallic powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees