JPH0132322Y2 - - Google Patents

Info

Publication number
JPH0132322Y2
JPH0132322Y2 JP17336383U JP17336383U JPH0132322Y2 JP H0132322 Y2 JPH0132322 Y2 JP H0132322Y2 JP 17336383 U JP17336383 U JP 17336383U JP 17336383 U JP17336383 U JP 17336383U JP H0132322 Y2 JPH0132322 Y2 JP H0132322Y2
Authority
JP
Japan
Prior art keywords
varistor
electrode plate
linear expansion
sides
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17336383U
Other languages
Japanese (ja)
Other versions
JPS6079703U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17336383U priority Critical patent/JPS6079703U/en
Publication of JPS6079703U publication Critical patent/JPS6079703U/en
Application granted granted Critical
Publication of JPH0132322Y2 publication Critical patent/JPH0132322Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は熱放散を良好にし耐熱衝撃性を改良し
た高電力バリスタに関する。 一般に高電力バリスタとしては熱放散が良好で
ある必要があり、そのため従来はセラミツク粉末
を成形焼結してなるバリスタ素体の両面に外周縁
を残して銀電極を形成し、該銀電極に例えば黄銅
板、銅板、ニツケル板、鉄板などの電極板をハン
ダ付し該電極板によつて熱放散機能を発揮させる
ようにしていた。しかし前記バリスタ素体の30〜
300℃の温度範囲における線膨張係数が3.5〜5.0
×10-6cm/cm/℃であるのに対し前記電極板の線
膨張係数は12×20×10-6cm/cm/℃と大幅に違
う。このような場合V1mA/mmが100〜300Vの高
圧用のものはバリスタ素体としての焼結体の結晶
粒子が5〜50μmと非常に小さく結晶粒子間の結
合強度が強いため問題はないが、V1mA/mmが
10〜50Vの低圧用のものはバリスタ素体としての
焼結体の結晶粒子が50〜200μと非常に大きく結
晶粒子間の結合強度が大幅に低下するため急激な
温度変化をともなう例えば自動車用の電子部品ま
たは高電力で使用するため発熱をともなう例えば
医療機器X線の電源、配電盤あるいは乾式電子コ
ピーの電子部品として用いた場合バリスタ素体が
電極板の膨張・収縮に追随できずに亀裂や割れを
生じてしまう致命的な問題を誘発する欠点をもつ
ており、この欠点解消は早急な課題であつた。 本考案は上記の点に鑑みてなされたもので電極
板として線膨張係数の比較的小さい合金板からな
るものを用いることによつて熱衝撃によつてもバ
リスタ素体破壊のない長時間安定した特性を発揮
できる高電力バリスタを提供することを目的とす
るものである。 以下本考案の一実施例につき説明する。すなわ
ち第1図および第2図に示すように例えば酸化亜
鉛・酸化錫・チタン酸バリウム・チタン酸ストロ
ンチウムなどを主成分とし他に数種類の金属酸化
物を混合したセラミツク粉末を成形焼結してなる
バリスタ素体1の両面に外周縁を残して銀ベース
トを塗布焼付して銀電極2を形成し該銀電極2の
うちのいずれか一方の電極2に例えばニツケル、
鉄を主成分とし必要に応じてコバルトが添加され
さらに不純物としてマンガン・シリコン・炭素な
どが微量添加されている30〜300℃の温度範囲に
おける線膨張係数が7×10-6cm/cm/℃以下の合
金電極板3をハンダ4付し他方に引出端子5をハ
ンダ6付し外装樹脂層7を形成してなるものであ
る。 以上のように構成してなる高電力バリスタは電
極板として30〜300℃の温度範囲における線膨張
係数が7×10-6cm/cm/℃以下の合金電極板3を
用いバリスタ素体1自体の線膨張係数と比較的差
のないように設定してあるため必要回路に組込み
使用した場合の熱衝撃によつてもバリスタ素体1
と合金電極板3間の引張応力を小さくできバリス
タ素体1の破壊をなくすことができるすぐれた利
点を有する。なお、合金電極板3にハンダメツ
キ・ニツケルメツキ・銅メツキまたは錫メツキを
施しておけば銀電極2とのハンダ付性は向上しハ
ンダ付け作業能率を大幅に向上できる。 つぎに実施結果をもとに本考案の効果を述べ
る。すなわち直径21mm、厚さ0.8mmに成形焼結し
た立上り電圧(V1mA)22Vに設定した酸化亜鉛
系バリスタ素体の両面に銀電極を形成し該銀電極
のいずれか一方に表1に示すそれぞれの電極板を
ハンダ付し、ヒートサイクル試験をおこなつた結
果表2に示すようになつた。なお、電極板の寸法
はいずれも66mm×8mmで厚さ0.8mmのものを用い
た。
The present invention relates to a high power varistor with good heat dissipation and improved thermal shock resistance. In general, high-power varistors need to have good heat dissipation, and for this reason, conventionally, a varistor body made of ceramic powder is molded and sintered, and silver electrodes are formed on both sides of the varistor body, leaving an outer periphery on both sides. Electrode plates such as brass plates, copper plates, nickel plates, iron plates, etc., were soldered to provide a heat dissipation function. However, the 30~
Linear expansion coefficient is 3.5 to 5.0 in the temperature range of 300℃
×10 -6 cm/cm/°C, whereas the linear expansion coefficient of the electrode plate is 12 × 20 × 10 -6 cm/cm/°C, which is significantly different. In such cases, there is no problem with high-pressure products with V1mA/mm of 100 to 300V because the crystal grains of the sintered body as the varistor element are very small at 5 to 50 μm, and the bond strength between the crystal grains is strong. V1mA/mm
For low pressure applications of 10 to 50 V, the crystal grains of the sintered body used as the varistor body are extremely large, measuring 50 to 200 microns, and the bonding strength between crystal grains is significantly reduced, resulting in rapid temperature changes. When used as an electronic component or an electronic component that generates heat due to high power use, such as a power supply for medical equipment X-rays, a switchboard, or an electronic component for dry electronic copying, the varistor body cannot follow the expansion and contraction of the electrode plate, resulting in cracks and cracks. It has the drawback of causing a fatal problem, and resolving this drawback was an urgent task. The present invention was developed in view of the above points, and by using an alloy plate with a relatively small coefficient of linear expansion as the electrode plate, the varistor element can be stabilized for a long time without being destroyed even by thermal shock. The purpose is to provide a high power varistor that can exhibit its characteristics. An embodiment of the present invention will be described below. That is, as shown in Figs. 1 and 2, it is made by molding and sintering ceramic powder containing zinc oxide, tin oxide, barium titanate, strontium titanate, etc. as the main ingredients, mixed with several other metal oxides. Silver electrodes 2 are formed by coating and baking a silver base on both sides of the varistor body 1, leaving the outer periphery on both sides, and one of the silver electrodes 2 is coated with nickel, for example.
The main component is iron, cobalt is added as necessary, and trace amounts of manganese, silicon, carbon, etc. are added as impurities.The linear expansion coefficient in the temperature range of 30 to 300℃ is 7 x 10 -6 cm/cm/℃. The following alloy electrode plate 3 is attached with solder 4, and a lead terminal 5 is attached with solder 6 to the other side, and an exterior resin layer 7 is formed. The high-power varistor constructed as described above uses an alloy electrode plate 3 having a coefficient of linear expansion of 7×10 -6 cm/cm/°C or less in the temperature range of 30 to 300°C as the electrode plate, and the varistor element 1 itself. Since the coefficient of linear expansion is set to be relatively similar to that of
It has an excellent advantage of being able to reduce the tensile stress between the alloy electrode plate 3 and the alloy electrode plate 3, thereby eliminating damage to the varistor element body 1. Note that if the alloy electrode plate 3 is subjected to solder plating, nickel plating, copper plating, or tin plating, the solderability with the silver electrode 2 will be improved, and the efficiency of the soldering work can be greatly improved. Next, we will discuss the effects of the present invention based on the implementation results. That is, silver electrodes were formed on both sides of a zinc oxide-based varistor body that was molded and sintered to a diameter of 21 mm and a thickness of 0.8 mm, and the rising voltage (V1 mA) was set to 22 V. The electrode plates were soldered and a heat cycle test was conducted, with the results shown in Table 2. The dimensions of the electrode plates used were 66 mm x 8 mm and a thickness of 0.8 mm.

【表】【table】

【表】【table】

【表】【table】

【表】 ※ 不良判定〓目視によるバリタス素体割れ、亀裂発
生品
表2から明らかなように従来例E,F,G,H
のものは2回〜8回で全数不良となり参考例Dの
ものも6回時点で不良発生し30回で全数不良とな
つたのに対して、本考案A,B,Cのものは100
回時点でも不良発生が皆無でありすぐれた効果を
実証した。 以上述べたように本考案によれば非直線性を有
する金属酸化物系バリスタ素体の両面に形成した
銀電極のいずれか一方に30〜300℃の温度範囲に
おける線膨張係数が7×10-6cm/cm/℃以下の合
金電極板をハンダ付することによつて熱衝撃によ
つてもバリスタ素体破壊のない長時間安定した特
性を発揮できる高電力バリスタを得ることができ
る。
[Table] * Defect judgment = Baritas element cracked by visual inspection, products with cracks As is clear from Table 2, conventional examples E, F, G, H
In the case of the products of the present invention, all of them were defective after 2 to 8 times, and in the case of Reference Example D, defects occurred at the 6th time, and all of the products were defective after the 30th time, whereas the products of the present invention A, B, and C were defective after 100 times.
There were no defects at the time of testing, demonstrating its excellent effectiveness. As described above, according to the present invention, either one of the silver electrodes formed on both sides of a nonlinear metal oxide varistor body has a linear expansion coefficient of 7×10 in the temperature range of 30 to 300°C. By soldering alloy electrode plates of 6 cm/cm/°C or less, it is possible to obtain a high-power varistor that can exhibit stable characteristics for a long time without destroying the varistor element even when subjected to thermal shock.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本考案の一実施例に係り
第1図は外装前の高電力バリスタを示す斜視図、
第2図は外装後の高電力用バリスタを示す断面図
である。 1……バリスタ素体、2……銀電極、3……合
金電極板、4,6……ハンダ、5……引出端子、
7……外装樹脂層。
FIGS. 1 and 2 relate to one embodiment of the present invention, and FIG. 1 is a perspective view showing a high-power varistor before packaging;
FIG. 2 is a sectional view showing the high power varistor after being packaged. 1... Varistor element body, 2... Silver electrode, 3... Alloy electrode plate, 4, 6... Solder, 5... Output terminal,
7...Exterior resin layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 金属酸化物を成形焼結してなるバリスタ素体
と、該素体の両面に外周縁を残して形成した銀電
極と、該電極のうちのいずれか一方の電極にハン
ダ付した30〜300℃の温度範囲における線膨張係
数が7×10-6cm/cm/℃以下の合金電極板とを具
備した高電力バリスタ。
A varistor element formed by molding and sintering a metal oxide, a silver electrode formed with outer peripheral edges left on both sides of the element, and one of the electrodes soldered to a temperature of 30 to 300°C. A high power varistor comprising an alloy electrode plate having a linear expansion coefficient of 7×10 -6 cm/cm/°C or less in a temperature range of .
JP17336383U 1983-11-08 1983-11-08 high power varistor Granted JPS6079703U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17336383U JPS6079703U (en) 1983-11-08 1983-11-08 high power varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17336383U JPS6079703U (en) 1983-11-08 1983-11-08 high power varistor

Publications (2)

Publication Number Publication Date
JPS6079703U JPS6079703U (en) 1985-06-03
JPH0132322Y2 true JPH0132322Y2 (en) 1989-10-03

Family

ID=30377682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17336383U Granted JPS6079703U (en) 1983-11-08 1983-11-08 high power varistor

Country Status (1)

Country Link
JP (1) JPS6079703U (en)

Also Published As

Publication number Publication date
JPS6079703U (en) 1985-06-03

Similar Documents

Publication Publication Date Title
JP2015029050A (en) Multilayer ceramic electronic component
JPWO2012114874A1 (en) Electronic component mounting structure
JPH0316251Y2 (en)
JP3449599B2 (en) Multilayer chip varistor
JPH0132322Y2 (en)
JPS642401Y2 (en)
US2752663A (en) Method of uniting terminals and conductive electrodes and bonding same to ceramic base
JP2004006519A (en) Multi-terminal varistor
JPH0251072A (en) Inspection of loaded power for voltage non-linear resistor
JPH01289213A (en) Manufacture of voltage-dependent nonlinear resistance element
JPS62122103A (en) Manufacture of laminated chip varistor
JP3343464B2 (en) Multilayer chip varistor
CN219696167U (en) Glass packaged surface-mounted thermistor
JPS63285906A (en) Laminated ceramic varistor
JP2649544B2 (en) Zinc oxide varistor
JPH0347283Y2 (en)
JPH0347282Y2 (en)
JP2548299B2 (en) Manufacturing method of voltage-dependent nonlinear resistor element
JPH0316255Y2 (en)
JPS6260803B2 (en)
JPS6386414A (en) Laminated ceramic capacitor
JPH0311843Y2 (en)
JPH0316253Y2 (en)
JP2022049940A (en) Terminal connection structure and electronic component
JPH027402A (en) Zinc oxide type varistor