JP2004006519A - Multi-terminal varistor - Google Patents

Multi-terminal varistor Download PDF

Info

Publication number
JP2004006519A
JP2004006519A JP2002159951A JP2002159951A JP2004006519A JP 2004006519 A JP2004006519 A JP 2004006519A JP 2002159951 A JP2002159951 A JP 2002159951A JP 2002159951 A JP2002159951 A JP 2002159951A JP 2004006519 A JP2004006519 A JP 2004006519A
Authority
JP
Japan
Prior art keywords
electrode layer
sintered body
varistor
electrode layers
base electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002159951A
Other languages
Japanese (ja)
Other versions
JP2004006519A5 (en
Inventor
Koji Ishii
石井 孝治
Yasuo Wakahata
若畑 康男
Kazuo Yamaguchi
山口 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otowa Electric Co Ltd
Original Assignee
Otowa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otowa Electric Co Ltd filed Critical Otowa Electric Co Ltd
Priority to JP2002159951A priority Critical patent/JP2004006519A/en
Publication of JP2004006519A publication Critical patent/JP2004006519A/en
Publication of JP2004006519A5 publication Critical patent/JP2004006519A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-terminal varistor that can be improved in discharge withstand characteristic. <P>SOLUTION: In this multi-terminal varistor in which a plurality of base electrode layers 3a and 3b are arranged side by side on the front and rear surfaces 2a and 2b of a sintered body 1 composed mainly of a zinc oxide and having a varistor characteristic and electrode members 4a and 4b are respectively joined to the electrode layers 3a and 3b, an interval t<SB>1</SB>with the base electrode layers 3a is made ≥1.1 times as large as a thickness t<SB>2</SB>of the sintered body 1. When the raw material of the electrode layers is silver, the thicknesses of the silver electrode layers are set to ≥10 μm and, when the raw material of the electrode layers 3a and 3b is aluminum or brass, the thicknesses of the aluminum or brass electrode layers are specified to 50-150 μm. In addition, width dimension t<SB>4</SB>of the front and rear surfaces 2a and 2b of the sintererd body 1 from the outer peripheral end edge of the body 1 to the outer peripheral end edges of the base electrode layers 3a and 3b is set to ≤0.3 mm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は多端子バリスタに関し、例えば、避雷器、サージ吸収素子、電圧安定化素子などを組み込んだ電気機器に用いられ、雷サージ、開閉サージなどの異常電圧から電気機器を保護する多端子バリスタに関する。
【0002】
【従来の技術】
近年、家電機器、産業機器の電気回路の半導体化が著しく進行し、その主要な構成要素である半導体電子部品のサージ対策が不可欠なものになっている。一般的に、非直線抵抗体からなるバリスタは、印加電圧によってその抵抗値が変化する特性、つまり、正常な電圧が印加された時には高抵抗値であって絶縁特性を示し、異常な高電圧が印加された時には低抵抗値を示す非直線性の電圧−電流特性を具備する。
【0003】
このような特性を有するバリスタは、例えば避雷器、サージ吸収素子、電圧安定化素子などの半導体電子部品のサージ対策に広く利用されている。各種のバリスタの中でも、酸化亜鉛を主成分とする酸化亜鉛バリスタは優れた非直線性の電圧−電流特性とサージ吸収能力を有する。一方、半導体電子部品の駆動電圧は低下傾向にあり、低電圧回路用でサージ電圧の抑制効果の高いバリスタが要望されている。
【0004】
酸化亜鉛バリスタは、主成分の酸化亜鉛に非直線性の電圧−電流特性を発現させる基本添加物である酸化ビスマス、酸化アンチモン、酸化コバルトと、さらに性能向上のために添加される各種の酸化物とを含む酸化亜鉛原料粉末を成形して焼成させた焼結体からなる。その焼結体には、例えば矩形板状の形状を有するものがある。
【0005】
この焼結体の表裏面に、銀ペーストを焼き付け処理することにより下地電極層を形成し、その下地電極層の上に、銅や黄銅などの電気的良導体からなる金属製の電極部材を半田付けにより接合する。この焼結体、下地電極層および電極部材を含む主要部をエポキシ樹脂などでモールドすることにより、そのモールド部から電極部材の端部を導出した酸化亜鉛バリスタを製品化している。
【0006】
【発明が解決しようとする課題】
近年、電子機器の発達に伴う半導体電子部品の高性能化の必要性から、高性能な特性を有する酸化亜鉛バリスタが要望されている。この要望を満たすため、本発明は、放電耐量特性を向上させ得る多端子バリスタを提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的を達成するための技術的手段として、本発明は、酸化亜鉛を主成分とし、かつ、バリスタ特性を有する焼結体の表裏面の少なくとも一方に複数の下地電極層を並設し、各下地電極層上に電極部材をそれぞれ接合した多端子バリスタにおいて、前記下地電極層の間隔を、焼結体の厚みに対する比で1.1以上としたことを特徴とする。
【0008】
この発明では、焼結体の表裏面の少なくとも一方に並設された複数の下地電極層の間隔を、前記焼結体の厚みに対する比で1.1以上としたことにより、下地電極層間、およびその下地電極層上に接合された電極部材間の絶縁性が確保できるので、多端子バリスタの放電耐量特性の向上が図れる。ここで、下地電極層の間隔が焼結体の厚みに対する比で1.1よりも小さいと、下地電極層間および電極部材間の絶縁性を確保することが困難となる。
【0009】
また、本発明は、酸化亜鉛を主成分とし、かつ、バリスタ特性を有する焼結体の表裏面に複数の下地電極層を形成し、各下地電極層上に電極部材をそれぞれ接合した多端子バリスタにおいて、前記下地電極層の素材が銀の場合、その銀電極層の厚みを10μm以上としたことを特徴とし、下地電極層の素材がアルミ又は真鍮の場合、そのアルミ電極層又は真鍮電極層の厚みを50〜150μmの範囲に規定したことを特徴とする。
【0010】
この発明では、前記下地電極層の厚みを前述した範囲に規定したことにより、多端子バリスタへの大電流注入時に焼結体全体に均等に電流が流れ易くなり、放電耐量特性の向上が図れる。ここで、銀電極層の厚みが10μmより小さい場合、また、アルミ電極層又は真鍮電極層の厚みが50μmより小さい場合には、それら電極層自体の抵抗分が大きくなるので、雷サージによる大電流注入時に焼結体全体に均等に電流が流れ難くなる。アルミ電極層又は真鍮電極層の厚みが150μmより大きいと、その電極層の剥がれが発生する。
【0011】
さらに、本発明は、酸化亜鉛を主成分とし、かつ、バリスタ特性を有する焼結体の表裏面に複数の下地電極層を形成し、その下地電極層上に電極部材をそれぞれ接合した多端子バリスタにおいて、前記焼結体の外周端縁から下地電極層の外周端縁までの焼結体表裏面の幅寸法を0.3mm以下としたことを特徴とする。
【0012】
この発明では、焼結体の外周端縁から下地電極層の外周端縁までの焼結体表裏面の幅寸法を0.3mm以下としたことにより、下地電極層上に接合される電極部材の面積を大きくすることができて焼結体全体に電流が流れ易くなるので、多端子バリスタの放電耐量特性の向上が図れる。ここで、前述した幅寸法が0.3mmよりも小さいと、電極部材の面積が小さくなって、焼結体全体に電流が流れ難くなる。
【0013】
【発明の実施の形態】
図1乃至図3は本発明に係る多端子バリスタの実施形態として、酸化亜鉛を主成分とする酸化亜鉛バリスタを示す。この実施形態の酸化亜鉛バリスタは、以下の要領でもって製造される。
【0014】
まず、主成分である酸化亜鉛(ZnO)原料と、酸化ビスマス(Bi)、酸化コバルト(Co)、酸化アンチモン(Sb)、酸化アルミニウム(Al)等からなる添加物の所定量を、ポリビニルアルコール水溶液などのバインダや分散剤などと共に湿式混合してスラリーを製作する。その後、湿式混合により得られたスラリーをスプレードライヤー等の噴霧乾燥装置に供給して造粒粉を製作する。
【0015】
この造粒粉である酸化亜鉛原料粉末としては、前述した酸化亜鉛(ZnO)原料と、酸化ビスマス(Bi)、酸化コバルト(Co)、酸化アンチモン(Sb)、酸化アルミニウム(Al)等からなるZnO−Bi−Sb系以外に、酸化亜鉛(ZnO)原料と、酸化プラセオジム(Pr)、酸化コバルト(Co)、酸化アンチモン(Sb)、酸化アルミニウム(Al)等からなるZnO−Pr−Co系も使用可能である。
【0016】
この造粒粉を成形工程において所定の金型を用いて、例えば矩形平板状に成形圧力300〜1000kg/cmで成形し、その成形体を1000〜1300℃の空気中で焼成することにより焼結体1を得る。次に、図1(a)(b)に示すように焼結体1の表裏面2a,2bに、銀ペーストをスクリーン印刷などの適宜の手段により塗布し、500〜800℃で焼き付け処理することにより下地電極層3a,3bを形成する。
【0017】
この下地電極層3a,3bは、導電材料として銀以外にアルミや真鍮などを使用して溶射により形成することが可能であり、また、これら導電材料の蒸着、スパッタリングあるいはメッキなどにより形成することも可能である。
【0018】
さらに、図2(a)(b)および図3に示すように下地電極層3a,3bの上にSn−Pb半田ペーストを塗布し、銅や黄銅などの電気的良導体からなる電極部材である金属製の電極板4a,4bを載置して約200℃以上で半田付けすることにより、下地電極層3a,3bに電極板4a,4bを接合する。
【0019】
この実施形態の酸化亜鉛バリスタは、焼結体1の裏面2bに一つの電極板4bを接合してその電極部5bから延びる一つの端子部6bを導出し、焼結体1の表面2aに二つの電極板4aを接合してそれぞれの電極部5aから延びる二つの端子部6aを導出した三端子構造を具備する。なお、焼結体1の表面2a側では、二つの下地電極層3a間で焼結体1が露呈した構造となっている。
【0020】
電極板4a,4bの接合後、焼結体1および電極板4a,4bの電極部5a,5bをエポキシ樹脂などでモールドすることにより、そのモールド部から電極板4a,4bの端子部6a,6bを導出した製品が得られる。この酸化亜鉛バリスタは、モールド部から導出した端子部6a,6bを利用することにより、例えば配線基板などに実装される。
【0021】
この実施形態の酸化亜鉛バリスタは、焼結体1の表面2a側に配設された二つの下地電極層3aの間隔tを、焼結体1の厚みtに対する比で1.1以上とする〔図1(a)(b)参照〕。このように二つの下地電極層3aの間隔tを、焼結体1の厚みtに対する比で1.1以上としたことにより、下地電極層3a間、およびその下地電極層3a上に接合された電極部材4a間の絶縁性が確保できるので、多端子バリスタの放電耐量特性の向上が図れる。
【0022】
ここで、下地電極層3aの間隔tを焼結体1の厚みtに対する比で1.1よりも小さいと、下地電極層3a間および電極部材4a間の絶縁性を確保することが困難となる。
【0023】
また、下地電極層3a,3bの素材が銀の場合、その銀電極層の厚みtを10μm以上とする(図3参照)。さらに、下地電極層3a,3bの素材がアルミ又は真鍮の場合、そのアルミ電極層又は真鍮電極層の厚みtを50〜150μmの範囲に規定する。このように下地電極層3a,3bの厚みtを前述した範囲に規定したことにより、多端子バリスタへの大電流注入時に焼結体全体に均等に電流が流れ易くなり、放電耐量特性の向上が図れる。
【0024】
ここで、銀電極層の厚みtが10μmより小さい場合、また、アルミ電極層又は真鍮電極層の厚みtが50μmより小さい場合には、それら電極層自体の抵抗分が大きくなるので、大電流注入時に焼結体全体に均等に電流が流れ難くなる。逆に、アルミ電極層又は真鍮電極層の厚みtが150μmより大きいと、その電極層の剥がれが発生する。なお、銀電極層の厚みについて上限を規定していないのは、銀電極層が銀ペーストを焼き付けていることにより形成されているため、電極層の剥がれが発生しないことに起因する。
【0025】
さらに、焼結体1の外周端縁から下地電極層3a,3bの外周端縁までの焼結体1の表裏面2a,2bの幅寸法tを0.3mm以下とする〔図1(a)(b)参照〕。このように焼結体1の外周端縁から下地電極層3a,3bの外周端縁までの焼結体1の表裏面2a,2bの幅寸法tを0.3mm以下としたことにより、下地電極層3a,3b上に接合される電極部材4a,4bの面積を大きくすることができて焼結体全体に電流が流れ易くなるので、多端子バリスタの放電耐量特性の向上が図れる。
【0026】
ここで、前述した幅寸法tが0.3mmよりも小さいと、電極部材4a,4bの面積が小さくなって、焼結体全体に電流が流れ難くなる。なお、下地電極層3a,3bが焼結体1の端面にまで形成されると、その焼結体1の端面での絶縁性を確保することが困難となるので、下地電極層3a,3bの形成は、焼結体1の外周端縁までである。
【0027】
【実施例】
本出願人は、縦26mm、横30mm、厚み1.8mmの矩形板状の焼結体1を用いて、以下に述べる各種の測定試験を行なった。
【0028】
まず、焼結体1の厚みtと焼結体1の表面2aに形成された二つの下地電極層3aの間隔tとの比と、放電耐量値との関係を測定した。その測定結果を表1と図4に示す。本出願人は、多端子バリスタの放電耐量特性以外の静特性や課電特性などの諸条件を考慮して、従来、焼結体1の厚みtに対する下地電極層3aの間隔tの比が1のものを使用していたことから、この測定では、焼結体1の厚みtに対する下地電極層3aの間隔tの比が1の時の耐量値を1としている。
【0029】
【表1】

Figure 2004006519
【0030】
この測定結果から明らかなように焼結体1の厚みtに対する下地電極層3aの間隔tの比が1.1以上であれば、多端子バリスタの放電耐量特性が向上することを確認できた。
【0031】
次に、下地電極層3a,3bの素材が銀の場合、その銀電極層の厚みtと放電耐量値との関係を測定した。その測定結果を表2と図5に示す。本出願人は、多端子バリスタの放電耐量特性以外の静特性や課電特性などの諸条件を考慮して、従来、銀電極層の厚みtを10μmとしたものを使用していたことから、この測定では、銀電極層の厚みtを10μmとした時の放電耐量値を1としている。
【0032】
【表2】
Figure 2004006519
【0033】
この測定結果から明らかなように銀電極層の厚みtが10μm以上であれば、多端子バリスタの放電耐量特性が向上することを確認できた。
【0034】
また、下地電極層3a,3bの素材がアルミ又は真鍮の場合、そのアルミ電極層又は真鍮電極層の厚みtと放電耐量値との関係を測定した。その測定結果を表3と図6に示す。本出願人は、多端子バリスタの放電耐量特性以外の静特性や課電特性などの諸条件を考慮して、従来、アルミ電極層又は真鍮電極層の厚みtを50μmとしたものを使用していたことから、この測定では、アルミ電極層又は真鍮電極層の厚みtを50μmとした時の放電耐量値を1としている。
【0035】
【表3】
Figure 2004006519
【0036】
この測定結果から明らかなようにアルミ電極層又は真鍮電極層の厚みtが50μm以上であれば、多端子バリスタの放電耐量特性が向上することを確認できた。但し、アルミ電極層又は真鍮電極層の厚みtが150μmよりも大きくなると、電極層の剥がれが発生することも確認した。
【0037】
最後に、焼結体1の外周端縁から下地電極層3a,3bの外周端縁までの焼結体1の表裏面2a,2bの幅寸法tと放電耐量値との関係を測定した。その測定結果を表4と図7に示す。本出願人は、多端子バリスタの放電耐量特性以外の静特性や課電特性などの諸条件を考慮して、従来、焼結体1の外周端縁から下地電極層3a,3bの外周端縁までの焼結体1の表裏面2a,2bの幅寸法tが1.5mmのものを使用していたことから、この測定では、焼結体1の外周端縁から下地電極層3a,3bの外周端縁までの焼結体1の表裏面2a,2bの幅寸法tが1.5mmの時の放電耐量値を1としている。
【0038】
【表4】
Figure 2004006519
【0039】
この測定結果から明らかなように焼結体1の外周端縁から下地電極層3a,3bの外周端縁までの焼結体1の表裏面2a,2bの幅寸法tが0.3mm以下であれば、多端子バリスタの放電耐量特性が向上することを確認できた。
【0040】
【発明の効果】
本発明によれば、焼結体の表裏面の少なくとも一方に並設された複数の下地電極層の間隔を、前記焼結体の厚みに対する比で1.1以上としたことにより、下地電極層間、およびその下地電極層上に接合された電極部材間の絶縁性が確保できる。
【0041】
また、下地電極層の素材が銀の場合、その銀電極層の厚みを10μm以上とし、下地電極層の素材がアルミ又は真鍮の場合、そのアルミ電極層又は真鍮電極層の厚みを50〜150μmの範囲に規定したことにより、多端子バリスタへの大電流注入時に焼結体全体に均等に電流が流れ易くなる。
【0042】
さらに、焼結体の外周端縁から下地電極層の外周端縁までの焼結体表裏面の幅寸法を0.3mm以下としたことにより、下地電極層上に接合される電極部材の面積を大きくすることができて焼結体全体に電流が流れ易くなる。
【0043】
以上のことから、多端子バリスタの放電耐量特性の向上が図れて高性能な特性を有する多端子バリスタを提供できる。
【図面の簡単な説明】
【図1】本発明に係る多端子バリスタの実施形態において、焼結体に下地電極層を形成したもので、(a)は焼結体の表面側を示す斜視図、(b)は焼結体の裏面側を示す斜視図である。
【図2】本発明の実施形態において、矩形平板状の電極板を取り付けたもので、(a)は焼結体の表面側を示す斜視図、(b)は焼結体の裏面側を示す斜視図である。
【図3】図2(a)のA−A線に沿う断面図である。
【図4】本発明の実施例において、焼結体の厚みに対する下地電極層間隔の比と放電耐量値との関係を示す特性図である。
【図5】本発明の実施例において、銀電極層の厚みと放電耐量値との関係を示す特性図である。
【図6】本発明の実施例において、アルミ電極層又は真鍮電極層の厚みと放電耐量値との関係を示す特性図である。
【図7】本発明の実施例において、焼結体の外周端縁から下地電極層の外周端縁までの焼結体表裏面の幅寸法と放電耐量値との関係を示す特性図である。
【符号の説明】
1 焼結体
2a,2b 焼結体の表裏面
3a,3b 下地電極層
4a,4b 電極部材
 下地電極層の間隔
 焼結体の厚み
 下地電極層の厚み
 焼結体表裏面の幅寸法[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-terminal varistor, and more particularly, to a multi-terminal varistor used for electric equipment incorporating a lightning arrester, a surge absorbing element, a voltage stabilizing element, and the like, and protecting the electric equipment from abnormal voltages such as lightning surge and switching surge.
[0002]
[Prior art]
2. Description of the Related Art In recent years, semiconductor circuits of electric circuits of home electric appliances and industrial equipment have been remarkably advanced, and it has become indispensable to take measures against surges of semiconductor electronic components, which are main components thereof. In general, a varistor composed of a non-linear resistor has a characteristic that its resistance value changes according to an applied voltage, that is, when a normal voltage is applied, the varistor has a high resistance value and exhibits an insulating characteristic, and an abnormal high voltage is It has a non-linear voltage-current characteristic showing a low resistance value when applied.
[0003]
Varistors having such characteristics are widely used as surge countermeasures for semiconductor electronic components such as lightning arresters, surge absorbing elements, and voltage stabilizing elements. Among various varistors, zinc oxide varistors containing zinc oxide as a main component have excellent non-linear voltage-current characteristics and surge absorbing ability. On the other hand, the drive voltage of semiconductor electronic components tends to decrease, and there is a demand for a varistor for a low voltage circuit having a high surge voltage suppressing effect.
[0004]
Zinc oxide varistors are bismuth oxide, antimony oxide, and cobalt oxide, which are basic additives that exhibit nonlinear voltage-current characteristics to zinc oxide as the main component, and various oxides that are added to further improve performance. And a sintered body obtained by molding and firing a zinc oxide raw material powder containing Some of the sintered bodies have a rectangular plate shape, for example.
[0005]
A silver paste is baked on the front and back surfaces of the sintered body to form a base electrode layer, and a metal electrode member made of a good electrical conductor such as copper or brass is soldered on the base electrode layer. To join. A main part including the sintered body, the base electrode layer, and the electrode member is molded with an epoxy resin or the like, thereby producing a zinc oxide varistor in which an end of the electrode member is led out from the molded part.
[0006]
[Problems to be solved by the invention]
2. Description of the Related Art In recent years, zinc oxide varistors having high performance characteristics have been demanded due to the necessity of improving the performance of semiconductor electronic components with the development of electronic devices. In order to satisfy this demand, an object of the present invention is to provide a multi-terminal varistor capable of improving the discharge capability.
[0007]
[Means for Solving the Problems]
As a technical means for achieving the above-mentioned object, the present invention mainly comprises zinc oxide, and a plurality of base electrode layers arranged in parallel on at least one of the front and back surfaces of a sintered body having varistor characteristics. In a multi-terminal varistor in which an electrode member is bonded on a base electrode layer, a distance between the base electrode layers is set to 1.1 or more in a ratio to a thickness of the sintered body.
[0008]
In the present invention, the interval between the plurality of base electrode layers arranged in parallel on at least one of the front and back surfaces of the sintered body is set to 1.1 or more as a ratio to the thickness of the sintered body. Since the insulation between the electrode members joined on the base electrode layer can be ensured, the discharge withstand characteristics of the multi-terminal varistor can be improved. Here, if the interval between the base electrode layers is smaller than 1.1 in a ratio to the thickness of the sintered body, it is difficult to ensure insulation between the base electrode layers and between the electrode members.
[0009]
Further, the present invention provides a multi-terminal varistor in which a plurality of base electrode layers are formed on the front and back surfaces of a sintered body containing zinc oxide as a main component and having varistor characteristics, and an electrode member is bonded on each base electrode layer. In the above, when the material of the base electrode layer is silver, the thickness of the silver electrode layer is 10 μm or more, and when the material of the base electrode layer is aluminum or brass, the thickness of the aluminum electrode layer or the brass electrode layer is The thickness is defined in the range of 50 to 150 μm.
[0010]
In the present invention, since the thickness of the base electrode layer is defined in the above-described range, a current can easily flow uniformly throughout the sintered body when a large current is injected into the multi-terminal varistor, and the discharge withstand characteristics can be improved. Here, when the thickness of the silver electrode layer is smaller than 10 μm, or when the thickness of the aluminum electrode layer or the brass electrode layer is smaller than 50 μm, the resistance of the electrode layers themselves increases, so that a large current due to a lightning surge is generated. It becomes difficult for current to flow uniformly throughout the sintered body during injection. If the thickness of the aluminum electrode layer or the brass electrode layer is larger than 150 μm, peeling of the electrode layer occurs.
[0011]
Further, the present invention provides a multi-terminal varistor in which a plurality of base electrode layers are formed on the front and back surfaces of a sintered body containing zinc oxide as a main component and having varistor characteristics, and an electrode member is respectively joined on the base electrode layers. Wherein the width dimension of the front and back surfaces of the sintered body from the outer peripheral edge of the sintered body to the outer peripheral edge of the base electrode layer is 0.3 mm or less.
[0012]
According to the present invention, the width of the front and back surfaces of the sintered body from the outer peripheral edge of the sintered body to the outer peripheral edge of the base electrode layer is set to 0.3 mm or less, so that the electrode member bonded on the base electrode layer can be formed. Since the area can be increased and the current easily flows through the entire sintered body, the discharge endurance characteristics of the multi-terminal varistor can be improved. Here, if the above-mentioned width dimension is smaller than 0.3 mm, the area of the electrode member becomes small, and it becomes difficult for current to flow through the entire sintered body.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1 to 3 show a zinc oxide varistor mainly composed of zinc oxide as an embodiment of a multi-terminal varistor according to the present invention. The zinc oxide varistor of this embodiment is manufactured in the following manner.
[0014]
First, a zinc oxide (ZnO) material which is the main component, bismuth oxide (Bi 2 O 3), cobalt oxide (Co 2 O 3), antimony oxide (Sb 2 O 3), aluminum oxide (Al 2 O 3), etc. Is wet-mixed with a binder or a dispersant such as an aqueous solution of polyvinyl alcohol to produce a slurry. Thereafter, the slurry obtained by wet mixing is supplied to a spray drying device such as a spray dryer to produce granulated powder.
[0015]
As the zinc oxide raw material powder as the granulated powder, the above-described zinc oxide (ZnO) raw material, bismuth oxide (Bi 2 O 3 ), cobalt oxide (Co 2 O 3 ), antimony oxide (Sb 2 O 3 ), besides ZnO-Bi-Sb system consisting of aluminum oxide (Al 2 O 3) or the like, and zinc oxide (ZnO) material, praseodymium oxide (Pr 2 O 3), cobalt oxide (Co 2 O 3), antimony oxide (Sb 2 O 3), ZnO-Pr -Co system consisting of aluminum oxide (Al 2 O 3) or the like can be used.
[0016]
The granulated powder is formed into a rectangular plate at a forming pressure of 300 to 1000 kg / cm 2 by using a predetermined mold in a forming step, and the formed body is fired in air at 1000 to 1300 ° C. Obtain the union 1. Next, as shown in FIGS. 1A and 1B, a silver paste is applied to the front and back surfaces 2a and 2b of the sintered body 1 by an appropriate means such as screen printing and is baked at 500 to 800.degree. To form base electrode layers 3a and 3b.
[0017]
The base electrode layers 3a and 3b can be formed by thermal spraying using aluminum, brass, or the like other than silver as a conductive material, and can also be formed by vapor deposition, sputtering, plating, or the like of these conductive materials. It is possible.
[0018]
Further, as shown in FIGS. 2A and 2B and FIG. 3, a Sn—Pb solder paste is applied on the base electrode layers 3a and 3b, and a metal which is an electrode member made of a good electrical conductor such as copper or brass. The electrode plates 4a and 4b are joined to the base electrode layers 3a and 3b by placing and soldering the electrode plates 4a and 4b made at about 200 ° C. or higher.
[0019]
In the zinc oxide varistor of this embodiment, one electrode plate 4b is joined to the back surface 2b of the sintered body 1 to derive one terminal portion 6b extending from the electrode portion 5b. It has a three-terminal structure in which two electrode plates 4a are joined and two terminal portions 6a extending from the respective electrode portions 5a are derived. The sintered body 1 has a structure in which the sintered body 1 is exposed between the two base electrode layers 3a on the surface 2a side.
[0020]
After joining the electrode plates 4a and 4b, the sintered body 1 and the electrode portions 5a and 5b of the electrode plates 4a and 4b are molded with epoxy resin or the like, and the terminal portions 6a and 6b of the electrode plates 4a and 4b are formed from the molded portions. Is obtained. The zinc oxide varistor is mounted on, for example, a wiring board by using the terminal portions 6a and 6b derived from the mold portion.
[0021]
In the zinc oxide varistor of this embodiment, the distance t 1 between the two base electrode layers 3 a disposed on the surface 2 a side of the sintered body 1 is 1.1 or more in ratio to the thickness t 2 of the sintered body 1. [See FIGS. 1A and 1B]. Joining this way the distance t 1 of the two underlying electrode layer 3a, by which the ratio to the thickness t 2 of the sintered body 1 1.1 or more, between the underlying electrode layer 3a, and on that underlying electrode layer 3a Since the insulation property between the electrode members 4a provided can be ensured, the discharge withstand characteristics of the multi-terminal varistor can be improved.
[0022]
Here, when the interval t 1 of the underlying electrode layer 3a is smaller than 1.1 in the ratio to the thickness t 2 of the sintered body 1, it is difficult to ensure insulation between the underlying electrode layer 3a and between the electrode members 4a It becomes.
[0023]
The base electrode layer 3a, 3b of the material when the silver, the thickness t 3 of the silver electrode layer and the above 10 [mu] m (see FIG. 3). Furthermore, the base electrode layer 3a, 3b of the material when the aluminum or brass, to define the thickness t 3 of the aluminum electrode layer or brass electrode layers in the range of 50 to 150 [mu] m. Thus underlying electrode layer 3a, by defining the thickness t 3 of 3b in the aforementioned range, evenly current easily flows across the sintered body when a large current injection into the multi-terminal varistor, improvement in discharge withstand current rating characteristic Can be achieved.
[0024]
Here, if the thickness t 3 of the silver electrode layer is 10μm smaller, and when the thickness t 3 of the aluminum electrode layer or brass electrode layer is 50μm smaller, since the resistance of the electrodes layer itself is increased, a large At the time of current injection, it becomes difficult for current to flow uniformly throughout the sintered body. Conversely, a 150μm larger than the thickness t 3 of the aluminum electrode layer or brass electrode layer, peeling is produced in the electrode layer. Note that the upper limit of the thickness of the silver electrode layer is not specified because the silver electrode layer is formed by baking a silver paste, and thus the peeling of the electrode layer does not occur.
[0025]
Furthermore, the base electrode layer 3a from the outer peripheral edge of the sintered body 1, the front and back surfaces 2a of the sintered body 1 to the outer peripheral edge of 3b, and 0.3mm below the width t 4 in 2b [Fig. 1 (a ) (B)]. Thus underlying electrode layer 3a from the outer peripheral edge of the sintered body 1, the front and back surfaces 2a of the sintered body 1 to the outer peripheral edge of 3b, by a 2b width t 4 of a 0.3mm or less, the base Since the area of the electrode members 4a and 4b joined on the electrode layers 3a and 3b can be increased, and the current easily flows through the entire sintered body, the discharge withstand characteristics of the multi-terminal varistor can be improved.
[0026]
Here, when the width t 4 when the above-described smaller than 0.3 mm, the electrode member 4a, the area of 4b becomes smaller, the current hardly flows in the entire sintered body. If the base electrode layers 3a, 3b are formed up to the end faces of the sintered body 1, it becomes difficult to secure insulation at the end faces of the sintered body 1, so that the base electrode layers 3a, 3b are not formed. The formation is performed up to the outer peripheral edge of the sintered body 1.
[0027]
【Example】
The present applicant conducted various measurement tests described below using the rectangular plate-shaped sintered body 1 having a length of 26 mm, a width of 30 mm, and a thickness of 1.8 mm.
[0028]
First, to measure the ratio between the distance t 1 of the two underlying electrode layer 3a formed on the surface 2a of the thickness t 2 and the sintered body 1 of the sintered body 1, the relationship between the discharge withstand current rating value. The measurement results are shown in Table 1 and FIG. The present applicant has conventionally considered the ratio of the interval t 1 of the base electrode layer 3 a to the thickness t 2 of the sintered body 1 in consideration of various conditions such as static characteristics and power application characteristics other than the discharge withstand characteristics of the multi-terminal varistor. There since have used of 1, in this measurement, the ratio of the distance t 1 of the base electrode layer 3a to the thickness t 2 of the sintered body 1 is set to 1 tolerance value at 1.
[0029]
[Table 1]
Figure 2004006519
[0030]
If the ratio of the distance t 1 of the base electrode layer 3a As is apparent from the measurement results for the thickness t 2 of the sintered body 1 is 1.1 or more, can confirm that the improved discharge capability characteristics of multi-terminal varistor Was.
[0031]
Next, underlying electrode layer 3a, 3b of the material when the silver was measured the relation between the thickness t 3 of the silver electrode layer and the discharge withstand current rating value. The measurement results are shown in Table 2 and FIG. The Applicant, taking into account various conditions such as the static characteristics and voltage application characteristics other than discharge capability characteristics of multi-terminal varistor, conventionally, the thickness t 3 of the silver electrode layer because it has been used after a 10μm in this measurement, the discharge withstand current rating value when the thickness t 3 of the silver electrode layer was 10μm is set to 1.
[0032]
[Table 2]
Figure 2004006519
[0033]
If the measurement result from the apparent that the thickness t 3 of the silver electrode layer is 10μm or more, discharge withstand current rating characteristic of the multi-terminal varistor it was confirmed that improved.
[0034]
The base electrode layer 3a, 3b of the material when the aluminum or brass, to measure the relationship between the thickness t 3 of the aluminum electrode layer or brass electrode layer and the discharge withstand current rating value. The measurement results are shown in Table 3 and FIG. The Applicant, taking into account various conditions such as the static characteristics and voltage application characteristics other than discharge capability characteristics of multi-terminal varistor, conventionally, the thickness t 3 of the aluminum electrode layer or brass electrode layer using what was 50μm and since has, in this measurement, the discharge withstand current rating value when the thickness t 3 of the aluminum electrode layer or brass electrode layer was 50μm is set to 1.
[0035]
[Table 3]
Figure 2004006519
[0036]
If the measurement result from the apparent that the thickness t 3 of the aluminum electrode layer or brass electrode layer is 50μm or more, discharge withstand current rating characteristic of the multi-terminal varistor it was confirmed that improved. However, if the thickness t 3 of the aluminum electrode layer or brass electrode layer is larger than 150 [mu] m, peeling of the electrode layer was also confirmed to occur.
[0037]
Finally, to measure the relationship between the outer peripheral edge of the sintered body 1 underlying electrode layer 3a, a sintered body 1 on the front and back surfaces 2a to the outer peripheral edge of 3b, and 2b width t 4 the discharge withstand current rating value. The measurement results are shown in Table 4 and FIG. The present applicant has conventionally considered various conditions such as static characteristics and power application characteristics other than the discharge withstand characteristics of the multi-terminal varistor, and conventionally, from the outer peripheral edge of the sintered body 1 to the outer peripheral edges of the base electrode layers 3a and 3b. until the sintered body 1 of the front and back surfaces 2a, since the 2b width t 4 of was using those 1.5 mm, in this measurement, the outer peripheral edge of the base electrode layer 3a of the sintered body 1, 3b sintered body 1 on the front and back surfaces 2a to the outer peripheral edge, 2b width t 4 the is a 1 discharge capability value at 1.5mm of.
[0038]
[Table 4]
Figure 2004006519
[0039]
The outer peripheral edge of the base electrode layer 3a of the sintered body 1 as is apparent from the measurement result, the front and back surfaces 2a of the sintered body 1 to the outer peripheral edge of 3b, 2b width t 4 of at 0.3mm or less If so, it was confirmed that the discharge withstand characteristics of the multi-terminal varistor were improved.
[0040]
【The invention's effect】
According to the present invention, the interval between the plurality of base electrode layers arranged in parallel on at least one of the front and back surfaces of the sintered body is set to 1.1 or more in a ratio to the thickness of the sintered body, so that the base electrode layer , And the insulating property between the electrode members joined on the base electrode layer.
[0041]
When the material of the base electrode layer is silver, the thickness of the silver electrode layer is 10 μm or more, and when the material of the base electrode layer is aluminum or brass, the thickness of the aluminum electrode layer or the brass electrode layer is 50 to 150 μm. By defining the range, a current can easily flow uniformly throughout the sintered body when a large current is injected into the multi-terminal varistor.
[0042]
Further, by setting the width of the front and back surfaces of the sintered body from the outer peripheral edge of the sintered body to the outer peripheral edge of the base electrode layer to 0.3 mm or less, the area of the electrode member bonded on the base electrode layer can be reduced. The current can easily flow through the entire sintered body.
[0043]
As described above, it is possible to provide a multi-terminal varistor having high-performance characteristics by improving the discharge withstand characteristics of the multi-terminal varistor.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a surface side of a sintered body in which a base electrode layer is formed on a sintered body in an embodiment of a multi-terminal varistor according to the present invention, and FIG. It is a perspective view which shows the back side of a body.
FIG. 2 is a perspective view showing a front side of a sintered body, and FIG. 2B is a perspective view showing a back side of the sintered body, in which an electrode plate having a rectangular flat plate shape is attached in the embodiment of the present invention. It is a perspective view.
FIG. 3 is a cross-sectional view taken along the line AA of FIG.
FIG. 4 is a characteristic diagram showing a relationship between a ratio of a base electrode layer interval to a thickness of a sintered body and a discharge withstand value in an example of the present invention.
FIG. 5 is a characteristic diagram showing a relationship between a thickness of a silver electrode layer and a discharge withstand value in an example of the present invention.
FIG. 6 is a characteristic diagram showing a relationship between a thickness of an aluminum electrode layer or a brass electrode layer and a discharge withstand value in an example of the present invention.
FIG. 7 is a characteristic diagram showing the relationship between the width dimension of the front and back surfaces of the sintered body from the outer peripheral edge of the sintered body to the outer peripheral edge of the base electrode layer and the discharge withstand value in the example of the present invention.
[Explanation of symbols]
Reference Signs List 1 sintered body 2a, 2b front and back surfaces 3a, 3b of sintered body base electrode layers 4a, 4b electrode member t 1 interval between base electrode layers t 2 thickness of sintered body t 3 thickness of base electrode layer t 4 sintered body Front and back width dimensions

Claims (4)

酸化亜鉛を主成分とし、かつ、バリスタ特性を有する焼結体の表裏面の少なくとも一方に複数の下地電極層を並設し、各下地電極層上に電極部材をそれぞれ接合した多端子バリスタにおいて、前記下地電極層の間隔を、焼結体の厚みに対する比で1.1以上としたことを特徴とする多端子バリスタ。In a multi-terminal varistor in which zinc oxide is a main component and a plurality of base electrode layers are arranged in parallel on at least one of the front and back surfaces of a sintered body having varistor characteristics, and an electrode member is bonded on each base electrode layer, 2. The multi-terminal varistor according to claim 1, wherein an interval between said base electrode layers is at least 1.1 in a ratio to a thickness of the sintered body. 酸化亜鉛を主成分とし、かつ、バリスタ特性を有する焼結体の表裏面に複数の銀電極層を形成し、各銀電極層上に電極部材をそれぞれ接合した多端子バリスタにおいて、前記銀電極層の厚みを10μm以上としたことを特徴とする多端子バリスタ。In a multi-terminal varistor comprising zinc oxide as a main component, a plurality of silver electrode layers formed on the front and back surfaces of a sintered body having varistor characteristics, and an electrode member bonded to each silver electrode layer, the silver electrode layer A multi-terminal varistor, wherein the thickness of the varistor is 10 μm or more. 酸化亜鉛を主成分とし、かつ、バリスタ特性を有する焼結体の表裏面に複数のアルミ電極層又は真鍮電極層を形成し、各アルミ電極層又は真鍮電極層上に電極部材をそれぞれ接合した多端子バリスタにおいて、前記アルミ電極層又は真鍮電極層の厚みを50〜150μmの範囲に規定したことを特徴とする多端子バリスタ。Multiple aluminum electrode layers or brass electrode layers are formed on the front and back surfaces of a sintered body containing zinc oxide as a main component and having varistor characteristics, and an electrode member is joined to each aluminum electrode layer or brass electrode layer. In the terminal varistor, the thickness of the aluminum electrode layer or the brass electrode layer is defined in a range of 50 to 150 μm. 酸化亜鉛を主成分とし、かつ、バリスタ特性を有する焼結体の表裏面に複数の下地電極層を形成し、その下地電極層上に電極部材をそれぞれ接合した多端子バリスタにおいて、前記焼結体の外周端縁から下地電極層の外周端縁までの焼結体表裏面の幅寸法を0.3mm以下としたことを特徴とする多端子バリスタ。A multi-terminal varistor comprising zinc oxide as a main component, a plurality of base electrode layers formed on the front and back surfaces of a sintered body having varistor characteristics, and electrode members joined to the base electrode layers, respectively. Wherein the width of the front and back surfaces of the sintered body from the outer peripheral edge of the base electrode layer to the outer peripheral edge of the base electrode layer is 0.3 mm or less.
JP2002159951A 2002-05-31 2002-05-31 Multi-terminal varistor Pending JP2004006519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159951A JP2004006519A (en) 2002-05-31 2002-05-31 Multi-terminal varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159951A JP2004006519A (en) 2002-05-31 2002-05-31 Multi-terminal varistor

Publications (2)

Publication Number Publication Date
JP2004006519A true JP2004006519A (en) 2004-01-08
JP2004006519A5 JP2004006519A5 (en) 2005-10-20

Family

ID=30429528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159951A Pending JP2004006519A (en) 2002-05-31 2002-05-31 Multi-terminal varistor

Country Status (1)

Country Link
JP (1) JP2004006519A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266097A (en) * 2006-03-27 2007-10-11 Tdk Corp Varistor and light-emitting device
KR100841916B1 (en) * 2006-02-13 2008-06-30 티디케이가부시기가이샤 Varistor and light-emitting apparatus
JP2011521515A (en) * 2008-04-16 2011-07-21 エプコス アーゲー Multilayer components
CN102881389A (en) * 2012-09-28 2013-01-16 广东风华高新科技股份有限公司 Piezoresistor and preparation method thereof
WO2013150953A1 (en) 2012-04-04 2013-10-10 音羽電機工業株式会社 Nonlinear resistive element
CN105469915A (en) * 2015-11-05 2016-04-06 隆科电子(惠阳)有限公司 Metal oxide varistors (MOV) component structure fixed by fastening element
WO2017075842A1 (en) * 2015-11-05 2017-05-11 隆科电子(惠阳)有限公司 Mov device structure fixed by means of a fastener

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100841916B1 (en) * 2006-02-13 2008-06-30 티디케이가부시기가이샤 Varistor and light-emitting apparatus
US7688177B2 (en) 2006-02-13 2010-03-30 Tdk Corporation Varistor and light-emitting apparatus
JP2007266097A (en) * 2006-03-27 2007-10-11 Tdk Corp Varistor and light-emitting device
JP4577250B2 (en) * 2006-03-27 2010-11-10 Tdk株式会社 Varistor and light emitting device
JP2011521515A (en) * 2008-04-16 2011-07-21 エプコス アーゲー Multilayer components
US8717120B2 (en) 2008-04-16 2014-05-06 Epcos Ag Multi-layered component
WO2013150953A1 (en) 2012-04-04 2013-10-10 音羽電機工業株式会社 Nonlinear resistive element
CN103563014A (en) * 2012-04-04 2014-02-05 音羽电机工业株式会社 Nonlinear resistive element
US8902039B2 (en) 2012-04-04 2014-12-02 Otowa Electric Co., Ltd. Non-linear resistive element
CN102881389A (en) * 2012-09-28 2013-01-16 广东风华高新科技股份有限公司 Piezoresistor and preparation method thereof
CN102881389B (en) * 2012-09-28 2015-07-08 广东风华高新科技股份有限公司 Piezoresistor and preparation method thereof
CN105469915A (en) * 2015-11-05 2016-04-06 隆科电子(惠阳)有限公司 Metal oxide varistors (MOV) component structure fixed by fastening element
WO2017075842A1 (en) * 2015-11-05 2017-05-11 隆科电子(惠阳)有限公司 Mov device structure fixed by means of a fastener

Similar Documents

Publication Publication Date Title
JP5998329B2 (en) Nonlinear resistance element
JPH11273914A (en) Laminated varistor
JP5640249B2 (en) Nonlinear resistance element and manufacturing method thereof
JP3449599B2 (en) Multilayer chip varistor
JP2004006519A (en) Multi-terminal varistor
JP2004022976A (en) Stacked voltage nonlinear resistor and method of manufacturing the same
JP7411870B2 (en) barista assembly
JP3141719B2 (en) Semiconductor ceramic having negative resistance-temperature characteristics and semiconductor ceramic parts using the same
JP2004006517A (en) Multi-terminal varistor
JP2020119935A (en) Multilayer varistor and manufacturing method thereof
EP2709116B1 (en) Nonlinear resistive element
JP4847918B2 (en) ESD protection element
JP3000670B2 (en) Thermistor device
KR100340130B1 (en) Complex device of PTC thermistor-varistor and fabricating method therefor
JP2021072368A (en) Multilayer varistor
JP2007305934A (en) Surge protection device
JP3003369B2 (en) Voltage-dependent nonlinear resistor porcelain element
JPH0945510A (en) Laminated nonlinear resistor
JPS6138603B2 (en)
JP2007165526A (en) Chip-type positive characteristic thermistor
JPH09320812A (en) Multilayer type voltage nonlinear resistor
JP2012204639A (en) Lamination type ptc thermistor and mounting structure of the same
JPH01186602A (en) Composite electronic parts
JP2007184306A (en) Chip-like positive characteristic thermistor
JPH05258908A (en) Laminated type resistance porcelain with negative resistance temperature characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080107