JPS642401Y2 - - Google Patents

Info

Publication number
JPS642401Y2
JPS642401Y2 JP13024682U JP13024682U JPS642401Y2 JP S642401 Y2 JPS642401 Y2 JP S642401Y2 JP 13024682 U JP13024682 U JP 13024682U JP 13024682 U JP13024682 U JP 13024682U JP S642401 Y2 JPS642401 Y2 JP S642401Y2
Authority
JP
Japan
Prior art keywords
varistor
linear expansion
electrode
electrode plate
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13024682U
Other languages
Japanese (ja)
Other versions
JPS5936202U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13024682U priority Critical patent/JPS5936202U/en
Publication of JPS5936202U publication Critical patent/JPS5936202U/en
Application granted granted Critical
Publication of JPS642401Y2 publication Critical patent/JPS642401Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は熱放散を良好にし耐熱衝撃性を改良し
た高電力バリスタに関する。 一般に高電力バリスタとしては熱放散が良好で
ある必要があり、そのため従来はセラミツク粉末
を成形焼結してなるバリスタ素体の両面に外周縁
を残して銀電極を形成し、該銀電極に例えば黄銅
板、銅板、ニツケル板、鉄板などの電極板をハン
ダ付し該電極板によつて熱放散機能を発揮させる
ようにしていた。しかし前記バリスタ素体の30〜
300℃の温度範囲における線膨張係数が3.5〜5.0
×10-6cm/cm/℃であるのに対し前記電極板の線
膨張係数は12〜20×10-6cm/cm/℃と大幅に違
う。このような場合VlmA/mmが100〜300Vの高
圧用のものはバリスタ素体としての焼結体の結晶
粒子が5〜50μmと非常に小さく結晶粒子間の結
合強度が強いため問題はないが、VlmA/mmが10
〜50Vの低圧用のものはバリスタ素体としての焼
結体の結晶粒子が50〜200μと非常に大きく結晶
粒子間の結合強度が大幅に低下するため急激な温
度変化をともなう例えば自動車用の電子部品とし
て用いた場合バリスタ素体が電極板の膨張・収縮
に追随できずに亀裂や割れを生じてしまう致命的
な問題を誘発する欠点をもつており、この欠点解
消は早急な課題であつた。 本考案は上記の点に鑑みてなされたもので電極
板として線膨張係数の比較的小さい合金板からな
るものを用いることによつて熱衝撃によつてもバ
リスタ素体破壊のない長時間安定した特性を発揮
できる高電力バリスタを提供することを目的とす
るものである。 以下本考案の一実施例につき説明する。すなわ
ち図に示すように例えば酸化亜鉛、酸化錫、チタ
ン酸バリウム、チタン酸ストロンチユームなどを
主成分とし他に数種類の金属酸化物を混合したセ
ラミツク粉末を成形焼結してなるバリスタ素体1
の両面に外周縁を残して銀ベーストを塗布焼付し
て銀電極2を形成し該銀電極2に例えばニツケ
ル、鉄を主成分とし必要に応じてコバルトが添加
されさらに不純物としてマンガン、シリコン、炭
素などが微量添加されている30〜300℃の温度範
囲における線膨張係数が7×10-6cm/cm/℃以下
の合金電極板3をハンダ4付してなるものであ
る。 以上のように構成してなる高電力バリスタは電
極板として30〜300℃の温度範囲における線膨張
係数が7×10-6cm/cm/℃以下の合金電極板3を
用いバリスタ素体1自体の線膨張係数と比較的差
のないように設定してあるため必要回路に組込み
使用した場合の熱衝撃によつてもバリスタ素体1
を合金電極板3間の引張応力を小さくできバリス
タ素体1の破壊をなくすことができるすぐれた利
点を有する。 つぎに実験結果をもとに本考案の効果を述べ
る。すなわち直径21mm、厚さ0.8mmに成形焼結し
た立上り電圧(VlmA)22Vに設定した酸化亜鉛
系バリスタ素体の両面に銀電極を形成し該銀電極
に表1に示すそれぞれの電極板をハンダ付し、ヒ
ートサイクル試験によるバリスタ素体不良状況を
表2に示した。
The present invention relates to a high power varistor with good heat dissipation and improved thermal shock resistance. In general, high-power varistors need to have good heat dissipation, and for this reason, conventionally, a varistor body made of ceramic powder is molded and sintered, and silver electrodes are formed on both sides of the varistor body, leaving an outer periphery on both sides. Electrode plates such as brass plates, copper plates, nickel plates, iron plates, etc., were soldered to provide a heat dissipation function. However, the 30~
Linear expansion coefficient is 3.5 to 5.0 in the temperature range of 300℃
×10 -6 cm/cm/°C, whereas the linear expansion coefficient of the electrode plate is 12 to 20 × 10 -6 cm/cm/°C, which is significantly different. In such cases, there is no problem with high-pressure products with VlmA/mm of 100 to 300 V because the crystal grains of the sintered body as the varistor body are very small at 5 to 50 μm, and the bond strength between crystal grains is strong. VlmA/mm is 10
For low pressure applications of ~50V, the crystal grains of the sintered body used as the varistor body are extremely large, measuring 50 to 200 μm, and the bond strength between crystal grains is significantly reduced, resulting in rapid temperature changes. When used as a component, the varistor body cannot follow the expansion and contraction of the electrode plate, causing a fatal problem of cracking and cracking, and it was an urgent task to resolve this defect. . The present invention was developed in view of the above points, and by using an alloy plate with a relatively small coefficient of linear expansion as the electrode plate, the varistor element can be stabilized for a long time without being destroyed even by thermal shock. The purpose is to provide a high power varistor that can exhibit its characteristics. An embodiment of the present invention will be described below. That is, as shown in the figure, a varistor element body 1 is formed by molding and sintering ceramic powder containing, for example, zinc oxide, tin oxide, barium titanate, strontium titanate, etc. as its main components, mixed with several other metal oxides.
A silver base is coated and baked on both sides, leaving an outer periphery, to form a silver electrode 2.The silver electrode 2 is made of, for example, nickel or iron as the main component, cobalt is added as needed, and further impurities such as manganese, silicon, or carbon are added to the silver electrode 2. The alloy electrode plate 3 has a linear expansion coefficient of 7×10 −6 cm/cm/° C. or less in the temperature range of 30 to 300° C. and is bonded with solder 4. The high-power varistor constructed as described above uses an alloy electrode plate 3 having a coefficient of linear expansion of 7×10 -6 cm/cm/°C or less in the temperature range of 30 to 300°C as the electrode plate, and the varistor element 1 itself. Since the coefficient of linear expansion is set to be relatively similar to that of
This has the excellent advantage that the tensile stress between the alloy electrode plates 3 can be reduced and breakage of the varistor body 1 can be eliminated. Next, we will discuss the effects of the present invention based on experimental results. In other words, silver electrodes were formed on both sides of a zinc oxide varistor element body which was molded and sintered to a diameter of 21 mm and a thickness of 0.8 mm, with a rising voltage (VlmA) of 22 V, and each electrode plate shown in Table 1 was soldered to the silver electrodes. Table 2 shows the failure status of the varistor body as determined by the heat cycle test.

【表】【table】

【表】【table】

【表】 ※ 不良判定:目視によるバリスタ素体割れ、亀裂
発生品
表2から明らかなように従来例(E),(F),(G),(H)
のものは2回〜10回で全数不良となり参考例(D)の
ものも10回時点で不良発生し40回で全数不良とな
つたのに対して、本考案(A),(B),(C)のものは100
回時点でも不良発生が皆無でありすぐれた効果を
実証した。 以上述べたように本考案によれば非直線性を有
する金属酸化物系バリスタ素体の両面に形成した
銀電極に30〜300℃の温度範囲における線膨張係
数が7×10-6cm/cm/℃以下の合金電極板をハン
ダ付することによつて熱衝撃によつてもバリスタ
素体破壊のない長時間安定した特性を発揮できる
高電力バリスタを得ることができる。
[Table] * Defect judgment: Visually inspected varistor body cracks, products with cracks As is clear from Table 2, conventional examples (E), (F), (G), (H)
In contrast, in the case of the present invention (A), (B), all of the products were defective after 2 to 10 times, and in the case of reference example (D), defects occurred after 10 times and all of the products were defective after 40 times. (C) is 100
There were no defects even during the initial cycle, demonstrating its excellent effectiveness. As described above, according to the present invention, the linear expansion coefficient of the silver electrodes formed on both sides of the nonlinear metal oxide varistor element body in the temperature range of 30 to 300°C is 7 × 10 -6 cm/cm. By soldering alloy electrode plates with a temperature of /°C or less, it is possible to obtain a high-power varistor that can exhibit stable characteristics for a long time without destroying the varistor element even when subjected to thermal shock.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案の一実施例に係る高電力バリスタを
示す断面図である。 1……バリスタ素体、2……銀電極、3……合
金電極板、4……ハンダ。
The figure is a sectional view showing a high power varistor according to an embodiment of the present invention. 1... Varistor element body, 2... Silver electrode, 3... Alloy electrode plate, 4... Solder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 金属酸化物を成形焼結してなるバリスタ素体
と、該素体の両面に外周縁を残して形成した銀電
極と、該電極にハンダ付した30〜300℃の温度範
囲における線膨張係数が7×10-6cm/cm/℃以下
の合金電極板を具備した高電力バリスタ。
A varistor element formed by molding and sintering a metal oxide, a silver electrode formed with outer edges left on both sides of the element, and a linear expansion coefficient in the temperature range of 30 to 300°C soldered to the electrode. High power varistor equipped with an alloy electrode plate of 7×10 -6 cm/cm/℃ or less.
JP13024682U 1982-08-27 1982-08-27 high power varistor Granted JPS5936202U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13024682U JPS5936202U (en) 1982-08-27 1982-08-27 high power varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13024682U JPS5936202U (en) 1982-08-27 1982-08-27 high power varistor

Publications (2)

Publication Number Publication Date
JPS5936202U JPS5936202U (en) 1984-03-07
JPS642401Y2 true JPS642401Y2 (en) 1989-01-20

Family

ID=30294848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13024682U Granted JPS5936202U (en) 1982-08-27 1982-08-27 high power varistor

Country Status (1)

Country Link
JP (1) JPS5936202U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259719A (en) * 1985-05-15 1986-11-18 Matsushita Electric Works Ltd Filter for oil purifier

Also Published As

Publication number Publication date
JPS5936202U (en) 1984-03-07

Similar Documents

Publication Publication Date Title
US4296002A (en) Metal oxide varistor manufacture
US4053864A (en) Thermistor with leads and method of making
JP2015029050A (en) Multilayer ceramic electronic component
JP2016012689A (en) Ceramic electronic component
JPH0316251Y2 (en)
JP3254399B2 (en) Multilayer chip varistor and method of manufacturing the same
JPS642401Y2 (en)
JPH06124807A (en) Laminated chip component
US4211994A (en) Ceramic varistor
JPH0132322Y2 (en)
US2752663A (en) Method of uniting terminals and conductive electrodes and bonding same to ceramic base
JPS62122103A (en) Manufacture of laminated chip varistor
US3767597A (en) High temperature thermistor composition
EP0723276A2 (en) Semiconductor ceramic having negative resistance/temperature characteristics and semiconductor ceramic component utilizing the same
JP2019117902A (en) Electronic component and multilayer ceramic capacitor
JPH01289213A (en) Manufacture of voltage-dependent nonlinear resistance element
JPH01235304A (en) Manufacture of glass-sealed thermistor
JPS63281402A (en) Thermistor
JPS6010701A (en) Positive temperature coefficient thermistor
JPS63100701A (en) Manufacture of melf type laminated chip varistor
JP2006269985A (en) Multilayer chip varistor
JPH02260605A (en) Lamination type varistor
JPH027402A (en) Zinc oxide type varistor
JPH01259503A (en) Laminated varistor
JPH03190105A (en) Laminated varistor