JP2649544B2 - Zinc oxide varistor - Google Patents

Zinc oxide varistor

Info

Publication number
JP2649544B2
JP2649544B2 JP63154976A JP15497688A JP2649544B2 JP 2649544 B2 JP2649544 B2 JP 2649544B2 JP 63154976 A JP63154976 A JP 63154976A JP 15497688 A JP15497688 A JP 15497688A JP 2649544 B2 JP2649544 B2 JP 2649544B2
Authority
JP
Japan
Prior art keywords
zinc oxide
solder
sintered body
varistor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63154976A
Other languages
Japanese (ja)
Other versions
JPH025502A (en
Inventor
貴之 湯浅
雅昭 勝又
香織 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63154976A priority Critical patent/JP2649544B2/en
Publication of JPH025502A publication Critical patent/JPH025502A/en
Application granted granted Critical
Publication of JP2649544B2 publication Critical patent/JP2649544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体電子部品をサージ電圧から保護する
ための中,高圧用の酸化亜鉛型バリスタに関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a medium-to-high pressure zinc oxide varistor for protecting semiconductor electronic components from surge voltage.

(従来の技術) 従来、ディスクタイプの酸化亜鉛型バリスタは、素体
の両面に設けられた電極と、外部への引き出し用リード
線との接合に、共晶点半田を用いて電極全面を被覆する
方法がとられていた。
(Prior art) Conventionally, zinc oxide varistors of the disk type cover the entire surface of the electrode using eutectic point solder for joining the electrodes provided on both sides of the element body and the lead wires for drawing out to the outside. The way to do it was taken.

(発明が解決しようとする課題) しかしながら、近年V1mA/mm(焼結体厚さ1mm当りの立
上り電圧)が150Vを超えるような高圧用の焼結体であり
ながら、サージ耐圧の大きい焼結体が開発される傾向に
あり、この焼結体に大きなサージ電圧が加わると焼結体
が発熱し、そのため、焼結体両面に設けられた電極と、
外部への引き出し用リード線との接合に用いられている
半田が溶融し、それが原因で素子が破壊したり、また、
半田と焼結体の熱膨張率の差により、焼結体と銀電極と
の間で剥離が生じたりする欠点があった。
(Problems to be Solved by the Invention) However, in recent years, even though the sintered body for high pressure has a V 1 mA / mm (rising voltage per 1 mm of the sintered body thickness) exceeding 150 V, the sintered body has a large surge withstand voltage. When a large surge voltage is applied to the sintered body, the sintered body generates heat, and therefore, electrodes provided on both surfaces of the sintered body,
The solder used to join the lead wire to the outside is melted, which causes the element to break down,
Due to the difference in the coefficient of thermal expansion between the solder and the sintered body, there is a defect that the sintered body and the silver electrode are separated from each other.

本発明の目的は、従来の欠点を解消し、素子のサージ
耐圧を向上させた酸化亜鉛型バリスタを提供することで
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a zinc oxide type varistor in which the conventional disadvantages are eliminated and the surge withstand voltage of the element is improved.

(課題を解決するための手段) 本発明の酸化亜鉛型バリスタは、バリスタ電圧が150V
以上のものを対象とし、焼結体の両面に設けられた電極
と、外部への引き出し用リード線とを、溶融温度が227
℃〜265℃の融点を有する高温半田で、電極径の6.25%
〜25%の面積を部分接続した後、樹脂モールドしたこと
を特徴とするものである。
(Means for Solving the Problems) The zinc oxide type varistor of the present invention has a varistor voltage of 150V.
For the above objects, the electrodes provided on both surfaces of the sintered body and the lead wires for drawing out to the outside were melted at a melting temperature of 227.
6.25% of electrode diameter with high-temperature solder with melting point of ℃ ~ 265 ℃
A resin molding is performed after partially connecting the area of about 25%.

(作 用) 上記構成により、焼結体の発熱による半田の溶融およ
び電極剥離が原因で生じる素子の破壊を防ぎ、バリスタ
素子のサージ耐圧を向上させるものである。
(Operation) With the above configuration, it is possible to prevent the destruction of the element caused by the melting of the solder and the peeling of the electrode due to the heat generation of the sintered body, and to improve the surge withstand voltage of the varistor element.

(実施例) 本発明の一実施例を図に基づいて説明する。(Example) An example of the present invention will be described with reference to the drawings.

図は、本発明の酸化亜鉛型バリスタの平面図である。
同図において、1は酸化亜鉛を主成分とする焼結体、2
は焼結体1上に設けられた電極、3は溶融点が共晶点半
田より高い高温半田であり、4は外部引き出し用リード
線である。
The figure is a plan view of the zinc oxide type varistor of the present invention.
In the figure, 1 is a sintered body mainly composed of zinc oxide, 2
Is an electrode provided on the sintered body 1, 3 is a high-temperature solder having a melting point higher than the eutectic point solder, and 4 is an external lead wire.

上記構成の酸化亜鉛型バリスタを、一例として次のよ
うな方法で作成した。すなわち、酸化亜鉛粉末に酸上ビ
スマス,酸化マンガン,酸化コバルト、酸化アンチモン
を含む酸化物粉末を添加し、十分混合したのち、造粒
し、成形体厚さ5mmで成形体の直径が10mmφに成形し、
焼成を施し、焼結体1を作成した。得られた焼結体1の
両面に8mmφの直径で銀を主成分とした電極を印刷し、
熱処理を施し、電極2を形成した。次に、上記素体両面
の電極面中心部が2mmφだけ露出するようにテープを張
り、フラックスを塗布し、外部引き出しリード線を銀露
出部分に接するようにしてはさみ込み、溶融温度が227
℃の高温半田槽に浸して、外部引き出しリード線と銀電
極を接続し、その後にテープをはがし、フラックスを洗
浄して、図に示す素子を作成した。同様の方法で、溶融
温度が265℃の高温半田を用いた素子、および溶融温度
が183℃前後の共晶点半田を用いた素子を作成した。ま
た、電極の露出面が4mmφになるようにテープをはり、
同様の方法で、溶融温度が227℃,265℃および183℃の高
温半田および共晶点半田を使用した素子も同様に作成し
た。また比較のため、電極面全面に溶融温度が227℃,26
5℃,183℃の高温半田および共晶点半田を使用した素子
も作成した。
The zinc oxide type varistor having the above configuration was produced by the following method as an example. That is, an oxide powder containing bismuth on an acid, manganese oxide, cobalt oxide, and antimony oxide is added to zinc oxide powder, mixed well, and then granulated to form a molded body having a thickness of 5 mm and a diameter of the molded body of 10 mmφ. And
Sintering was performed to produce a sintered body 1. On both sides of the obtained sintered body 1, electrodes having a diameter of 8 mm and containing silver as a main component were printed,
Heat treatment was performed to form the electrode 2. Next, tape was applied so that the center of the electrode surface on both sides of the element body was exposed by 2 mmφ, a flux was applied, and the external lead wire was sandwiched so as to be in contact with the exposed silver portion, and the melting temperature was 227.
The chip was immersed in a high-temperature solder bath at ℃ to connect the external lead wire and the silver electrode. Thereafter, the tape was peeled off, and the flux was washed to produce the device shown in the figure. In the same manner, an element using a high-temperature solder having a melting temperature of 265 ° C. and an element using a eutectic point solder having a melting temperature of about 183 ° C. were prepared. Also, tape the exposed surface of the electrode to 4mmφ,
In a similar manner, devices using high-temperature solder having melting temperatures of 227 ° C., 265 ° C., and 183 ° C. and eutectic point solder were similarly prepared. For comparison, the melting temperature was 227 ° C, 26 ° C over the entire electrode surface.
Devices using 5 ° C, 183 ° C high-temperature solder and eutectic solder were also fabricated.

作成した9種類の素子に沿面放電が起こりにくいよう
に樹脂モールドを施し、8/20μsの波形で2分間隔で2
回、同方向にサージ電圧を印加し、素子の立上り電圧
(V1mA)を測定し、初期測定値との変化率を下の式によ
り算出した。
A resin mold was applied to each of the nine types of elements so that creeping discharge did not easily occur, and a waveform of 8/20 μs was applied at intervals of 2 minutes.
Each time, a surge voltage was applied in the same direction, the rise voltage (V 1 mA) of the element was measured, and the rate of change from the initial measured value was calculated by the following equation.

サージ電流の波高値は、素子が破壊するまで徐々に増
加させ、その都度変化率を算出した。サージ電圧を印加
すると、素子に極性が生じる場合があるので、サージ電
圧印加方向と逆の向きに1mAの電流を粒した際の立上り
電圧を測定し、この値をもって変化率を計算した。
The peak value of the surge current was gradually increased until the element was destroyed, and the rate of change was calculated each time. When a surge voltage is applied, a polarity may be generated in the element. Therefore, a rising voltage when a current of 1 mA is applied in a direction opposite to the surge voltage application direction was measured, and a change rate was calculated based on this value.

第1表に各試料の作成条件を示す。 Table 1 shows the preparation conditions for each sample.

第2表に、サージ電流の波高値とΔV1mAの関係を示
す。
Table 2 shows the relationship between the peak value of the surge current and ΔV 1 mA.

第2表からわかるように、半田の部分接続の面積が小
さい程電極剥離が起こりにくくなっており、また、半田
の溶融温度が高い程素子のモールドの損傷による破壊が
起こりにくくなっている。また、高温半田や径の小さい
部分接着方法を用いた場合は、ΔV1mAの変化率は小さい
ことがわかる。
As can be seen from Table 2, the smaller the area of the partial connection of the solder, the less the electrode peels off, and the higher the melting temperature of the solder, the more difficult it is for the element to be damaged by damage to the mold. Also, when the high-temperature solder or the small diameter partial bonding method is used, the change rate of ΔV 1 mA is small.

なお、今回、スポット接合する方法として、テープを
はる方法を使用したが、半田ごてを使用した場合や、テ
ープの比較的半田の付着しにくい半田レジストを塗布し
た場合等にも同様の効果を得ることができる。
Note that this time, the method of spot bonding was to use a method of applying a tape. However, the same effect can be obtained when a soldering iron is used or when a solder resist to which the tape is relatively hard to adhere is applied. Can be obtained.

(発明の効果) 本発明によれば、共晶点半田よりも溶融点の高い高温
半田を使用してスポット接続することにより、サージに
よる素子の破壊限界が大きくなり、かつ立上り電圧の変
化率が小さい高サージ耐圧に優れた信頼性の高い酸化亜
鉛型バリスタを得ることができ、その実用上の効果は大
である。
(Effect of the Invention) According to the present invention, by using a high-temperature solder having a melting point higher than that of a eutectic point solder and performing spot connection, the breakdown limit of the element due to surge is increased, and the rate of change of the rise voltage is reduced. A highly reliable zinc oxide varistor excellent in small surge voltage resistance can be obtained, and its practical effect is great.

【図面の簡単な説明】[Brief description of the drawings]

図は本発明の一実施例における酸化亜鉛型バリスタの平
面図である。 1……焼結体、2……電極、3……高温半田、4……外
部引出しリード線。
FIG. 1 is a plan view of a zinc oxide type varistor according to one embodiment of the present invention. 1 ... Sintered body, 2 ... Electrode, 3 ... High temperature solder, 4 ... External lead wire.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−180402(JP,A) 実開 昭51−22739(JP,U) 特公 昭47−25953(JP,B1) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-61-180402 (JP, A) JP-A-51-22739 (JP, U) JP-B-47-25953 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼結体の両面に設けられた電極と、外部へ
の引き出し用リード線とを、溶融温度が227℃〜265℃の
融点を有する高温半田で、電極径の6.25%〜25%の面積
を部分接続した後、樹脂モールドしたことを特徴とする
バリスタ電圧が150V以上のディスクタイプの酸化亜鉛型
バリスタ。
An electrode provided on both sides of a sintered body and a lead wire for drawing out to the outside are made of a high-temperature solder having a melting point of 227 ° C. to 265 ° C. and 6.25% to 25% of the electrode diameter. A disk-type zinc oxide varistor with a varistor voltage of 150 V or more, characterized in that the varistor voltage is 150 V or higher, after partially connecting the area of the varistor.
JP63154976A 1988-06-24 1988-06-24 Zinc oxide varistor Expired - Lifetime JP2649544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154976A JP2649544B2 (en) 1988-06-24 1988-06-24 Zinc oxide varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63154976A JP2649544B2 (en) 1988-06-24 1988-06-24 Zinc oxide varistor

Publications (2)

Publication Number Publication Date
JPH025502A JPH025502A (en) 1990-01-10
JP2649544B2 true JP2649544B2 (en) 1997-09-03

Family

ID=15595994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154976A Expired - Lifetime JP2649544B2 (en) 1988-06-24 1988-06-24 Zinc oxide varistor

Country Status (1)

Country Link
JP (1) JP2649544B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54995Y2 (en) * 1974-08-09 1979-01-18
JPS61180402A (en) * 1985-02-05 1986-08-13 マルコン電子株式会社 Manufacture of voltage non-linear resistor

Also Published As

Publication number Publication date
JPH025502A (en) 1990-01-10

Similar Documents

Publication Publication Date Title
JPS6143402A (en) Method of producing thermistor
JP2649544B2 (en) Zinc oxide varistor
GB2052856A (en) Coating protecting varistor during manufacture
JPH01295403A (en) Chip varister
JPH027402A (en) Zinc oxide type varistor
JPS61180402A (en) Manufacture of voltage non-linear resistor
JPS6343876B2 (en)
JPS63143827A (en) Manufacture of diode
JP2002321399A (en) Thermal head and its production method
JP2560495B2 (en) Method for manufacturing zinc oxide voltage nonlinear resistance element
JPH0132322Y2 (en)
JPS583385B2 (en) Kaden Atsuhogososhi
JP2003007508A (en) Negative characteristic thermistor
JPH01289213A (en) Manufacture of voltage-dependent nonlinear resistance element
JP2649545B2 (en) Electrode formation method of zinc oxide type varistor
JPS61177754A (en) Resin-sealed semiconductor device
JP3413929B2 (en) Manufacturing method of positive temperature coefficient thermistor
JPS63153805A (en) Manufacture of voltage nonlinear resistance element
JPS6010701A (en) Positive temperature coefficient thermistor
JPH0311843Y2 (en)
JPH0316254Y2 (en)
JP3325804B2 (en) Semiconductor device and manufacturing method thereof
JPS6116501A (en) Chip varistor
JPH01226116A (en) Voltage-dependent non-linear resistor element
JPS5821825B2 (en) Hand tie souchi