JPH0316255Y2 - - Google Patents

Info

Publication number
JPH0316255Y2
JPH0316255Y2 JP9416385U JP9416385U JPH0316255Y2 JP H0316255 Y2 JPH0316255 Y2 JP H0316255Y2 JP 9416385 U JP9416385 U JP 9416385U JP 9416385 U JP9416385 U JP 9416385U JP H0316255 Y2 JPH0316255 Y2 JP H0316255Y2
Authority
JP
Japan
Prior art keywords
lead wire
varistor
electrode
electrodes
thermal shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9416385U
Other languages
Japanese (ja)
Other versions
JPS622203U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9416385U priority Critical patent/JPH0316255Y2/ja
Publication of JPS622203U publication Critical patent/JPS622203U/ja
Application granted granted Critical
Publication of JPH0316255Y2 publication Critical patent/JPH0316255Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Details Of Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 この考案はセラミツクバリスタ、特にバリスタ
素子に形成した電極に接続するリード線の形状に
関し、これによつて耐熱衝撃特性を向上させるも
のである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a ceramic varistor, particularly the shape of a lead wire connected to an electrode formed on a varistor element, thereby improving thermal shock resistance.

〔考案の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、酸化亜鉛を主成分とするセラミツクバリ
スタ素子の電極にはんだ付けなどによつて接続す
るリード線は、該リード線のまま、すなわち断面
が円形のものが一般に用いられていた。しかしな
がらリード線をはんだ付けしたのち、バリスタ素
子全体を樹脂外装すると、前記リード線上部の樹
脂の厚みは、他の部分に比して非常に薄くなり、
苛酷な耐熱衝撃性すなわち、−55〜+150℃の使用
温度範囲を要求される自動車用として使用された
場合などは、外装樹脂に亀裂などを生じ、特性低
下をひき起していた。また、たとえば特開昭59−
210631号公報記載の技術のように電子部品の電極
にはんだ付けするリード線部分を平板加工したも
のも知られている。この構成では耐熱衝撃性の向
上は認められるが、電極とリード線との間にはん
だが入りにくいためはんだ付け強度が弱く、長期
にわたる熱衝撃によつてリード線の剥離を生じた
り、リード線を電極との間に浸入したフラツクス
を完全に除去する事が難しく、高温下で使用され
た場合には前記フラツクスの残分が分解し電極を
通してバリスタ素子を還元雰囲気にさらすので特
性劣化の要因となるなどの問題点があつた。ま
た、第8図〜第11図に示すように電極との接触
面をリード線の長さに沿つて断面楕円形、略半円
形、ひしがた、三角形に形成することも考えられ
るが、これらの場合は電極との接触が線接触で不
安定なため傾き易く、結局図示の如くリード線の
厚さが厚くなつて外装樹脂層が薄くなり亀裂など
を生じ易い欠点があつた。
Conventionally, lead wires connected by soldering or the like to the electrodes of ceramic varistor elements containing zinc oxide as a main component have generally been used as they are, that is, having a circular cross section. However, when the entire varistor element is sheathed with resin after the lead wires are soldered, the thickness of the resin at the top of the lead wires becomes very thin compared to other parts.
When used in automobiles that require severe thermal shock resistance, that is, an operating temperature range of -55 to +150°C, cracks occur in the exterior resin, causing a decline in properties. Also, for example, JP-A-59-
It is also known that the lead wire portion to be soldered to the electrode of an electronic component is processed into a flat plate, such as the technique described in Japanese Patent No. 210631. Although this configuration has improved thermal shock resistance, it is difficult for solder to enter between the electrodes and the lead wires, resulting in weak soldering strength, and long-term thermal shock may cause the lead wires to peel off or cause the lead wires to break. It is difficult to completely remove the flux that has entered between the electrodes and when used at high temperatures, the residual flux decomposes and exposes the varistor element to a reducing atmosphere through the electrodes, causing characteristic deterioration. There were other problems. Furthermore, as shown in Figures 8 to 11, it is also possible to form the contact surface with the electrode in an elliptical, approximately semicircular, rhombus, or triangular cross section along the length of the lead wire, but these In this case, the contact with the electrode is unstable due to the wire contact, so it tends to tilt, and as shown in the figure, the thickness of the lead wire becomes thicker, and the outer resin layer becomes thinner, which has the drawback that cracks are more likely to occur.

〔考案の目的〕[Purpose of invention]

この考案は、バリスタ素子の電極に接続するリ
ード線の形状を改善することにより耐熱衝撃性を
向上させることを目的としたものである。
This idea aims to improve thermal shock resistance by improving the shape of the lead wires connected to the electrodes of the varistor element.

〔考案の概要〕 この考案になるバリスタは、表・裏面に設けた
電極にリード線をはんだ付けしたバリスタ素子を
樹脂外装したバリスタにおいて、前記リード線が
厚さより幅が大で、かつ前記電極への接触面がリ
ード線の長さ方向に設けた凹凸を有していること
を特徴とするものである。
[Summary of the invention] The varistor of this invention is a varistor that has a resin-sheathed varistor element in which lead wires are soldered to electrodes provided on the front and back surfaces, and the lead wires are wider than the thickness and are connected to the electrodes. The contact surface of the lead wire is characterized in that it has an unevenness provided in the length direction of the lead wire.

〔考案の実施例〕[Example of idea]

第1図に断面図を示すように酸化亜鉛を主成分
とするセラミツクバリスタ素子1(直径20mm×厚
さ1mm)に直径16mmの銀電極2を焼付け、該銀電
極2との接触面を厚さ0.5mmに、かつ、リード線
3の長さ方向に鋸歯状に加工した直径1mmのリー
ド線3をはんだ付けし、厚さが最大4mmになるよ
うにエポキシ樹脂4で外装した。このバリスタに
ついて熱衝撃試験を行なつたとき外装樹脂に生じ
たクラツク発生累積個数を第2図に、バリスタ電
極の剥離発生累積個数を第3図に示し、また高温
負荷寿命試験を行なつたときの立上がり電圧
V1mAの変化率を第4図に示す。なお、第2図
〜第4図において、曲線Aは本考案の前記実施例
の場合を示し、曲線Bは1mmφリード線をそのま
ま使用した従来例(1)、曲線Cは1mmφリード線の
電極との接触部を0.5mm厚の平板に加工したもの
を使用した従来例(2)を示したもので、その他は本
考案の実施例と、同じ条件で試料作成を行なつた
ものである。熱衝撃試験及び、高温負荷寿命試験
は下記の条件で行なつた。
As shown in the cross-sectional view in Fig. 1, a silver electrode 2 with a diameter of 16 mm is baked on a ceramic varistor element 1 (diameter 20 mm x thickness 1 mm) whose main component is zinc oxide, and the contact surface with the silver electrode 2 is Lead wires 3 having a diameter of 1 mm and having a diameter of 0.5 mm and serrated in the length direction of the lead wires 3 were soldered to each other and covered with epoxy resin 4 to a maximum thickness of 4 mm. Figure 2 shows the cumulative number of cracks that occurred in the exterior resin when this varistor was subjected to a thermal shock test, and Figure 3 shows the cumulative number of peelings that occurred in the varistor electrode. rising voltage of
Figure 4 shows the rate of change in V1mA. In Figures 2 to 4, curve A shows the case of the above-mentioned embodiment of the present invention, curve B shows the conventional example (1) in which the 1 mmφ lead wire is used as is, and curve C shows the case with the electrode of the 1 mmφ lead wire. This shows a conventional example (2) in which the contact part was processed into a flat plate with a thickness of 0.5 mm, and the sample was otherwise prepared under the same conditions as the example of the present invention. Thermal shock test and high temperature load life test were conducted under the following conditions.

熱衝撃試験 −50℃中50分間→+150℃中50分
間、移動時間を1分間とし、これを1サイ
クルとして、この繰返し回数とクラツク発
生累積個数および電極剥離累積個数との関
係を示す。
Thermal shock test: 50 minutes at -50°C → 50 minutes at +150°C, with a transfer time of 1 minute, and this is regarded as one cycle, and the relationship between the number of repetitions, the cumulative number of cracks generated, and the cumulative number of electrodes peeled off is shown.

高温負荷寿命試験 +150℃中で最大許容回路
電圧を印加したときの印加時間と立上り電
圧の変化率との関係を示す。
High-temperature load life test The relationship between the application time and the rate of change in the rise voltage when the maximum allowable circuit voltage is applied at +150°C is shown.

第2図〜第4図から明らかなように本考案の実
施例になるバリスタは外装樹脂4に同じクラツク
個数を生じるまでの回数は従来例(2)の平板加工し
たものと略同等であるが、同じ電極2剥離個数を
生ずるまでの回数は20〜30回の差があり、優れた
特性を有することが明らかである。また、第4図
の立上がり電圧の変化率は従来例(1)と同等である
従来例(2)より格段に優れた特性を示している。こ
れらの特性上の差は本考案では、バリスタ電極と
リード線との接触に際してリード線が電極に密着
し、第8図〜第11図に示した従来例の如き不安
定さがないため、安定した状態にはんだ付けで
き、かつ電極とリード線間は完全にはんだで満さ
れるのでフラツクスの残留がないものである。ま
た、接触面積も大きいので、はんだ付け強度が大
で電極が剥離しにくい構造を有するものである。
また、リード線の厚さが薄くなるので外装樹脂厚
さを十分確保できクラツチの発生を抑制すること
もできる。これに対し従来例(1)はリード線をその
まま用いるのでクラツクが短時間で発生し易く、
また電極との接触部を平板加工した従来例(2)では
電極−リード線間に残留したフラツクスにより剥
離が発生し易い欠点を有するもので、これらは第
2図〜第4図から明らかである。
As is clear from FIGS. 2 to 4, the number of cracks it takes to produce the same number of cracks in the exterior resin 4 of the varistor according to the embodiment of the present invention is approximately the same as that of the conventional example (2) which is processed into a flat plate. There is a difference of 20 to 30 times in the number of times until the same number of electrodes 2 are peeled off, and it is clear that they have excellent characteristics. Further, the rate of change in the rising voltage shown in FIG. 4 shows a characteristic that is much better than that of the conventional example (2), which is equivalent to the conventional example (1). The difference in these characteristics is that in the present invention, when the varistor electrode and the lead wire come into contact, the lead wire is in close contact with the electrode, and there is no instability like in the conventional example shown in Figs. 8 to 11, so it is stable. It can be soldered in a closed state, and since the space between the electrode and the lead wire is completely filled with solder, there is no residual flux. Furthermore, since the contact area is large, the soldering strength is high and the electrodes have a structure that is difficult to peel off.
Furthermore, since the thickness of the lead wire is reduced, a sufficient thickness of the exterior resin can be ensured and the occurrence of clutches can be suppressed. On the other hand, in conventional example (1), the lead wire is used as is, so cracks tend to occur in a short time.
In addition, the conventional example (2) in which the contact part with the electrode is processed into a flat plate has the disadvantage that peeling tends to occur due to residual flux between the electrode and the lead wire, and these are clear from Figures 2 to 4. .

なお、上記実施例では、リード線を鋸歯状に加
工した場合について述べたが、第5図の如きサイ
ンカーブ状からなるリード線13、第6図の連続
した四角形からなるリード線23、第7図の連続
した円弧からなるリード線33などや、これらを
組合せて用いても全く同様の効果を得ることがで
きる。
In the above embodiment, a case was described in which the lead wire was processed into a sawtooth shape, but the lead wire 13 having a sine curve shape as shown in FIG. Exactly the same effect can be obtained by using the lead wire 33 made of a continuous circular arc as shown in the figure, or by using a combination of these.

〔考案の効果〕[Effect of idea]

本考案によればバリスタの熱衝撃性を向上で
き、高温〜低温における使用にも特性劣化の小さ
いバリスタを提供することができる。
According to the present invention, it is possible to improve the thermal shock resistance of the varistor, and it is possible to provide a varistor whose characteristics are less deteriorated even when used at high to low temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は本考案の実施例を示し、第1
図はバリスタの断面図、第2図は熱衝撃サイクル
と外装樹脂のクラツク発生個数との関係を示す曲
線図、第3図は熱衝撃サイクルと電極剥離個数と
の関係を示す曲線図、第4図は高温負荷試験にお
ける通電時間と立上がり電圧の変化率との関係を
示す曲線図、第5図は他の実施例になるリード線
を電極上に載置した状態を示す断面図、第6図お
よび第7図は同じくリード線を電極上に載置した
状態を示す他の実施例の断面図、第8図〜第11
図は従来のリード線を電極上に載置したときの状
態を示す断面図である。 1……バリスタ素子、2……銀電極、3……リ
ード線、4……エポキシ樹脂。
1 to 7 show embodiments of the present invention.
Figure 2 is a cross-sectional view of the varistor, Figure 2 is a curve diagram showing the relationship between thermal shock cycles and the number of cracks in the exterior resin, Figure 3 is a curve diagram showing the relationship between thermal shock cycles and the number of electrodes peeled off, and Figure 4 is a curve diagram showing the relationship between thermal shock cycles and the number of electrode peelings. The figure is a curve diagram showing the relationship between the energization time and the rate of change of the rising voltage in a high temperature load test, Figure 5 is a cross-sectional view showing a state in which a lead wire according to another embodiment is placed on an electrode, and Figure 6 and FIG. 7 is a sectional view of another embodiment showing a state in which the lead wire is similarly placed on the electrode, and FIGS. 8 to 11.
The figure is a cross-sectional view showing a conventional lead wire placed on an electrode. 1... Varistor element, 2... Silver electrode, 3... Lead wire, 4... Epoxy resin.

Claims (1)

【実用新案登録請求の範囲】 (1) 表・裏面に設けた電極にリード線をはんだ付
けしたバリスタ素子を樹脂外装したバリスタに
おいて、前記リード線が厚さより幅が大で、か
つ前記電極への接触面がリード線の長さ方向に
設けた凹凸を有していることを特徴とするバリ
スタ。 (2) リード線の長さ方向に設けた凹凸が鋸歯状、
サインカーブ状、連続した四角形、円弧または
これらの組合せからなることを特徴とする実用
新案登録請求の範囲第(1)項記載のバリスタ。
[Claims for Utility Model Registration] (1) A varistor in which a varistor element is coated with a resin and lead wires are soldered to electrodes provided on the front and back surfaces, and the lead wire is wider than the thickness thereof and is connected to the electrode. A varistor characterized in that a contact surface has unevenness provided in the length direction of a lead wire. (2) The unevenness provided in the length direction of the lead wire is serrated,
The varistor according to claim (1) of the utility model registration, characterized in that it has a sine curve shape, a continuous rectangular shape, a circular arc, or a combination thereof.
JP9416385U 1985-06-20 1985-06-20 Expired JPH0316255Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9416385U JPH0316255Y2 (en) 1985-06-20 1985-06-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9416385U JPH0316255Y2 (en) 1985-06-20 1985-06-20

Publications (2)

Publication Number Publication Date
JPS622203U JPS622203U (en) 1987-01-08
JPH0316255Y2 true JPH0316255Y2 (en) 1991-04-08

Family

ID=30652479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9416385U Expired JPH0316255Y2 (en) 1985-06-20 1985-06-20

Country Status (1)

Country Link
JP (1) JPH0316255Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162181A1 (en) * 2010-06-21 2011-12-29 コーア株式会社 Surface mounting varistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162181A1 (en) * 2010-06-21 2011-12-29 コーア株式会社 Surface mounting varistor
US8912876B2 (en) 2010-06-21 2014-12-16 Koa Corporation Surface mounting varistor

Also Published As

Publication number Publication date
JPS622203U (en) 1987-01-08

Similar Documents

Publication Publication Date Title
JPH0316251Y2 (en)
JPH0316255Y2 (en)
JPH0316254Y2 (en)
JPH01295403A (en) Chip varister
KR100358302B1 (en) Negative Temperature Coefficient Thermistor
KR100324097B1 (en) NTC thermistor devices
JPS6010701A (en) Positive temperature coefficient thermistor
JPH01287902A (en) Positive coefficient thermistor
JPH0974003A (en) Ceramic electronic parts
JP2003007508A (en) Negative characteristic thermistor
JP3785961B2 (en) Ceramic electronic components
JPH0370361B2 (en)
JP2559524Y2 (en) Positive characteristic thermistor device
JPH0113364Y2 (en)
JPH0415563B2 (en)
JPH05234705A (en) Thermistor element with positive temperature coefficient
JP3348642B2 (en) Manufacturing method of ceramic electronic components
JPH0134864Y2 (en)
JPH0311843Y2 (en)
JPH0316243Y2 (en)
JPH0430722B2 (en)
JPS63285906A (en) Laminated ceramic varistor
JPH04314303A (en) Thermistor having positive temperature characteristic and manufacture thereof
JPS60701A (en) Ormic electrode
JPS6199302A (en) High temperature glass sealed thermistor