JPH01287902A - Positive coefficient thermistor - Google Patents

Positive coefficient thermistor

Info

Publication number
JPH01287902A
JPH01287902A JP11756588A JP11756588A JPH01287902A JP H01287902 A JPH01287902 A JP H01287902A JP 11756588 A JP11756588 A JP 11756588A JP 11756588 A JP11756588 A JP 11756588A JP H01287902 A JPH01287902 A JP H01287902A
Authority
JP
Japan
Prior art keywords
electrode film
solder
coefficient thermistor
thermal expansion
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11756588A
Other languages
Japanese (ja)
Inventor
Atsushi Kojima
淳 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11756588A priority Critical patent/JPH01287902A/en
Publication of JPH01287902A publication Critical patent/JPH01287902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To make it possible to obtain stable ohmic contact and strong adhesive strength as well as to contrive improvement in solderability by a method wherein the excellently solderable second electrode film, with which the difference of the coefficient of thermal expansion between Cr and solder, is formed on the surface of the first Cr electrode film formed on a ceramic element. CONSTITUTION:The first electrode film 3 consisting of Cr is formed by sputtering on both opposing main surfaces of a ceramic element 2, the second electrode film 4 is formed on the surface of the first electrode film 3 by sputtering and at the same time, a protective electrode film 5 consisting of Ag is formed on the surface of the second electrode film 4. At this point, the second electrode film 4 is composed of the metal, having the coefficient of thermal expansion larger then that of Cr and smaller than that of solder, such as Ni, for example. As a result, stabilized ohmic contact by the Cr and high tight adhesive strength can be obtained, and the improvement in solderability can be achieved by the second electrode film 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チタン酸バリウム系酸化吻を主成分とする半
導体セラミックスからなる正特性サーミスタに関し、特
に品質に対する信親性を向上できるようにした新規な電
極構造に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a positive temperature coefficient thermistor made of a semiconductor ceramic whose main component is barium titanate-based oxide. Regarding the electrode structure.

〔従来の技術〕[Conventional technology]

一般に、正特性サーミスタは、ある所定の温度以上にな
ると、その抵抗値が急激に上昇する正の温度特性を有し
ている。そしてこの正特性サーミスタは、半導体セラミ
ックス素子の表面に少なくとも一対の電極膜を形成して
構成されている。
In general, a positive temperature coefficient thermistor has a positive temperature characteristic in which its resistance value rapidly increases when the temperature exceeds a certain predetermined temperature. This positive temperature coefficient thermistor is constructed by forming at least one pair of electrode films on the surface of a semiconductor ceramic element.

ところで、上記正特性サーミスタの電極膜は、整流性の
ない低抵抗のオーム接触を必要としており、従来から、
Ag、Gaを主成分とした合金。
By the way, the electrode film of the positive temperature coefficient thermistor requires a low-resistance ohmic contact with no rectification, and conventionally,
An alloy whose main components are Ag and Ga.

Ni、/1等が採用されている。また、上記電極膜を成
形する方法としては、Agペーストの焼き付け、無電解
Niメツキ、あるいはA1の溶射等が採用されている。
Ni, /1, etc. are used. Further, as a method for forming the electrode film, baking of Ag paste, electroless Ni plating, thermal spraying of A1, etc. are employed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の各電極膜の形成方法では、一
般的に以下のような問題点がある。
However, the conventional methods for forming each electrode film described above generally have the following problems.

■ 上記Agペーストの場合は、寿命試験での抵抗値の
変化が大きくライフ試験に弱い、またAgの焼き付けは
低温で行うことから密着強度が弱い、さらに、上記Ag
は半田付は時の拡散現象によって半田に溶は込み易く、
しかも高価である。
■ In the case of the above Ag paste, the change in resistance value during the life test is large and it is weak in the life test, and the adhesion strength is weak because Ag is baked at a low temperature.
When soldering, melt easily enters the solder due to the diffusion phenomenon.
Moreover, it is expensive.

■ Niメツキの場合は、上記Agと同様にうイフ試駁
で抵抗値が変化し易く、また300℃以上の空気中で熱
処理を行うことから、表面酸化により半田が付かなくな
る。ざらに、メツキ液中に漫清することから、セラミッ
クス素子の吸水又はメツキイオンの残渣により素子が劣
化するおそれがある。
(2) In the case of Ni plating, the resistance value tends to change in the after-test like the above-mentioned Ag, and since the heat treatment is performed in air at 300° C. or higher, the surface oxidizes and the solder does not stick. Furthermore, since the ceramic element is immersed in the plating solution, there is a risk that the element may be deteriorated due to water absorption by the ceramic element or residual plating ions.

■ Aaの溶射の場合は、電極膜の形成初期においては
、安定したオーム性接触が得られるが、Ae自体の耐環
境性が悪いことから、製品後の寿命が短く、酸化によっ
て半田が付きにくくなる。
■ In the case of thermal spraying of Aa, stable ohmic contact can be obtained in the initial stage of electrode film formation, but since Ae itself has poor environmental resistance, the life of the product is short and it is difficult to solder due to oxidation. Become.

本発明の目的は、安定したオーム性接触及び弦い密着強
度が得られるとともに、半田付は性を向上できる全く新
規な構造の正特性サーミスタを提供することにある。
An object of the present invention is to provide a positive temperature coefficient thermistor with a completely new structure that can provide stable ohmic contact and chordal adhesion strength, and improve solderability.

c問題点を解決するだめの手段) 本件発明者は、上記目的を達成するために鋭意検討を重
ね、良好なオーム性接触及び高い密着強度が要求される
電極〃9用金属とL7て、Crに着目した。即ち、オー
ム性接触は原子の仕事関数の小さい方が得易いと3われ
ており、Crはこの仕事関数が小さく、p、好なメ・−
・ム性接触が期待できろ6また、−m的(、、:、Cr
はセラミックスとの強い密着強度が得易いことから、J
:配電極膜にCrを採用するこ^が望ましいいしかし、
」二重Cvは半田が付きにくく、す・−ド線の取りイ1
りやプリント基板への半田付けが困難になるという問題
がある。
(Means for solving the problem) In order to achieve the above object, the inventor of the present invention has made extensive studies and determined that the metal for electrode 9 and L7, which require good ohmic contact and high adhesion strength, are made of Cr. We focused on In other words, it is said that ohmic contact is easier to obtain when the work function of the atom is small, and Cr has a small work function, p, and a good
・You can expect sexual contact 6 Also, -m (,,:,Cr
Since it is easy to obtain strong adhesion strength with ceramics, J
: It is desirable to use Cr for the distribution electrode film, but
"Double CV is difficult to solder, and it is easy to take the lead wire.
There is a problem in that it becomes difficult to solder to a board or a printed circuit board.

特殊な条件を用いれば半田伺けを容易化できるが、。However, soldering can be made easier by using special conditions.

これを行うとサーミスタの特性が劣化する問題がある8
一方、仮りにCrに半田付けした場合は、該Crは半田
に比べて熱膨張係数が小さいことかl)、両者の熱膨張
係数の差によるス(レスが生じ、セラミックス素子とC
r電極膜との間の密着強度が低下するという問題が生じ
る。また正特性′ナーミスタは発熱素子であるため、熱
膨張係数の差は、単に半田(13時の一時的な問題では
なく、永続的な問題となる。つまり、何らかの方法で半
田付けによる密着強度低下を防止できた々しても、通常
使用における発熱で密着強度が低下し信頼性を太き(引
き下げる事になる。そこで、上記Crからなる電極膜に
、半田付は性が良好で、がっcrと半田との熱膨張係数
の差を絣和で恋る金属イー被瑣して二重構造にしてやれ
ば上述した目的を達成できることを見出し、本発明を成
したものである。
If you do this, there is a problem that the characteristics of the thermistor will deteriorate8.
On the other hand, if soldered to Cr, Cr has a smaller coefficient of thermal expansion than solder (l), and the difference in thermal expansion coefficient between the two will cause a crack between the ceramic element and the Cr.
A problem arises in that the adhesion strength with the r-electrode film decreases. In addition, since the positive characteristic Narmistor is a heat generating element, the difference in thermal expansion coefficient is not just a temporary problem, but a permanent problem. Even if it were possible to prevent this, the adhesion strength would decrease due to the heat generated during normal use, which would increase reliability. The present invention was made based on the discovery that the above-mentioned object could be achieved if the difference in thermal expansion coefficient between CR and solder was made into a double structure by applying the difference in thermal expansion coefficient between CR and solder.

そこで本発明は、正の抵抗へに特性を有する正特性サー
ミスタにおいて、半導体−1!−ラミックス素子の表面
に、Crからなる少なくとも一対の第1電極膜を形成し
、該第it極膜の表面に、半田付は性がρ、好で、かつ
熱膨張係数が上記Crより大きく半田より小ざい金属か
らなる第2電極膜を形成したことを特徴としている。
Therefore, the present invention provides a positive temperature coefficient thermistor having a characteristic of positive resistance. - At least a pair of first electrode films made of Cr are formed on the surface of the Lamix element, and on the surface of the it electrode film, the solderability is ρ, and the coefficient of thermal expansion is larger than that of the above-mentioned Cr. It is characterized by forming a second electrode film made of a metal smaller than solder.

ここで」二重第1電極膜は、スパッタリング、蒸着、溶
射等の乾式メツキにより形成することが望ましい。また
、上記第2電極■ζネは湿式あるいは乾式メツキのいず
れにより形成しても構わない、さらに、上記第2電極膜
としては、例えばNi、CU等の金属が採用でき5.こ
れらの金属の熱膨張係数はCrと半田との略中間に値す
るからである。
Here, the double first electrode film is preferably formed by dry plating such as sputtering, vapor deposition, thermal spraying, or the like. Further, the second electrode (1) may be formed by wet plating or dry plating.Furthermore, metal such as Ni, CU, etc. can be used for the second electrode film.5. This is because the coefficient of thermal expansion of these metals is approximately between that of Cr and solder.

〔作用〕[Effect]

本発明に係る正特性サーミスタによれば、セラミックス
素子にCrからなる第1電極膜を形成し、該第1電極膜
の表面/、、’T:f田イづり性が良く、かりCrと半
田との熱膨張係数の差4:吸収できる金属からなる第2
電極膜を形成したので、−上記Crにより安定1.また
オーム外接81(及び高い密着強度が得られ、上記第2
電極膜によって半田4f1’ LJ性を向トでき、その
結果品質、耐久性等に対する信頼性を向」二できる。
According to the positive temperature coefficient thermistor according to the present invention, a first electrode film made of Cr is formed on a ceramic element, and the surface of the first electrode film has good ease of soldering, and is bonded with Cr and solder. Difference in thermal expansion coefficient between the
Since the electrode film was formed, it was stabilized by the above-mentioned Cr.1. In addition, ohmic circumscription 81 (and high adhesion strength can be obtained, and the second
The solder 4f1' LJ property can be improved by the electrode film, and as a result, reliability in terms of quality, durability, etc. can be improved.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による正特性サーミスタを説
明するための図である。
FIG. 1 is a diagram for explaining a positive temperature coefficient thermistor according to an embodiment of the present invention.

図において、1は未実施例の正特性サーミスタである。In the figure, numeral 1 indicates a positive temperature coefficient thermistor that has not yet been implemented.

これは、円板状のBaTi0.系半導体セラミックス素
子20対向する両主面に、スパッタリングによりCrか
らなる第1電極膜3を形成し、該第1電極膜3の表面す
こスパッタリングによりNiからなる第2電極膜4を形
成すると2−もに、この第2電極膜4の表面に、/Jか
らなる保護電極膜5を形成1,2て構成されている。ま
た、図示していないが、上記保護電極膜5には適宜リー
ド綿が半田付は接続されている。なお、上記保1!電極
膜5は、上記第2電極膜4の時間の経過による酸化によ
って生じる半田付は性の低下を防止するためのものであ
り、上記第2電極膜4の形成後、直、ちにリード線を接
続する場合は、必ずしもこの保護電極膜5を形成しなく
てもよい。
This is a disc-shaped BaTi0. A first electrode film 3 made of Cr is formed by sputtering on both opposing principal surfaces of the system semiconductor ceramic element 20, and a second electrode film 4 made of Ni is formed by sputtering all over the surface of the first electrode film 3.2- In addition, on the surface of this second electrode film 4, a protective electrode film 5 made of /J is formed 1, 2. Further, although not shown, lead cotton is appropriately connected to the protective electrode film 5 by soldering. In addition, the above guarantee 1! The electrode film 5 is used to prevent deterioration of soldering properties caused by oxidation of the second electrode film 4 over time, and is used to immediately connect the lead wires after forming the second electrode film 4. In this case, the protective electrode film 5 does not necessarily need to be formed.

次に本実施例の作用効果について説明する。Next, the effects of this embodiment will be explained.

本実施例の正特性サーミスタ1は、所定の温度で抵抗値
が急増する抵抗温度特性を有しており、ヒータ素子又は
電流制御素子あるいは温度センサ等として利用されてい
る。
The positive temperature coefficient thermistor 1 of this embodiment has a resistance temperature characteristic in which the resistance value rapidly increases at a predetermined temperature, and is used as a heater element, a current control element, a temperature sensor, or the like.

そして、本実施例の正特性サーミスタ1によれば、セラ
ミックス素子2にCrからなる第1電極膜3を形成し、
該第1電極膜3の表面にNiからなる第2電極膜4を形
成して二重構造としたので、上記第1電極膜3によって
安定したオーム性接触及び高い密着強度が得られる。ま
た、上記第2電極膜4によって半田付は性を向上できる
とともに、上記第1電極膜3とリード線初半田との熱膨
張係数の差を吸収できるから、第1電極膜3と半田との
熱膨張係数の差によるストレスを防止でき、密着強度の
低下を防止できる。
According to the positive temperature coefficient thermistor 1 of this embodiment, the first electrode film 3 made of Cr is formed on the ceramic element 2,
Since the second electrode film 4 made of Ni is formed on the surface of the first electrode film 3 to form a double structure, stable ohmic contact and high adhesion strength can be obtained by the first electrode film 3. In addition, the second electrode film 4 can improve soldering properties and absorb the difference in thermal expansion coefficient between the first electrode film 3 and the lead wire initial solder, so that the first electrode film 3 and the solder can Stress due to differences in thermal expansion coefficients can be prevented, and a decrease in adhesion strength can be prevented.

なお、上記実施例では、各電極膜3〜5の形成をスパッ
タリングにより形成した場合を例にとって説明したが、
本発明では、上記第1を極11に3は乾式メツキによる
ものであれば、いずれの方法でもよく、例えば溶射、蒸
着でもよい。
In addition, in the above embodiment, the case where each electrode film 3 to 5 was formed by sputtering was explained as an example.
In the present invention, as long as the first electrode 11 and the third electrode 3 are dry plated, any method may be used, such as thermal spraying or vapor deposition.

また、上記第2電極膜4の形成方法は特に限定するもの
ではなく、湿式メツキ、蒸着、溶射でもよい、さらにこ
の第2tli膜としてCuを採用してもよく、要は半田
付は性が良好で、かつ熱膨張係数が第1電極膜3より大
きく半田より小さいもであればいずれの金属でも採用で
きる。
Further, the method for forming the second electrode film 4 is not particularly limited, and may be wet plating, vapor deposition, or thermal spraying. Furthermore, Cu may be used as the second tli film, in short, it has good soldering properties. Any metal can be used as long as the coefficient of thermal expansion is larger than that of the first electrode film 3 and smaller than that of the solder.

さらにまた、上記実施例ではリード線を半田付けした場
合を例にとって説明したが、本発明は、リード線を取付
けない、いわゆるチップ型にも採用できる。
Furthermore, although the above embodiments have been described with reference to the case where the lead wires are soldered, the present invention can also be applied to a so-called chip type device in which the lead wires are not attached.

第1表及び第2図は、本実施例による正特性サーミスタ
1の特性改善効果を説明するための実験結果を示すもの
である。第1表は正特性サーミスタの主要な特性を示し
、第2図は抵抗値と温度との関係を示す特性図である。
Table 1 and FIG. 2 show experimental results for explaining the effect of improving the characteristics of the positive temperature coefficient thermistor 1 according to this embodiment. Table 1 shows the main characteristics of the positive temperature coefficient thermistor, and FIG. 2 is a characteristic diagram showing the relationship between resistance value and temperature.

なお、Aは正特性サーミスタの理想特性値を示し、Bは
本実施例の電極膜による特性値を示す、また、C,、D
、Eはそれぞれ従来のAgペーストの焼き付け、電解N
iメツキ、Alの溶射により電極膜を形成した場合の特
性値を示す。
Note that A indicates the ideal characteristic value of the positive temperature coefficient thermistor, B indicates the characteristic value due to the electrode film of this example, and C, , D
, E are conventional Ag paste baking and electrolytic N, respectively.
Characteristic values are shown when an electrode film is formed by i-plating and thermal spraying of Al.

第1表及び第2図からも明らかなように、抵抗値、耐電
圧(第1表)、及び温度−抵抗値特性(第2図)のいず
れにおいても、従来の特性値C〜已に比べ本実施例の特
性値Bは向上しており、′理想の特性値Aに近い値が得
られていることがわかる。また、耐環境試験、加速通電
ライフ試験においても、本実施例の特性値Bは従来の特
性値C〜Eに比べ大幅に変化率を低減できており、さら
にリード線の引っ張り試験においても大幅に強度を向上
できている。
As is clear from Table 1 and Figure 2, the resistance, withstand voltage (Table 1), and temperature-resistance characteristics (Figure 2) are all lower than the conventional characteristic values C~ It can be seen that the characteristic value B of this example has been improved, and a value close to the ideal characteristic value A has been obtained. In addition, in the environmental resistance test and accelerated current life test, the rate of change of the characteristic value B of this example was significantly reduced compared to the conventional characteristic values C to E, and furthermore, in the lead wire tension test, the rate of change was significantly reduced. I have been able to improve my strength.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る正特性サーミスタによれば、
セラミックス素子にCrからなる第1電極膜を形成し、
該第11電極膜の表面に半田付は性が良く、かつCrと
半田との熱膨張係数の差を吸収できる第2電極膜を形成
するようにしたので、上記Crにより安定したオーム性
接触及び高い密着強度が得られ、上記第211極膜によ
って半田付けを向上できる効果がある。
As described above, according to the positive temperature coefficient thermistor according to the present invention,
forming a first electrode film made of Cr on the ceramic element;
Since a second electrode film is formed on the surface of the eleventh electrode film, which has good soldering properties and can absorb the difference in thermal expansion coefficient between Cr and solder, the Cr allows stable ohmic contact and High adhesion strength can be obtained, and the 211th electrode film has the effect of improving soldering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による正特性サーミスタを説
明するための断面図、第2図は本実施例による効果を説
明するための抵抗値と温度との関係を示す特性図である
。 図において、1は正特性サーミスタ、2は半導体セラミ
ックス素子、3は第1電極膜、4は第2電極膜である。 特許出願人  株式会社 村田製作所 代理人    弁理士 下 市  努 第1図 第2図 二4;ν1.   浅 (C″]→
FIG. 1 is a sectional view for explaining a positive temperature coefficient thermistor according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between resistance value and temperature for explaining the effects of this embodiment. In the figure, 1 is a positive temperature coefficient thermistor, 2 is a semiconductor ceramic element, 3 is a first electrode film, and 4 is a second electrode film. Patent applicant Murata Manufacturing Co., Ltd. Representative Patent attorney Tsutomu Shimoichi Figure 1 Figure 2 24; ν1. Shallow (C″)→

Claims (1)

【特許請求の範囲】[Claims] (1)所定の温度で抵抗値が急増する抵抗温度特性を有
する正特性サーミスタにおいて、半導体セラミックス素
子の表面に、オーミック性のCrからなる少なくとも一
対の第1電極膜を形成し、該第1電極膜の表面に、半田
付け性が良好で、かつ熱膨張係数が上記Crより大きく
半田より小さい金属からなる第2電極膜を形成したこと
を特徴とする正特性サーミスタ。
(1) In a positive temperature coefficient thermistor having a resistance temperature characteristic in which the resistance value rapidly increases at a predetermined temperature, at least a pair of first electrode films made of ohmic Cr are formed on the surface of a semiconductor ceramic element, and the first electrode 1. A positive temperature coefficient thermistor, characterized in that a second electrode film is formed on the surface of the film, and is made of a metal that has good solderability and has a coefficient of thermal expansion larger than that of Cr and smaller than that of solder.
JP11756588A 1988-05-13 1988-05-13 Positive coefficient thermistor Pending JPH01287902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11756588A JPH01287902A (en) 1988-05-13 1988-05-13 Positive coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11756588A JPH01287902A (en) 1988-05-13 1988-05-13 Positive coefficient thermistor

Publications (1)

Publication Number Publication Date
JPH01287902A true JPH01287902A (en) 1989-11-20

Family

ID=14714960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11756588A Pending JPH01287902A (en) 1988-05-13 1988-05-13 Positive coefficient thermistor

Country Status (1)

Country Link
JP (1) JPH01287902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239302A (en) * 1990-02-16 1991-10-24 Murata Mfg Co Ltd Porcelain semiconductor element and manufacture of porcelain semiconductor element
EP0500955A1 (en) * 1990-09-10 1992-09-02 Kabushiki Kaisha Komatsu Seisakusho Positive characteristic thermistor and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848402A (en) * 1981-09-17 1983-03-22 三菱マテリアル株式会社 Method of forming electrode for oxide semiconductor element
JPS60701A (en) * 1983-06-16 1985-01-05 ティーディーケイ株式会社 Ormic electrode
JPS6465825A (en) * 1987-07-31 1989-03-13 Siemens Ag Multilayer electric device with monolithic ceramic body and manufacture of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848402A (en) * 1981-09-17 1983-03-22 三菱マテリアル株式会社 Method of forming electrode for oxide semiconductor element
JPS60701A (en) * 1983-06-16 1985-01-05 ティーディーケイ株式会社 Ormic electrode
JPS6465825A (en) * 1987-07-31 1989-03-13 Siemens Ag Multilayer electric device with monolithic ceramic body and manufacture of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239302A (en) * 1990-02-16 1991-10-24 Murata Mfg Co Ltd Porcelain semiconductor element and manufacture of porcelain semiconductor element
EP0500955A1 (en) * 1990-09-10 1992-09-02 Kabushiki Kaisha Komatsu Seisakusho Positive characteristic thermistor and manufacturing method therefor
US5289155A (en) * 1990-09-10 1994-02-22 Kabushiki Kaisha Komatsu Seisakusho Positive temperature characteristic thermistor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR100258676B1 (en) Ceramic capacitor
JPH01287902A (en) Positive coefficient thermistor
JP2022078352A (en) Current detection resistor and manufacturing method thereof
JP4560874B2 (en) Ceramic electronic components
KR100358302B1 (en) Negative Temperature Coefficient Thermistor
JPH01295403A (en) Chip varister
JPH0316255Y2 (en)
JP3169181B2 (en) Chip type positive temperature coefficient thermistor
JP3785961B2 (en) Ceramic electronic components
JPS6322444B2 (en)
JPH06349316A (en) Conductive paste
JPH0316254Y2 (en)
JPH08111349A (en) Chip component
JPH0415563B2 (en)
JP2001291604A (en) Chip-type laminated thermistor and its manufacturing method
JPH0370361B2 (en)
JP2000138105A (en) Negative temperature coefficient thermistor device
JP2022137967A (en) Chip-type electronic component and manufacturing method thereof
JPS5854481B2 (en) Manufacturing method for electrodes for titanium-based oxides
JPH04211101A (en) Voltage nonlinear resistor element
JPH02265202A (en) Chip component
JP2003147573A (en) Method of manufacturing electronic parts and electronic parts
JPS602178Y2 (en) Positive characteristic thermistor
JPH06151105A (en) Manufacture of ptc resistor
JPH0770411B2 (en) Chip electronic component manufacturing method