JPH01319925A - Manufacture of electrolytic capacitor - Google Patents

Manufacture of electrolytic capacitor

Info

Publication number
JPH01319925A
JPH01319925A JP15265388A JP15265388A JPH01319925A JP H01319925 A JPH01319925 A JP H01319925A JP 15265388 A JP15265388 A JP 15265388A JP 15265388 A JP15265388 A JP 15265388A JP H01319925 A JPH01319925 A JP H01319925A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
film
atomic beam
irregularities
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15265388A
Other languages
Japanese (ja)
Inventor
Zenichi Yoshida
善一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15265388A priority Critical patent/JPH01319925A/en
Publication of JPH01319925A publication Critical patent/JPH01319925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain a very large capacitance by attaching a metal thin film on the surface of a resin film on which irregularities are formed with an atomic beam, and controlling the degree of the irregularities with the energy of the atomic beam. CONSTITUTION:An atomic beam is formed at energy of 100eV-10keV by using inactive gas from an atomic beam source 4. The atomic beam is projected on the surface of a fluororesin film 3. The energy of the beam and the amount of projection of the beam can be adjusted arbitrarily in correspondence with the degree of irregularities formed on the surface of the film 3. Then, the irregularities are formed on the surface of the film 3. A metal thin film 7 is formed on the surface of the film 3 by using an evaporating device. Thus a very large capacitance is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はとくに小型・大容量の電解コンデンサの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention particularly relates to a method of manufacturing a small-sized, large-capacity electrolytic capacitor.

〔従来の技術〕[Conventional technology]

近年、電子機器の小型化、高性能化に伴い、高品質電子
部品の小型化が要求されており、とくに電解コンデンサ
の小型化は必須である。
In recent years, with the miniaturization and higher performance of electronic devices, there has been a demand for miniaturization of high-quality electronic components, and in particular miniaturization of electrolytic capacitors is essential.

第4図は従来の電解コンデンサを示す断面図であり、互
いに対向した陰極箔30と陽極箔31との間にはセパレ
ータの役目をする電解液3゛2が配置さi、陽極箔31
の表面には誘電体33(酸化皮膜等)が形成されている
FIG. 4 is a cross-sectional view showing a conventional electrolytic capacitor, in which an electrolytic solution 32 serving as a separator is placed between a cathode foil 30 and an anode foil 31 that face each other, and an anode foil 31.
A dielectric material 33 (oxide film, etc.) is formed on the surface of the dielectric material 33 (oxide film, etc.).

かかる電解コンデンサを小型化するためには、同じ体積
で静電容量を大きくしなければならない。
In order to miniaturize such an electrolytic capacitor, it is necessary to increase the capacitance with the same volume.

そのためには、陰極箔30と陽極箔31のそれぞれの表
面積を大きくすればよい、このため、陰極箔30と陽極
箔31の表面を電気化学的エツチングすることにより、
凹凸を形成し表面積の拡大を行っていた。
To achieve this, it is sufficient to increase the surface area of each of the cathode foil 30 and anode foil 31. For this purpose, by electrochemically etching the surfaces of the cathode foil 30 and anode foil 31,
The surface area was expanded by forming irregularities.

〔発明が解決しようとする!1!題〕 しかしながら、電気化学的エツチングによる表面の凹凸
形成には限界があり、表面積をより太きくしたり、ある
いは凹凸の度合いを制御することが困難であワた。
[Invention tries to solve! 1! [Problem] However, there are limits to the formation of surface irregularities by electrochemical etching, and it is difficult to increase the surface area or control the degree of irregularities.

したがって、この発明の目的は、表面積の大きな電極が
得られ、小型で静電容量の大きい電解コンデンサの製造
方法を提供することである。
Accordingly, an object of the present invention is to provide a method for manufacturing an electrolytic capacitor that is small in size and has a large capacitance, by which electrodes with a large surface area can be obtained.

(Ll!!fiを解決するための手段〕この発明の電解
コンデンサの製造方法は、表面の樹脂フィルムに原子ビ
ームを照射して凹凸を形成したのち、金属薄膜を付着さ
せた陰極箔および/または陽極箔を用いるものである。
(Means for solving Ll!!fi) The method for manufacturing an electrolytic capacitor of the present invention involves forming unevenness by irradiating a resin film on the surface with an atomic beam, and then using a cathode foil and/or It uses anode foil.

前記原子ビームとは、電子を除(粒子ビームのことであ
って、イオンビーム、中性ビームなどがある。かかる原
子ビームは、不活性ガス(Xs等)から100 eV〜
10keVのエネルギで生成されるものである。
The atomic beam refers to a particle beam excluding electrons, and includes an ion beam, a neutral beam, etc. Such an atomic beam is a beam with a voltage of 100 eV or more from an inert gas (Xs, etc.).
It is generated with an energy of 10 keV.

また、前記樹脂フィルムとしては、たとえばフッ素権脂
フィルム(ポリテトラフルオルエチレンのフィルム等)
のほか、ポリスチレン、ポリアミド等の樹脂フィルムも
使用可能である。
Further, as the resin film, for example, a fluororesin film (polytetrafluoroethylene film, etc.)
In addition, resin films such as polystyrene and polyamide can also be used.

〔作用〕[Effect]

この発明によれば、原子ビームのエネルギを変えること
により、樹脂フィルムの表面の凹凸を変化させることが
できる。したがって、この凹凸表面に蒸着等により金W
r4薄膜を付着させることにより、表面積の大きい電極
が得られる。この電極を電解コンデンサの陰極および/
または陽極に使用することにより、小型で容量の大きい
電解コンデンサを得ることができる。
According to this invention, the unevenness of the surface of the resin film can be changed by changing the energy of the atomic beam. Therefore, gold W is deposited on this uneven surface by vapor deposition or the like.
By depositing the r4 thin film, an electrode with a large surface area is obtained. This electrode is used as the cathode of an electrolytic capacitor and/or
Alternatively, by using it as an anode, a small electrolytic capacitor with a large capacity can be obtained.

〔実施例〕〔Example〕

第1図〜第3図はこの発明の一実施例における陰pit
sの製造手順を示している。第1図に示すように、真空
槽1の内部に設けたホルダ2には樹脂フィルム3(厚さ
100μmのポリテトラフルオルエチレン・フィ°ルム
)が装着され、この樹脂フィルム3の表面に原子ビーム
源4から原子ビームが照射される(原子ビームを矢印5
で示す)、この原子ビームは、たとえばXsを6 ke
Vのエネルギでかつ10 ”atoms/cd以上の照
射量で照射される。
FIGS. 1 to 3 show the shade pit in one embodiment of this invention.
s manufacturing procedure is shown. As shown in FIG. 1, a resin film 3 (polytetrafluoroethylene film with a thickness of 100 μm) is attached to a holder 2 provided inside a vacuum chamber 1, and atoms are attached to the surface of this resin film 3. An atomic beam is irradiated from the beam source 4 (the atomic beam is directed by the arrow 5).
), this atomic beam is, for example, Xs 6 ke
It is irradiated with an energy of V and a dose of 10'' atoms/cd or more.

ビームエネルギおよび照射量は樹脂フィルム3の表面に
作成する凹凸(粗面)の程度に応じて上記範囲で任意に
調整可能である。
The beam energy and irradiation amount can be arbitrarily adjusted within the above range depending on the degree of unevenness (rough surface) to be created on the surface of the resin film 3.

なお、前記真空槽l内は真空ポンプ6にて真空度が10
−’Torr以下に保たれ、温度は室温〜−10℃であ
るのが適当である。
Note that the inside of the vacuum chamber 1 is heated to a degree of vacuum of 10 by using the vacuum pump 6.
-'Torr or less, and the temperature is suitably between room temperature and -10°C.

このようにして、第2図に示すように、樹脂フィルム3
の表面に凹凸が形成される。
In this way, as shown in FIG.
Irregularities are formed on the surface.

ついで、この樹脂フィルム3の表面に第3図に示す蒸着
装置を用いて金N薄膜7が形成される。
Next, a gold-N thin film 7 is formed on the surface of this resin film 3 using a vapor deposition apparatus shown in FIG.

すなわち、真空槽1.1′内に設置したるつぼ8から薄
着材料9を真空蒸着にて蒸発させ、樹脂フィルム3の表
面に蒸着させる。
That is, the thin material 9 is evaporated by vacuum evaporation from the crucible 8 placed in the vacuum chamber 1.1', and is deposited on the surface of the resin film 3.

このようにして得られた陰極箔を用いて電解コンデンサ
を製作し、これを従来の電気化学的エツチング法にて凹
凸形成したものと比較したところ、同形状で静電容量が
約10倍も大きくなっていた。
An electrolytic capacitor was manufactured using the cathode foil obtained in this way, and when compared with a capacitor that had been etched using a conventional electrochemical etching method, the capacitance was approximately 10 times larger with the same shape. It had become.

なお、以上の1作を樹脂フィルムの両面について行うと
、容量をより増加させることができる。
Note that if the above process is performed on both sides of the resin film, the capacity can be further increased.

また、陽極箔についても、同様にして凹凸加工、金属蒸
着を行うことができる。
Furthermore, the anode foil can also be subjected to uneven processing and metal vapor deposition in the same manner.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、原子ビームで凹凸を形成した樹脂フ
ィルムの表面に金属薄膜を付着させるため、凹凸の度合
いを原子ビームのエネルギで制御することにより、従来
の電解コンデンサと同形状であっても、非常に大きな容
量が得られるという効果がある。
According to this invention, in order to attach a metal thin film to the surface of a resin film on which unevenness has been formed using an atomic beam, the degree of unevenness is controlled by the energy of the atomic beam, even if the shape is the same as that of a conventional electrolytic capacitor. , which has the effect of providing a very large capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における凹凸形成工程を示
す説明図、第2図は凹凸化した樹脂フィルムの断面図、
第3図は金属蒸着工程を示す説明図、第4図は通常の電
解コンデンサの断面図である。
FIG. 1 is an explanatory diagram showing the unevenness forming process in one embodiment of the present invention, FIG. 2 is a cross-sectional view of the uneven resin film,
FIG. 3 is an explanatory diagram showing a metal vapor deposition process, and FIG. 4 is a sectional view of an ordinary electrolytic capacitor.

Claims (3)

【特許請求の範囲】[Claims] (1)陰極箔と、この陰極箔と離隔対向し表面に誘電体
が形成された陽極箔との間に電解液を配置した電解コン
デンサの製造方法において、 前記陰極箔および/または陽極箔が、表面の樹脂フィル
ムに原子ビームを照射して凹凸を形成したのち、金属薄
膜を付着させて作成されることを特徴とする電解コンデ
ンサの製造方法。
(1) A method for manufacturing an electrolytic capacitor in which an electrolytic solution is disposed between a cathode foil and an anode foil that faces the cathode foil at a distance and has a dielectric formed on its surface, wherein the cathode foil and/or the anode foil include: A method of manufacturing an electrolytic capacitor, characterized in that the resin film on the surface is irradiated with an atomic beam to form irregularities, and then a thin metal film is attached.
(2)前記原子ビームは不活性ガスを用いて100eV
〜10keVのエネルギで生成される特許請求の範囲第
(1)項記載の電解コンデンサの製造方法。
(2) The atomic beam is 100 eV using an inert gas.
The method for manufacturing an electrolytic capacitor according to claim 1, wherein the electrolytic capacitor is generated with energy of ~10 keV.
(3)前記樹脂フィルムがフッ素樹脂フィルムである特
許請求の範囲第(1)項記載の電解コンデンサの製造方
法。
(3) The method for manufacturing an electrolytic capacitor according to claim (1), wherein the resin film is a fluororesin film.
JP15265388A 1988-06-21 1988-06-21 Manufacture of electrolytic capacitor Pending JPH01319925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15265388A JPH01319925A (en) 1988-06-21 1988-06-21 Manufacture of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15265388A JPH01319925A (en) 1988-06-21 1988-06-21 Manufacture of electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH01319925A true JPH01319925A (en) 1989-12-26

Family

ID=15545131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15265388A Pending JPH01319925A (en) 1988-06-21 1988-06-21 Manufacture of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH01319925A (en)

Similar Documents

Publication Publication Date Title
US4038167A (en) Method of forming a thin film capacitor
US4659449A (en) Apparatus for carrying out dry etching
JPH01319925A (en) Manufacture of electrolytic capacitor
JP3002605B2 (en) Method for manufacturing solid electrolytic capacitor
US4062749A (en) Method of forming a thin film capacitor with a manganese dioxide layer
Kyokane et al. Organic solid capacitor with conducting thin films as electrolyte by ion-beam-assisted deposition
JPH0750229A (en) Solid electrolytic capacitor and manufacture thereof
JPS5850419B2 (en) Method for manufacturing piezoelectric thin film
JPH03122266A (en) Production of thin nitride film
JPH0444204A (en) Aluminum electrode for electrolytic capacitor
JP3155750B2 (en) Method for producing aluminum electrode for electrolytic capacitor
JPH0332012A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPS6144705A (en) Method for forming electrically conductive carbon film
JPH03131013A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH03147312A (en) Manufacture of aluminum electrode for electrolytic capacitor use
JPH0332013A (en) Manufacture of aluminum electrode foil for electrolytic capacitor
JPH048506B2 (en)
Johnson The Plasma Oxidation of Metals in Forming Electronic Circuit Components
JPH0414809A (en) Manufacture of aluminum electrode for electrolytic capacitor use
JPH0330409A (en) Manufacture of aluminum electrode for electrolytic capacitor
RU2074451C1 (en) Method for generation of beam of negative ions of fullers and/or their compounds
US20020106904A1 (en) Etching method
JPH036010A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPS63205033A (en) Manufacture of liquid metal ion source
JPH03147310A (en) Manufacture of aluminum electrode for electrolytic capacitor use