JPS6144705A - Method for forming electrically conductive carbon film - Google Patents

Method for forming electrically conductive carbon film

Info

Publication number
JPS6144705A
JPS6144705A JP59165659A JP16565984A JPS6144705A JP S6144705 A JPS6144705 A JP S6144705A JP 59165659 A JP59165659 A JP 59165659A JP 16565984 A JP16565984 A JP 16565984A JP S6144705 A JPS6144705 A JP S6144705A
Authority
JP
Japan
Prior art keywords
carbon film
film
ions
conductive carbon
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59165659A
Other languages
Japanese (ja)
Inventor
Masanori Sakamoto
正典 坂本
Koichi Mizushima
公一 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59165659A priority Critical patent/JPS6144705A/en
Publication of JPS6144705A publication Critical patent/JPS6144705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain easily an electrically conductive carbon film having improved stability, etc. and high electric conductivity, by irradiating the carbon film with ions. CONSTITUTION:A carbon film having 1nm-100mum film thickness is formed from amorphous carbon, graphite, etc. as a raw material by the sputtering, vacuum deposition, chemical vapor deposition (CVD) or physical vapor deposition (PVD) method, etc. The resultant carbon film is then placed in an ion irradiation device, and the vacuum degree is set within about 10<-4>-10<-8>Torr range to irradiate the film with ions selected from He, Ar, Ne, Kr, Xe, etc. to give the aimed electrically conductive carbon film. Ions are preferably accelerated in the ion irradiation device to give 100eV-100keV range kinetic energy of the ions to be irradiated.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、導電性炭素被膜の形成方法に関し、更に詳し
くは、高い導電性を有する炭素被膜を容易に形成できる
導電性炭素被膜の形成方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for forming a conductive carbon film, and more particularly, to a method for forming a conductive carbon film that can easily form a carbon film having high conductivity. .

[発明の技術的背景とその問題点] 近年、有機物質よりなる導電性薄膜は、分解温度が低い
こと、高温に熱して酸化させると気化し灰分を残さない
こと、熱容量が小さいことなどの点から、ヒートモード
(光、赤外線、電子線などの照射による局所加熱方式)
によるノくターン形成や導電率の変調などを達成可能な
材料として期待されている。
[Technical background of the invention and its problems] In recent years, conductive thin films made of organic substances have been found to have low decomposition temperatures, do not vaporize when oxidized by heating to high temperatures and leave no ash, and have low heat capacity. , heat mode (local heating method using irradiation with light, infrared rays, electron beams, etc.)
It is expected that this material will be able to achieve the formation of no-turns and the modulation of conductivity.

従来、このような有機導電性薄膜としてt±、TTF 
(テトラチオフルバレン)−TCNQ(テトラシアノキ
ノジメタン)電荷移動錯体に代表される電荷移動錯体の
蒸着膜、あるいは、ポリアセチレン((−(H)りやポ
リフェニレンなどの共役系高分子に、ハロゲンやAsF
5 、PF6などの強い酸化剤を添加して反応させた系
からなる高分子薄膜及びアルカリ金属などの強い還元剤
を添加しそ反応させた系からなる高分子薄膜が知られて
I、)る。
Conventionally, as such an organic conductive thin film, t±, TTF
(tetrathiofulvalene)-TCNQ (tetracyanoquinodimethane) charge transfer complex, or a conjugated polymer such as polyacetylene ((-(H)) or polyphenylene, with halogen or AsF
5, a polymer thin film made of a system in which a strong oxidizing agent such as PF6 is added and reacted, and a polymer thin film made of a system in which a strong reducing agent such as an alkali metal is added and reacted are known.

しかしながら、これらの有機導電性薄膜にti次のよう
な問題点が存在している。
However, these organic conductive thin films have the following problems.

すなわち、電荷移動錯体の場合はイオン化ポテンシャル
の小さな分子(ドナー)と電子親和力の大きな分子(ア
クセプター)が空間的に近接したとき電子の供与−受容
が行なわれることにより安定化して錯体を形成するもの
である。このドナーやアクセプター自身はあまり安定的
ではなく光や熱により分解しやすい分子である。さらに
、電荷移動錯体自身も、錯体形成に要する安定化エネル
ギーは化学結合の場合と比べて小さいため、光や熱によ
り分解しやすく不安定である。
In other words, in the case of a charge transfer complex, when a molecule with a small ionization potential (donor) and a molecule with a large electron affinity (acceptor) are spatially close to each other, electrons are donated and accepted to form a stable complex. It is. These donors and acceptors themselves are molecules that are not very stable and are easily decomposed by light or heat. Furthermore, the charge transfer complex itself is unstable and easily decomposed by light or heat, since the stabilization energy required for complex formation is smaller than that of a chemical bond.

このように、ドナー、アクセプター、電荷移動錯体が光
や熱により分解しやすいという欠点を孕んでいるため、
蒸着法等により導電性薄膜を形成する際、熱の影響を受
けないようにするには蒸発源温度、基板温度等の蒸着条
件を厳しく管理しなければならないので、熱分解を起こ
させず安定な導電性薄膜を形成することは安易そない。
In this way, the donor, acceptor, and charge transfer complex have the disadvantage that they are easily decomposed by light and heat.
When forming conductive thin films using vapor deposition methods, it is necessary to strictly control the vapor deposition conditions such as the evaporation source temperature and substrate temperature in order to avoid the effects of heat. Forming a conductive thin film is not easy.

一方、導電性を示す共役系高分子薄膜については、次の
ような欠点が存在する。すなわち、現在この系で最も高
い導電率を示しているポリアセチレン((C1,)・A
sF5系は湿式のプロセスで形成されるが、その構造は
かなり不均一でありそのため、その薄膜に極めて多くの
ピンホール等が発生する。そして、このような薄膜は酸
化されやすく大気にさらすと変質してしまうのでこの薄
膜を他の耐酸化性保護膜で密封して使用しなければなら
ないという問題がある。また、その他の共役系高分子/
酸化、還元剤の系には大気にさらしても安定に存在する
ものもあるが、このようなものの中には高い導電性を示
すものは少ない。
On the other hand, conjugated polymer thin films exhibiting conductivity have the following drawbacks. In other words, polyacetylene ((C1,)・A
Although the sF5 system is formed by a wet process, its structure is quite non-uniform, and as a result, an extremely large number of pinholes and the like occur in the thin film. Since such a thin film is easily oxidized and deteriorates when exposed to the atmosphere, there is a problem in that the thin film must be sealed with another oxidation-resistant protective film before use. In addition, other conjugated polymers/
Some oxidizing and reducing agent systems exist stably even when exposed to the atmosphere, but few of these exhibit high electrical conductivity.

また、最近、フタロシアニンやペリレン等の多環縮合系
芳香族化合物からなる有機物薄膜にイオンビームを照射
して薄膜の導電性を向上させる方法が報告されている(
J、 Appl、 Phys、 55 (3)’、73
21984)。この導電性向上の現象は、多環縮合系芳
香族化合物がイオン照射により高導電性を有するグラフ
ァイト構造に近づくためではないかと予測されるが、そ
の機構は解明されていない、このイオン照射の方法にお
いては、導電性向上の機構が不明であるため、多環縮合
系芳香族化合物以外に、どのような物質がインビーム照
射により導電性が向上するのかという問題が解明されて
いない。また、このイオン照射によって薄膜物質の分子
分解が発生することが予測されるが、分子の分解は導電
性の向上に必ずしも有効に作用するとは限らず、照射エ
ネルギー、照射量などのイオン照射条件の設定が複雑に
なりがちであった。
Recently, a method has been reported to improve the conductivity of organic thin films made of polycyclic condensed aromatic compounds such as phthalocyanine and perylene by irradiating them with ion beams (
J, Appl, Phys, 55 (3)', 73
21984). It is predicted that this phenomenon of improved conductivity is due to the polycyclic condensed aromatic compound approaching a highly conductive graphite structure by ion irradiation, but the mechanism is not clear. Since the mechanism of conductivity improvement is unknown, the question of what kind of substances other than polycyclic condensed aromatic compounds improve conductivity by in-beam irradiation has not been clarified. In addition, it is predicted that this ion irradiation will cause molecular decomposition of the thin film material, but molecular decomposition does not necessarily have an effective effect on improving conductivity, and the ion irradiation conditions such as irradiation energy and dose Settings tended to be complicated.

[発明の目的1 本発明は、上記した問題点を解消し、グラファイトのも
つ安定性、高い導電性を有する炭素被膜を容易に形成で
きる導電性炭素波□膜の形成方法を提供することを目的
とする。
[Objective of the Invention 1] The purpose of the present invention is to provide a method for forming a conductive carbon wave film that solves the above-mentioned problems and can easily form a carbon film that has the stability and high conductivity of graphite. shall be.

[発明の概要] 本発明者らは、上記した問題点を解消すべく鋭意研究を
重ねた結果、はとんどグラファイト構造を有しない略無
定形炭素被膜にイオンビームを照射することにより、高
い導電性が得られることを見出し本発明を完成するに到
った。
[Summary of the Invention] As a result of extensive research in order to solve the above-mentioned problems, the present inventors have found that by irradiating a substantially amorphous carbon film, which does not have a graphite structure, with an ion beam, a high They discovered that conductivity could be obtained and completed the present invention.

すなわち、本発明の導電性炭素被膜の形成方法は、真空
中において、炭素被膜にイオンを照射することを特徴と
する。
That is, the method for forming a conductive carbon film of the present invention is characterized by irradiating the carbon film with ions in a vacuum.

まず、本発明において、導電性炭素被膜に転換すべき炭
素被膜を形成すべき方法としては1通常の薄膜形成方法
、例えば、真空蒸着法、スパッタ!、l ング法、CV
D法、PCVD法、クラスタイオンビーム法などのイオ
ンブレーティング法などが適用可能である。
First, in the present invention, as a method for forming a carbon film to be converted into a conductive carbon film, there are 1 conventional thin film forming methods, such as vacuum evaporation, sputtering! , lng method, CV
Ion brating methods such as the D method, PCVD method, and cluster ion beam method are applicable.

上記した各種の薄膜形成法を適用するのにあたって、炭
素被膜の原料としては、真空蒸着法。
When applying the various thin film forming methods described above, the vacuum evaporation method is used as the raw material for the carbon film.

スパッタリング法の場合、蒸発源、スパッタターゲット
として無定形炭素、グラファイトのいずれでもよい。無
定形炭素、グラファイトは単体で耐熱性が優れているた
め電荷移動錯体や化合物の蒸着と異なり熱分解の心配が
なく微妙な加熱管理等を要せず被膜形成の条件に厳格さ
を必要としない。
In the case of the sputtering method, either amorphous carbon or graphite may be used as the evaporation source and sputtering target. Amorphous carbon and graphite have excellent heat resistance on their own, so unlike the vapor deposition of charge transfer complexes and compounds, there is no need to worry about thermal decomposition, and there is no need for delicate heating control, etc., and there is no need for strict conditions for film formation. .

一方、CVD法、PCVD法の場合、熱分解源ガスとし
ては、アセチレン、アセトン、アルコール類などでよく
特に窒素、硫黄、金属を含まなければ炭素原子を含む殆
どのガスが使用可能である。
On the other hand, in the case of the CVD method and the PCVD method, the thermal decomposition source gas may be acetylene, acetone, alcohols, etc., and in particular, most gases containing carbon atoms can be used as long as they do not contain nitrogen, sulfur, or metals.

上記のような原料を使用して、上記した各種の薄膜形成
方法により基板上に炭素被膜を形成する。
Using the above raw materials, a carbon film is formed on a substrate by the various thin film forming methods described above.

炭素被膜形成の際、炭素被膜の厚さが1n+s〜+00
1Lmの範囲になるように原料の量、加熱温度等を調節
するとよい。この範囲を外れて膜厚が1nm未満の場合
は、膜が島状になりピンホールが多く、 1100IL
を超えるとひびや突起が増えて膜面が荒れて共に不都合
な興となる。
When forming a carbon film, the thickness of the carbon film is 1n+s~+00
It is preferable to adjust the amount of raw materials, heating temperature, etc. so that the amount is within the range of 1 Lm. If the film is outside this range and the film thickness is less than 1 nm, the film becomes island-like and has many pinholes.
If this is exceeded, cracks and protrusions will increase and the membrane surface will become rough, both of which will cause inconvenience.

形成された炭素被膜の組織構造は略無定形となっており
、従って、この略無定形の炭素被膜の導電率も低く、1
0″4〜10−1Ω−1・c「1程度である。
The structure of the formed carbon film is approximately amorphous, and therefore the electrical conductivity of this approximately amorphous carbon film is low.
0"4 to 10-1 Ω-1・c" is about 1.

このように、本発明においては、炭素被膜を形成するに
あたり、炭素被膜は非晶質(無定形)でもよく、従来物
質の如く被膜を形成させると同時に結晶化を行なう必要
もなく、それゆえ、結晶化の為の特別の配慮を払うこと
も必要なく、炭素被膜を容易にかつ安定的に形成するこ
とができる。
Thus, in the present invention, when forming a carbon film, the carbon film may be amorphous (amorphous), and unlike conventional materials, there is no need to perform crystallization at the same time as forming the film, and therefore, There is no need to pay special attention to crystallization, and a carbon film can be easily and stably formed.

次に、このようにして形成された素足形の炭素被膜に同
じく真空中で各種のイオン照射装置により炭素被膜にイ
オンビームを照射する。
Next, the bare foot-shaped carbon film thus formed is irradiated with an ion beam using various ion irradiation devices in a vacuum.

このときの真空度はlO″4〜10″’ Torrの範
囲に設定するとよい。
The degree of vacuum at this time is preferably set in the range of lO''4 to 10'' Torr.

イオンビームのイオンとしては希ガスイオンが使用され
るが、このようなイオンの照射装置としては、市販のイ
オン注入装置、各種のイオンガンなどが適用でき、簡便
には被膜形成装置でもあるスパッタリング装置を使用す
ればよい。
Rare gas ions are used as ions in the ion beam, and commercially available ion implanters, various ion guns, etc. can be used as ion irradiation equipment, and sputtering equipment, which is also a film forming equipment, can be used for convenience. Just use it.

このイオンビームのイオン種としては希ガスイオンすな
わちHe、 Ne、 Kr、 Xeが適用でき、好まし
くはArがよい。また、原子番号の大きな希ガスイオン
は、イオンの運動エネルギーが原子番号の小さなイオン
の場合と同一のとき、小さなイオンに比べて運動量が大
きくなるため、イオン照射の結果得られた導電性炭素被
膜の導電率が高くなる。
As the ion species for this ion beam, rare gas ions, ie, He, Ne, Kr, and Xe can be used, and Ar is preferable. In addition, when the kinetic energy of a noble gas ion with a large atomic number is the same as that of an ion with a small atomic number, the momentum is greater than that of a small ion, so the conductive carbon film obtained as a result of ion irradiation conductivity increases.

しかし、反面、得られた導電性炭素被膜がスパッタ現象
により膜上の炭素が飛散するので全体の膜厚がより薄く
なってしまう。従って、目的とする導電率、膜厚との関
係からイオン種、それらの運動エネルギー、照射量を適
宜選択すればよい。
However, on the other hand, the carbon on the resulting conductive carbon film is scattered due to sputtering, resulting in a thinner overall film thickness. Therefore, the ion species, their kinetic energy, and irradiation amount may be appropriately selected in consideration of the desired conductivity and film thickness.

また、本発明方法にあっては照射するイオン種を選択し
て導電性を付与する深さを制御することが可能である。
Furthermore, in the method of the present invention, it is possible to control the depth at which conductivity is imparted by selecting the ion species to be irradiated.

例えば、イオン種として、Kr、 Xeを選択した場合
には、He、 Ne、 Arを選択した場合よりも導電
性層の深さをより深くすることができる。
For example, when Kr or Xe is selected as the ion species, the depth of the conductive layer can be made deeper than when He, Ne, or Ar is selected.

イオンの運動エネルギーは100eV〜100keVの
範囲になるようにイオン照射装置で加速させるとよい。
It is preferable to accelerate the ions using an ion irradiation device so that the kinetic energy of the ions is in the range of 100 eV to 100 keV.

イオンの運動エネルギーがこの範囲を外れて、 100
eV未渦の場合には、導電性炭素被膜の導電性がイオン
未照射のときと比べて格別上昇せず、100keVを超
えるとスパッタ現象が支配的となり膜厚が薄くなり好ま
しくない。また、イオンの運動エネルギーの値を変化さ
せることにより、導電性炭素被膜の導電率を変化させる
こともできる。
When the kinetic energy of the ion falls outside this range, it becomes 100
In the case of eV non-vortex, the conductivity of the conductive carbon film does not increase significantly compared to when ions are not irradiated, and when it exceeds 100 keV, sputtering phenomenon becomes dominant and the film thickness becomes thin, which is not preferable. Furthermore, the conductivity of the conductive carbon film can also be changed by changing the value of the kinetic energy of the ions.

また、イオンの照射量は10〜10” / cm2の面
密度に設定するとよい。この範囲を外れて、10/c+
a2未満の場合は導電性炭素被膜の導電率が格別向上せ
ず、!023/cI12を超えるとスパッタリング現象
が支配的になり膜上の炭素が飛散するので好ましくない
In addition, it is recommended that the ion irradiation amount be set to an areal density of 10 to 10"/cm2. Outside this range, 10/c+
If it is less than a2, the conductivity of the conductive carbon film will not improve significantly! If it exceeds 023/cI12, sputtering phenomenon becomes dominant and carbon on the film scatters, which is not preferable.

以上の様な照射条件で、略無定形の炭素被膜にイオンを
照射した箇所はイオン未照射箇所と比較して導電率が大
きくなる。すなわち、その導電率は103〜lΩ−10
cm’で、イオン未照射箇所より3桁程度大きくなる。
Under the above irradiation conditions, the portions of the substantially amorphous carbon film irradiated with ions have higher conductivity than the portions that are not irradiated with ions. That is, its conductivity is 103~lΩ-10
cm', which is about 3 orders of magnitude larger than the non-ion irradiated area.

このようにイオン照射箇所のみが導電率が大きくなるの
で、集束・偏向機能を有する照射装置を使用して、炭素
被膜の表面の特定箇所にイオンを照射すれば、炭素被膜
上に点状や線状に導電率の大きな所望のパターン例えば
回路を形成することができる。
In this way, the conductivity increases only in the ion irradiated area, so if you use an irradiation device with focusing and deflection functions to irradiate specific areas on the surface of the carbon film, you can see dots or lines on the carbon film. A desired pattern, such as a circuit, with high conductivity can be formed in a shape.

以上のようにして形成される本発明の導電性炭素被膜の
形成方法は炭素と希ガスのみを用いるため、炭素被膜で
分子の分解等の問題がなく、導電性炭素被膜の形成条件
が安定しておりその製造も容易である。
Since the method for forming the conductive carbon film of the present invention, which is formed as described above, uses only carbon and rare gas, there are no problems such as decomposition of molecules in the carbon film, and the conditions for forming the conductive carbon film are stable. It is easy to manufacture.

また、本発明の導電性炭素被膜の形成方法では、ポリア
セチレン(01:l、)膜の導電率を向上させる場合に
用いられる低分子(例えばAsF5)の拡散添加法のよ
うに真空中で添加物が蒸発して失われるということもな
く、耐環境性にも優れている。
In addition, in the method for forming a conductive carbon film of the present invention, additives are added in a vacuum, such as the diffusion addition method of low molecules (for example, AsF5), which is used to improve the conductivity of polyacetylene (01:l) films. There is no risk of evaporation and loss, and it has excellent environmental resistance.

また、導電率が向上した炭素被膜は、耐熱性。In addition, the carbon coating with improved conductivity is heat resistant.

耐食性も向上しており、グラファイトのもつ安定性も示
す。
It also has improved corrosion resistance and exhibits the stability of graphite.

[発明の実施例] 実施例1 炭素被膜は真空蒸着法により形成した。まず、無定形炭
素を加圧成形したペレットをポートに入れ、真空度を1
0” Torrに設定して、ポートを抵抗加熱方式によ
り加熱して無定形炭素を蒸発させ、石英ガラス基板上に
炭素被膜を形成した。得られた炭素被膜の膜厚は300
0人であり、炭素被膜をX線により構造解析した結果無
定形であることが確認された。この炭素被膜の導電率を
4端子法により測定した結果10Ω−1・c m ’で
あった。
[Examples of the Invention] Example 1 A carbon film was formed by a vacuum evaporation method. First, a pressure-molded pellet of amorphous carbon is put into the port, and the degree of vacuum is set to 1.
The amorphous carbon was vaporized by heating the port using a resistance heating method, and a carbon film was formed on the quartz glass substrate.The thickness of the obtained carbon film was 300 mm.
As a result of structural analysis of the carbon film using X-rays, it was confirmed that it was amorphous. The electrical conductivity of this carbon film was measured by a four-terminal method and was found to be 10Ω-1·cm′.

次に、この無定形の炭素被膜を真空槽に収納し、10=
Torrの真空度で、イオンガンにより運動エネルギー
が10keVのArイオンをlθ〜10237C112
の面密度で炭素被膜に照射した。イオンを照射した箇所
の導電率は102Ω4・Cm’と大きくなっていた。
Next, this amorphous carbon film is stored in a vacuum chamber, and 10=
At a vacuum level of Torr, Ar ions with a kinetic energy of 10 keV were irradiated with lθ~10237C112 using an ion gun.
The carbon film was irradiated with an areal density of . The conductivity of the area irradiated with ions was as high as 102Ω4·Cm'.

実施例2 炭素被膜はスパッタリング法により形成した。Example 2 The carbon film was formed by sputtering.

基板として石英ガラス基板を使用し、スパッタターゲッ
トとしてゲラフィト粉を加圧成形したものを使用した。
A quartz glass substrate was used as the substrate, and a pressure-molded gelafite powder was used as the sputtering target.

真空度10’ TorrのAr雰囲気中で周波数13.
58MHzの高周波放電(RF放電)を行ないスパッタ
リングを行なった。基板上に得られた炭素被膜をX線に
より構造解析した結果無定形であることが確認された。
Frequency 13.0 in an Ar atmosphere with a vacuum degree of 10' Torr.
Sputtering was performed using a high frequency discharge (RF discharge) of 58 MHz. As a result of structural analysis of the carbon film obtained on the substrate using X-rays, it was confirmed that it was amorphous.

被膜の導電率を4端子法により測定した結果1O−2Ω
4・cs’であった。ま・た膜厚は1000人であった
The conductivity of the film was measured using the 4-terminal method and was 1O-2Ω.
It was 4.cs'. The film thickness was 1000 people.

次に、炭素被膜が形成された基板をスパッタ装置に戻し
、基板とスパッタターゲットの電気的関係(正極と負極
の関係)を反転させて所謂逆スパツタリングを行ない、
A「イオンが基板上の炭素被膜を衝撃するようにした。
Next, the substrate on which the carbon film has been formed is returned to the sputtering apparatus, and the electrical relationship between the substrate and the sputter target (the relationship between the positive electrode and the negative electrode) is reversed to perform so-called reverse sputtering.
A: “The ions bombarded the carbon film on the substrate.

このときのArイオンの運動エネルギーは3keVであ
った。
The kinetic energy of Ar ions at this time was 3 keV.

炭素被膜はArイオンのスパッタリングにより削り取ら
れその膜厚は薄くなっていくが、初期の膜厚の80%に
なった時点でArスパッタを停止した。導電性炭素被膜
の導電率は102Ω−1・C11−1であった。
The carbon film was scraped away by Ar ion sputtering and its film thickness became thinner, but when the film thickness reached 80% of the initial thickness, Ar sputtering was stopped. The conductivity of the conductive carbon film was 102Ω-1·C11-1.

実施例3 炭素被膜はCVD法により形成した。基板として石英板
を使用し、熱分解源ガスとしてブタジェンを使用し、キ
ャリアガスとしてアルゴンを使用して、反応室内の真空
度をl w 10−” Torrに設定して、反応温度
が500〜1500℃になるように加熱を行なった。基
板上に得られた炭素被膜の膜厚は1000Aであり、炭
素被膜をX線により構造解析した結果無定形であること
が確認された。炭素被膜の導電率は1O−2Ω−1・c
m’であった。
Example 3 A carbon film was formed by a CVD method. A quartz plate was used as the substrate, butadiene was used as the pyrolysis source gas, argon was used as the carrier gas, the degree of vacuum in the reaction chamber was set to lw 10-'' Torr, and the reaction temperature was 500 to 1500. ℃.The thickness of the carbon film obtained on the substrate was 1000A, and as a result of structural analysis of the carbon film using X-rays, it was confirmed that it was amorphous.The conductivity of the carbon film The rate is 1O-2Ω-1・c
It was m'.

次に、この無定形の炭素被膜に実施例1と同様にイオン
照射した。このときのイオン種はアルゴンであり、イオ
ンの運動エネルギーは100keVであり、イオン照射
量は10’ −1020/ cts2であった。
Next, this amorphous carbon film was irradiated with ions in the same manner as in Example 1. The ion species at this time was argon, the kinetic energy of the ions was 100 keV, and the ion irradiation amount was 10'-1020/cts2.

イオン照射した導電性炭素被膜の導電率を測定した結果
102Ω−’ e cr’ テあった。
The conductivity of the conductive carbon film irradiated with ions was measured and found to be 102Ω-'e cr'te.

[発明の効果] 以上、詳述した如く、本発明によれば、低導電性の炭素
被膜にイオンを照射するだけで、導電率の大きく安定的
である導電性炭素被膜を容易に得ることができる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to easily obtain a highly conductive and stable conductive carbon film by simply irradiating a low conductivity carbon film with ions. can.

また、イオンの照射条件を特定することにより、所望の
導電率を得ることができ、更には照射するイオンビーム
を集束・偏向させることにより所望の高導電率のパター
ンを形成することができるため導電性炭素被膜からなる
例えば電気回路を形成できる。しかも、その製造方法は
容易であり、その安定性からしても工業的価値は大であ
る。
In addition, by specifying the ion irradiation conditions, it is possible to obtain the desired conductivity, and furthermore, by focusing and deflecting the ion beam to be irradiated, it is possible to form a pattern with the desired high conductivity. For example, an electric circuit can be formed from the carbon film. Furthermore, the method for producing it is easy, and its stability is of great industrial value.

Claims (1)

【特許請求の範囲】 1、真空中において、炭素被膜にイオンを照射すること
を特徴とする導電性炭素被膜の形成方法。 2、該イオンの運動エネルギーが100eV以上100
keV以下である特許請求の範囲第1項記載の導電性炭
素被膜の形成方法。 3、該イオンがHe、Ar、Ne、Kr、Xeの群から
選ばれる1種である特許請求の範囲第1項記載の導電性
炭素被膜の形成方法。 4、該導電性炭素被膜の膜厚が1nmから100μmの
範囲にある特許請求の範囲第1項記載の導電性炭素被膜
の形成方法。
[Claims] 1. A method for forming a conductive carbon film, which comprises irradiating the carbon film with ions in a vacuum. 2. The kinetic energy of the ion is 100 eV or more
2. The method for forming a conductive carbon film according to claim 1, wherein the conductive carbon film has a voltage of keV or less. 3. The method for forming a conductive carbon film according to claim 1, wherein the ion is one selected from the group of He, Ar, Ne, Kr, and Xe. 4. The method for forming a conductive carbon film according to claim 1, wherein the conductive carbon film has a thickness in the range of 1 nm to 100 μm.
JP59165659A 1984-08-09 1984-08-09 Method for forming electrically conductive carbon film Pending JPS6144705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59165659A JPS6144705A (en) 1984-08-09 1984-08-09 Method for forming electrically conductive carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165659A JPS6144705A (en) 1984-08-09 1984-08-09 Method for forming electrically conductive carbon film

Publications (1)

Publication Number Publication Date
JPS6144705A true JPS6144705A (en) 1986-03-04

Family

ID=15816566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165659A Pending JPS6144705A (en) 1984-08-09 1984-08-09 Method for forming electrically conductive carbon film

Country Status (1)

Country Link
JP (1) JPS6144705A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125608U (en) * 1987-02-10 1988-08-16
JPS641221A (en) * 1987-06-24 1989-01-05 Matsushita Electric Ind Co Ltd Manufacture of polarizable electrode
JPH03274269A (en) * 1990-03-22 1991-12-05 Matsushita Electric Ind Co Ltd Method for synthesizing diamondlike thin film and diamondlike thin film
WO2015122159A1 (en) * 2014-02-12 2015-08-20 株式会社アルバック Method for forming carbon electrode film, carbon electrode, and method for manufacturing phase change memory element
JP2018052784A (en) * 2016-09-30 2018-04-05 株式会社長町サイエンスラボ Method for producing conductive dlc film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125608U (en) * 1987-02-10 1988-08-16
JPH0353927Y2 (en) * 1987-02-10 1991-11-27
JPS641221A (en) * 1987-06-24 1989-01-05 Matsushita Electric Ind Co Ltd Manufacture of polarizable electrode
JPH03274269A (en) * 1990-03-22 1991-12-05 Matsushita Electric Ind Co Ltd Method for synthesizing diamondlike thin film and diamondlike thin film
WO2015122159A1 (en) * 2014-02-12 2015-08-20 株式会社アルバック Method for forming carbon electrode film, carbon electrode, and method for manufacturing phase change memory element
CN105980593A (en) * 2014-02-12 2016-09-28 株式会社爱发科 Method for forming carbon electrode film, carbon electrode, and method for manufacturing phase change memory element
JPWO2015122159A1 (en) * 2014-02-12 2017-03-30 株式会社アルバック Method for forming carbon electrode film, method for producing carbon electrode and phase change memory element
JP2018052784A (en) * 2016-09-30 2018-04-05 株式会社長町サイエンスラボ Method for producing conductive dlc film

Similar Documents

Publication Publication Date Title
US6274014B1 (en) Method for forming a thin film of a metal compound by vacuum deposition
Mattox Physical vapor deposition (PVD) processes
CA1242165A (en) Method and apparatus for plasma-assisted deposition of thin films
JPS6117907B2 (en)
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
Ishikawa Negative ion beam technology for materials science
JPH0237109B2 (en)
JPS6144705A (en) Method for forming electrically conductive carbon film
Kim et al. Effect of ion beam energy on the electrical, optical, and structural properties of indium tin oxide thin films prepared by direct metal ion beam deposition technique
US5501745A (en) Low temperature method for making a photovoltaic material
JPS63213664A (en) Ion plating device
JPH04285154A (en) Formation of carbon thin film
KR930005825B1 (en) Process for producing a transparent polymer film having a electrical conductivity
JPH0214426B2 (en)
JPH0445580B2 (en)
JPH0417669A (en) Film forming method using plasma and rf ion plating device
JPH0582467B2 (en)
JPS628409A (en) Formation of transparent conducting metal oxide film
JPS62232180A (en) Superconducting material
JPS6017070A (en) Method and device for forming thin film
JPS6116731B2 (en)
Kapsa et al. The AES and EELS study of thin alumina films deposited on niobium
JPS609657B2 (en) Ion plating method and device
JPS63219586A (en) Manufacture of amorphous carbon-hydride film
Seidl et al. Surface production of negative hydrogen ions by reflection of hydrogen atoms from cesium oxide surfaces