JP2018052784A - Method for producing conductive dlc film - Google Patents

Method for producing conductive dlc film Download PDF

Info

Publication number
JP2018052784A
JP2018052784A JP2016193242A JP2016193242A JP2018052784A JP 2018052784 A JP2018052784 A JP 2018052784A JP 2016193242 A JP2016193242 A JP 2016193242A JP 2016193242 A JP2016193242 A JP 2016193242A JP 2018052784 A JP2018052784 A JP 2018052784A
Authority
JP
Japan
Prior art keywords
dlc film
conductive
conductive dlc
ion beam
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016193242A
Other languages
Japanese (ja)
Other versions
JP6684488B2 (en
Inventor
信治 長町
Shinji Nagamachi
信治 長町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagamachi Science Laboratory Co Ltd
Original Assignee
Nagamachi Science Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagamachi Science Laboratory Co Ltd filed Critical Nagamachi Science Laboratory Co Ltd
Priority to JP2016193242A priority Critical patent/JP6684488B2/en
Publication of JP2018052784A publication Critical patent/JP2018052784A/en
Application granted granted Critical
Publication of JP6684488B2 publication Critical patent/JP6684488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a conductive DLC film by which a non-conductive DLC film formed by vapor growth method or physical vapor growth method is converted to the conductive DLC film.SOLUTION: There is provided a method for producing a conductive DLC film. The method comprises a step of forming a non-conductive DLC film by chemical vapor growth method or physical vapor growth method, and a step of irradiating the non-conductive DLC film obtained in the above step with ion beams having an acceleration energy transmittable through the non-conductive DLC film at an exposure dose of 3×10/cmto 1×10/cmto convert the non-conductive DLC film to the conductive DLC film.SELECTED DRAWING: None

Description

本発明は、導電性DLC(ダイヤモンドライクカーボン)膜の製造方法に関する。   The present invention relates to a method for producing a conductive DLC (diamond-like carbon) film.

DLCの定義は厳密ではないが、DLCとは、通常、高硬度(HV900以上)、低摩擦係数、ガスバリア性、生体適合性などの特性を有し、多くの場合水素原子を含むアモルファス状の炭素材料に対してつけられた呼び名である。そして、種々の特性を示すDLC膜を有するDLC構造体が開発され、その特性に応じて、工具、摺動部品等の様々な用途に応用され、広く市場に提供されつつある。   Although the definition of DLC is not strict, DLC usually has characteristics such as high hardness (HV900 or higher), low friction coefficient, gas barrier property, biocompatibility, etc., and amorphous carbon containing hydrogen atoms in many cases The name given to the material. A DLC structure having a DLC film exhibiting various characteristics has been developed, and is applied to various uses such as tools and sliding parts according to the characteristics, and is widely provided to the market.

DLC膜の形成方法としては、炭化水素ガスを原料とする化学気相成長法(CVD法)が主流であったが、近年アーク放電により生じる炭素イオンを用いて水素原子を含まないDLC膜を形成するフィルター型カソーディック真空アーク(FCVA)方式の物理気相成長法(PVD法)が開発され、超高硬度を有するDLC膜の形成方法として広がりつつある。これらの従来法で得られるDLC膜は絶縁性である。しかし、電子、電気分野の応用の中には絶縁性のみならず導電性が求められる応用も多く存在する。   As a method for forming a DLC film, a chemical vapor deposition method (CVD method) using a hydrocarbon gas as a raw material has been mainstream, but in recent years, a DLC film not containing hydrogen atoms is formed using carbon ions generated by arc discharge. Filter type cathodic vacuum arc (FCVA) type physical vapor deposition method (PVD method) has been developed and is spreading as a method for forming a DLC film having ultra-high hardness. The DLC film obtained by these conventional methods is insulative. However, there are many applications in the electronic and electrical fields that require electrical conductivity as well as insulation.

従来の報告の中には、基板を加熱して成膜する方法(このときボロン原子やリン原子が添加される場合もある)により、導電性DLC膜が得られたという報告がある。しかしながら、このような報告には、形成された物質がDLC膜の範疇に含まれることを示唆する硬度や摩擦係数等の物性やDLC膜に特有のラマン散乱スペクトル等の情報が欠落しており、導電性DLC膜が形成されたことを明確に示すデータはない。また、導電性DLC膜が実際の応用に供されている報告もない。   Among conventional reports, there is a report that a conductive DLC film was obtained by a method of heating a substrate to form a film (at this time, boron atoms or phosphorus atoms may be added). However, such a report lacks physical properties such as hardness and friction coefficient that suggest that the formed substance is included in the category of DLC film, and information such as Raman scattering spectrum peculiar to DLC film, There is no data clearly indicating that the conductive DLC film has been formed. In addition, there is no report that the conductive DLC film is used for actual application.

特許文献1は、真空容器内に基材を設置し、基材を200℃以上に加熱し、かつ1kV以上のパルス電圧の印加下に、該真空容器内にアセチレンガスやメタンガス等の炭化水素系原料ガスを導入して放電プラズマを発生させ、放電プラズマと基材とを接触させることで、基材表面に導電性層を形成する方法を開示する。特許文献1の導電性層は、非晶質炭素の中にグラファイト微結晶とダイヤモンド微結晶とが混在したものと記載されているが(段落[0029])、生成するのはグラファイトに近い膜であると考えられる。また、当業者の技術常識によれば、ダイヤモンドとグラファイトとが同時に生成することはあり得ない。   In Patent Document 1, a base material is set in a vacuum vessel, the base material is heated to 200 ° C. or higher, and a hydrocarbon system such as acetylene gas or methane gas is applied to the vacuum vessel under application of a pulse voltage of 1 kV or higher. Disclosed is a method for forming a conductive layer on a substrate surface by introducing a source gas to generate discharge plasma and bringing the discharge plasma into contact with the substrate. Although the conductive layer of Patent Document 1 is described as a mixture of graphite microcrystals and diamond microcrystals in amorphous carbon (paragraph [0029]), it is a film close to graphite. It is believed that there is. Further, according to the common general knowledge of those skilled in the art, diamond and graphite cannot be produced simultaneously.

特開2010−24476号公報JP 2010-24476 A

成膜法により導電性DLC膜形成を試みた報告では、いずれもDLC膜を形成する基板(基材)の温度を250〜350℃程度まで昇温した状態で成膜を行なっている。しかしながら、非晶質炭素膜は水素原子を含むか否かに関係なく熱に対して弱く、250℃を超える温度環境では水素原子の離脱、非晶質状態からグラファイト結合への再結晶が始まる。従って、基板を250〜350℃に加熱する条件では、導電性は有するものの、低硬度の多結晶グラファイト構造を有する炭素膜が形成されている可能性が高い。   In all reports of attempts to form a conductive DLC film by a film forming method, the film is formed in a state where the temperature of the substrate (base material) on which the DLC film is formed is raised to about 250 to 350 ° C. However, the amorphous carbon film is vulnerable to heat regardless of whether or not it contains hydrogen atoms. In a temperature environment exceeding 250 ° C., desorption of hydrogen atoms and recrystallization from an amorphous state to a graphite bond begin. Therefore, under the condition that the substrate is heated to 250 to 350 ° C., although there is conductivity, there is a high possibility that a carbon film having a polycrystalline graphite structure with low hardness is formed.

例えば、CVD法により基板を350℃に加熱して形成された導電性層の走査型電子顕微鏡写真がインターネット上に公開されている(https//www.kiss.or.jp/number1/pdf/45
_ecR9l)。該電子顕微鏡写真によれば、該導電性層はグラファイトの多結晶が柱状に成長した構造であり、DLC構造ではない。また、該導電性層は、DLCを特徴づけるに充分な高硬度(HV900以上)と化学的な安定性とを有するとは考え難い。また、このような構造では粒界にピンホールが発生し易くなり、用途として例えば固体高分子型燃料電池用金属セパレータ保護膜のような用途には適さない。
For example, a scanning electron micrograph of a conductive layer formed by heating a substrate to 350 ° C. by a CVD method is published on the Internet (https // www.kiss.or.jp / number1 / pdf / 45
_ecR9l). According to the electron micrograph, the conductive layer has a structure in which a polycrystalline graphite is grown in a columnar shape, not a DLC structure. Further, it is difficult to think that the conductive layer has a high hardness (HV900 or more) sufficient to characterize DLC and chemical stability. Further, such a structure tends to generate pinholes at the grain boundaries, and is not suitable for uses such as a metal separator protective film for a polymer electrolyte fuel cell.

本発明の目的は、気相成長法又は物理気相成長法により成膜された非導電性DLC膜を導電性DLC膜に変換する、導電性DLC膜の製造方法を提供することである。   An object of the present invention is to provide a method for producing a conductive DLC film, in which a non-conductive DLC film formed by vapor deposition or physical vapor deposition is converted into a conductive DLC film.

本発明者は、上記課題を解決するために鋭意研究を重ねた。その結果、本発明者は、化学気相成長法又は物理気相成長法で成膜された非導電性DLC膜に対してイオンビームを照射する方法を着想した。そして、本発明者は、この方法において非導電性DLC膜を透過可能な加速エネルギーを有するイオンビームを所定の照射条件で非導電性DLC膜に照射することにより、非導電性DLC膜を導電性DLC膜に変換できることを見出し、本発明を完成するに至った。
すなわち、本発明は、下記(1)〜(3)の導電性DLC膜の製造方法を提供する。
(1)化学気相成長法又は物理気相成長法により非導電性DLC膜を成膜する工程と、前記工程で得られた非導電性DLC膜に、該非導電性DLC膜を透過可能な加速エネルギーを有するイオンビームを、照射量3×1015/cm2〜1×1018/cm2の範囲で照射し、非導電性DLC膜を導電性DLC膜に変換する工程と、を含む、導電性DLC膜の製造方法。
(2)非導電性DLC膜の水素含有量が5原子組成%以下である、上記(1)の導電性DLC膜の製造方法。
(3)イオンビームのエネルギー密度が0.2W/cm2以上である、上記(1)又は(2)の導電性DLC膜の製造方法。
This inventor repeated earnest research in order to solve the said subject. As a result, the present inventor has conceived a method of irradiating a non-conductive DLC film formed by chemical vapor deposition or physical vapor deposition with an ion beam. Then, the present inventor irradiates the non-conductive DLC film with a conductive ion beam having an accelerating energy that can be transmitted through the non-conductive DLC film in a predetermined irradiation condition. The present inventors have found that it can be converted into a DLC film and have completed the present invention.
That is, this invention provides the manufacturing method of the electroconductive DLC film | membrane of following (1)-(3).
(1) A step of forming a non-conductive DLC film by chemical vapor deposition or physical vapor deposition, and acceleration capable of permeating the non-conductive DLC film into the non-conductive DLC film obtained in the above step Irradiating an ion beam having energy at a dose of 3 × 10 15 / cm 2 to 1 × 10 18 / cm 2 to convert a non-conductive DLC film to a conductive DLC film, For producing a conductive DLC film.
(2) The method for producing a conductive DLC film according to (1) above, wherein the hydrogen content of the nonconductive DLC film is 5 atomic composition% or less.
(3) The method for producing a conductive DLC film according to (1) or (2), wherein the energy density of the ion beam is 0.2 W / cm 2 or more.

本発明によれば、従来には存在しなかった導電性DLC膜が提供される。また、導電性DLC膜を基材表面に形成する場合には、基材に対する密着力が高く、ピンホールのない導電性DLC膜が提供される。   According to the present invention, there is provided a conductive DLC film that did not exist conventionally. Further, when the conductive DLC film is formed on the surface of the substrate, a conductive DLC film having high adhesion to the substrate and having no pinholes is provided.

導電性DLC膜の抵抗率(mΩ・cm)とイオンビーム照射量(/cm2)との関係を示すグラフである。It is a graph which shows the relationship between the resistivity (mohm * cm) of an electroconductive DLC film, and ion beam irradiation amount (/ cm < 2 >). 導電性DLC膜の硬度(GPa)とイオンビーム照射量(/cm2)との関係を示すグラフである。It is a graph which shows the relationship between the hardness (GPa) of an electroconductive DLC film, and ion beam irradiation amount (/ cm < 2 >). イオンビーム照射前の非導電性DLC膜のラマン散乱スペクトルを示す。The Raman scattering spectrum of the nonelectroconductive DLC film before ion beam irradiation is shown. イオンビーム照射後の導電性DLC膜のラマン散乱スペクトルを示す。The Raman scattering spectrum of the electroconductive DLC film after ion beam irradiation is shown. イオンビーム照射前の非導電性DLC膜のラマン散乱スペクトルを示す。The Raman scattering spectrum of the nonelectroconductive DLC film before ion beam irradiation is shown. イオンビーム照射後の導電性DLC膜のラマン散乱スペクトルを示す。The Raman scattering spectrum of the electroconductive DLC film after ion beam irradiation is shown.

本発明の導電性DLC膜の製造方法(以下単に「本発明の製造方法」と呼ぶことがある)は、化学気相成長法又は物理気相成長法により成膜された非導電性DLC膜に対して、該非導電性DLC膜を透過可能な加速エネルギーを有するイオンビームを照射し、かつイオンビーム照射量を3×1015/cm2〜1×1018/cm2という特定の範囲とすることにより、非導電性DLC膜を導電性DLC膜に変換するものである。本発明の製造方法により得られる導電性DLC膜(以下「本発明の導電性DLC膜」と呼ぶことがある)は、イオンビーム照射導電性DLCとして特有のほぼ台形状のラマン散乱スペクトルを有し、さらに従来の非導電性DLC膜が有する各特性と共に、導電性を有することを特徴とする。 The method for producing a conductive DLC film of the present invention (hereinafter sometimes simply referred to as “the production method of the present invention”) is applied to a non-conductive DLC film formed by chemical vapor deposition or physical vapor deposition. On the other hand, an ion beam having an acceleration energy that can be transmitted through the nonconductive DLC film is irradiated, and the ion beam irradiation amount is set to a specific range of 3 × 10 15 / cm 2 to 1 × 10 18 / cm 2. Thus, the non-conductive DLC film is converted into a conductive DLC film. The conductive DLC film obtained by the production method of the present invention (hereinafter sometimes referred to as “the conductive DLC film of the present invention”) has a substantially trapezoidal Raman scattering spectrum that is peculiar to ion beam irradiated conductive DLC. Furthermore, it is characterized in that it has conductivity along with each characteristic of the conventional non-conductive DLC film.

本発明の導電性DLC膜は、非導電性DLC膜中にグラファイト粒子が混在することにより導電性を示すものではなく、導電性高分子として知られているポリアセチレンに近い構造が生成することにより導電性を示すものと考えられる。本発明の導電性DLC膜の四探針法による抵抗率は、イオンビームの照射量にもよるが、通常10mΩ・cm以下である。また、本発明の導電性DLC膜は、高導電性だけでなく、従来の非導電性DLC膜に遜色のない高硬度(HV900以上)、低摩擦係数、ガスバリア性、生体適合性等の特性を有する。また、本発明の導電性DLC膜を基材表面に形成した場合には、基材に対する密着性が高い。さらに、本発明の導電性DLC膜は、緻密性に優れ、ピンホールの発生が非常に少なく、例えば、基材の保護膜としても極めて有用である。   The conductive DLC film of the present invention does not exhibit conductivity when graphite particles are mixed in the non-conductive DLC film, but is conductive when a structure close to polyacetylene known as a conductive polymer is generated. It is considered to show sex. The resistivity of the conductive DLC film of the present invention by the four-probe method is usually 10 mΩ · cm or less, although it depends on the irradiation amount of the ion beam. In addition, the conductive DLC film of the present invention has not only high conductivity but also characteristics such as high hardness (HV900 or more), low friction coefficient, gas barrier property, biocompatibility, etc. comparable to the conventional nonconductive DLC film. Have. Moreover, when the electroconductive DLC film of this invention is formed in the base-material surface, the adhesiveness with respect to a base material is high. Furthermore, the conductive DLC film of the present invention is excellent in denseness and generates very few pinholes. For example, it is extremely useful as a protective film for a substrate.

本発明の導電性DLC膜は、従来の非導電性DLC膜と異なり、ラマンシフト1570/cm付近のGバンドと、ラマンシフト1350/cm付近のDバンドだけでは説明できないラマン散乱スペクトルを有する。従来の非導電性DLC膜のラマン散乱スペクトルは、Gバンドのラマン散乱強度とDバンドのラマン散乱強度との差が比較的大きく、高さの異なる2つのピーク(GバンドピークとDバンドピーク)が1つの谷間を介して繋がった形状である。一方、本発明の導電性DLC膜は、その抵抗率が減少するにつれて、すなわち導電性が高まるにつれて、Gバンドのラマン散乱強度が低下し、Gバンド及びDバンドの各頂点を繋いだ線が台形の上底となる、ほぼ台形状の特異的な形状を有するラマン散乱スペクトルとなり、従来の非導電性DLC膜とは明らかに異なる。   Unlike the conventional non-conductive DLC film, the conductive DLC film of the present invention has a Raman scattering spectrum that cannot be explained only by the G band near the Raman shift 1570 / cm and the D band near the Raman shift 1350 / cm. The Raman scattering spectrum of a conventional non-conductive DLC film has a relatively large difference between the Raman scattering intensity of the G band and the Raman scattering intensity of the D band, and two peaks having different heights (G band peak and D band peak). Are connected through one valley. On the other hand, in the conductive DLC film of the present invention, as the resistivity decreases, that is, as the conductivity increases, the Raman scattering intensity of the G band decreases, and the line connecting the vertices of the G band and the D band has a trapezoidal shape. It becomes a Raman scattering spectrum having an approximately trapezoidal specific shape, which is the upper base of the film, and is clearly different from the conventional non-conductive DLC film.

この台形状のラマン散乱スペクトルを解析するためには、Gバンド、Dバンド以外に1150/cmおよび1500/cm付近にピークを持つ2成分について考察する必要がある。これらの成分はそれぞれ導電性高分子であるポリアセチレンのC−C結合およびC=C結合に対応するとみなされる場合があることから、本発明の導電性DLC膜は、グラファイト構造とは全く異なる1次元的な構造に由来する導電性を示すものと考えられる。   In order to analyze this trapezoidal Raman scattering spectrum, it is necessary to consider two components having peaks near 1150 / cm and 1500 / cm in addition to the G and D bands. Since these components may be considered to correspond to the C—C bond and C═C bond of polyacetylene, which is a conductive polymer, respectively, the conductive DLC film of the present invention is a one-dimensional completely different from the graphite structure. It is thought that it shows conductivity derived from a typical structure.

また、本発明の導電性DLC膜を基材表面に形成する場合には、イオンビームの照射量に応じて、基材と、導電性DLC膜と、これらの間に介在し、基材を構成する材料と導電性DLCとが混在したミキシング層と、を有する別形態の導電性DLC構造体とすることができる。この別形態の導電性DLC構造体は、ミキシング層の存在により、基材と導電性DLC膜との接着性又は導電性DLC膜の基材に対する密着性がより一層向上する。   Further, when the conductive DLC film of the present invention is formed on the surface of the base material, the base material, the conductive DLC film, and the base material are configured according to the ion beam irradiation amount. It is possible to provide another form of the conductive DLC structure having the mixing layer in which the material to be mixed and the conductive DLC are mixed. In another embodiment of the conductive DLC structure, due to the presence of the mixing layer, the adhesion between the substrate and the conductive DLC film or the adhesion of the conductive DLC film to the substrate is further improved.

本発明において、導電性DLC膜を基材表面に有する導電性DLC構造体を形成する場合、基材を構成する材料としては特に限定されず、例えば、金属材料、半導体材料、樹脂材料、ゴム材料、セラミック材料、ガラス材料、木質材料等が挙げられる。これらの中でも、得られた導電性DLC構造体の電気、電子デバイスへの応用等の観点から、金属材料、半導体材料等が好ましい。金属材料としては特に限定されず、例えば、アルミニウム、マグネシウム、銅、錫、亜鉛、アルミニウム合金、銅合金、錫合金、鉄、ステンレス鋼等が挙げられる。基材は、これらの金属材料の1種又は2種以上を含むものでもよい。これらの金属材料の中でも、軽量性が求められる用途には軽金属材料が好ましく、アルミニウムやアルミニウム合金がより好ましく、アルミニウムがさらに好ましい。また、半導体材料としては特に限定されず、例えば、単結晶シリコン、ゲルマニウム、ヒ化ガリウム、ガリウム砒素リン、窒化ガリウム、炭化珪素等が挙げられる。基材は、これらの半導体材料の1種又は2種以上を含むものでもよい。   In the present invention, when forming a conductive DLC structure having a conductive DLC film on the substrate surface, the material constituting the substrate is not particularly limited. For example, a metal material, a semiconductor material, a resin material, a rubber material , Ceramic materials, glass materials, wood materials and the like. Among these, metal materials, semiconductor materials, and the like are preferable from the viewpoint of application of the obtained conductive DLC structure to electricity and electronic devices. It does not specifically limit as a metal material, For example, aluminum, magnesium, copper, tin, zinc, an aluminum alloy, a copper alloy, a tin alloy, iron, stainless steel etc. are mentioned. The substrate may contain one or more of these metal materials. Among these metal materials, light metal materials are preferred for applications where lightness is required, aluminum and aluminum alloys are more preferred, and aluminum is even more preferred. The semiconductor material is not particularly limited, and examples thereof include single crystal silicon, germanium, gallium arsenide, gallium arsenide phosphorus, gallium nitride, and silicon carbide. The substrate may contain one or more of these semiconductor materials.

本発明において、基材は、得られる導電性DLC構造体(基材と、基材表面の少なくとも一部に形成された導電性DLC膜と、を含む構造体)の設計用途等に応じて所望の形状に成形したものでもよい。このように、所望の形状に成形された基材に対して、本発明の製造方法により導電性DLC膜を形成することにより、該設計用途にそのまま使用できるような導電性DLC構造体を得ることができる。本発明の導電性DLC構造体の具体的な用途としては、例えば、燃料電池(特に固体高分子型燃料電池)用セパレータ等が挙げられる。   In this invention, a base material is desired according to the design use etc. of the electroconductive DLC structure (structure containing a base material and the electroconductive DLC film formed in at least one part of the base-material surface) etc. What was shape | molded in this shape may be sufficient. Thus, by forming a conductive DLC film on the base material molded into a desired shape by the manufacturing method of the present invention, a conductive DLC structure that can be used as it is for the design application is obtained. Can do. Specific examples of the use of the conductive DLC structure of the present invention include a separator for a fuel cell (particularly, a polymer electrolyte fuel cell).

本発明の導電性DLC膜の製造方法は、気相成長法又は物理成長法により非導電性DLC膜を成膜する工程(以下「工程(1)」と呼ぶ)と、工程(1)で得られた非導電性DLC膜に所定条件でイオンビームを照射して導電性DLC膜に変換する工程(以下「工程(2)」と呼ぶ)と、を含むことを特徴とする。以下に、本発明の導電性DLC膜の製造方法についてより具体的に説明する。   The method for producing a conductive DLC film of the present invention is obtained by a step of depositing a non-conductive DLC film by a vapor phase growth method or a physical growth method (hereinafter referred to as “step (1)”) and a step (1). And a step of irradiating the non-conductive DLC film thus obtained with an ion beam under a predetermined condition to convert it into a conductive DLC film (hereinafter referred to as “process (2)”). Below, the manufacturing method of the electroconductive DLC film of this invention is demonstrated more concretely.

工程(1)において、イオンビームを照射する非導電性DLC膜は、基材の表面に形成された非導電性DLC膜でもよい。非導電性DLC膜は、化学気相法(以下「CVD法」と呼ぶことがある)又は物理気相成長法(以下「PVD法」と呼ぶことがある)により成膜される。CVD法及びPVD法を利用した非導電性DLC膜の成膜方法はほぼ確立された技術であり、既に多くの報告がなされている。したがって、例えば、CVD法又はPVD法を実現可能な成膜装置(市販の成膜装置)を利用すれば、非導電性DLC膜を容易に得ることができる。   In the step (1), the nonconductive DLC film irradiated with the ion beam may be a nonconductive DLC film formed on the surface of the substrate. The nonconductive DLC film is formed by a chemical vapor deposition method (hereinafter sometimes referred to as “CVD method”) or a physical vapor deposition method (hereinafter sometimes referred to as “PVD method”). A method for forming a non-conductive DLC film using a CVD method and a PVD method is an almost established technique, and many reports have already been made. Therefore, for example, if a film forming apparatus (commercial film forming apparatus) capable of realizing the CVD method or the PVD method is used, a nonconductive DLC film can be easily obtained.

CVD法の具体例としては、例えば、DCプラズマ法、RFプラズマ法、ECRプラズマ法、アンバランスマグネトロンスパッタ(UBMS)法などが挙げられる。PVD法の具体例としては、例えば、フィルター型カソーディック(FCVA)法などが挙げられる。なお、UBMS法は手法は通常PVD法に属するものであるが、非導電性DLC膜の成膜時にはCVD法に準じた手法で装置を動作させるので、本明細書ではCVD法に分類する。   Specific examples of the CVD method include a DC plasma method, an RF plasma method, an ECR plasma method, an unbalanced magnetron sputtering (UBMS) method, and the like. Specific examples of the PVD method include a filter type cathodic (FCVA) method. Note that the UBMS method usually belongs to the PVD method, but when the non-conductive DLC film is formed, the apparatus is operated by a method according to the CVD method, and is classified as the CVD method in this specification.

CVD法により得られる非導電性DLC膜には、全量に対して10〜40原子組成%の水素を含む場合がある。CVD法は等方的な成膜手法であるので、基材表面の形状にかかわらず表面全体に対する被覆性に優れる。また、PVD法により得られる非導電性DLC膜には、微量の水素、通常は全量に対して原子組成百分率として1原子組成%以下の水素を含む場合がある。PVD法はやや異方的な成膜手法であり、基材の表面の平坦性が求められる場合に利用されることが多い。   The nonconductive DLC film obtained by the CVD method may contain 10 to 40 atomic composition% of hydrogen with respect to the total amount. Since the CVD method is an isotropic film formation method, it has excellent coverage with respect to the entire surface regardless of the shape of the substrate surface. In addition, the non-conductive DLC film obtained by the PVD method may contain a trace amount of hydrogen, usually 1 atomic composition% or less of hydrogen as an atomic composition percentage with respect to the total amount. The PVD method is a somewhat anisotropic film forming method, and is often used when flatness of the surface of the substrate is required.

非導電性DLC膜における水素の存在は、得られる導電性DLC膜の物性に影響を及ぼす場合があるので、導電性DLC膜の用途などに応じて。CVD法又はPVD法のいずれを利用して非導電性DLC膜を成膜するかを適宜決定するのがよい。なお、水素含有量が原子組成百分率として全量の5原子組成%以下、より好ましくは1原子組成%以下の非導電性DLC膜を用いることにより、導電性DLC膜の導電性及び硬度を顕著に向上させることができる。なお、水素含有量が5原子組成%以下の非導電性DLC膜は、例えば、PVD法中でもFCVA法により得ることができる。   Since the presence of hydrogen in the non-conductive DLC film may affect the physical properties of the obtained conductive DLC film, depending on the use of the conductive DLC film. It is preferable to appropriately determine whether the non-conductive DLC film is formed using the CVD method or the PVD method. In addition, the conductivity and hardness of the conductive DLC film are remarkably improved by using a non-conductive DLC film having a hydrogen content of atomic composition percentage of 5 atomic composition% or less, more preferably 1 atomic composition% or less. Can be made. Note that a nonconductive DLC film having a hydrogen content of 5 atomic composition% or less can be obtained, for example, by the FCVA method even in the PVD method.

工程(1)で形成される非導電性DLC膜の膜厚は特に限定されないが、好ましくは3nm〜10μm程度、より好ましくは5nm〜5μm,さらに好ましくは10nm〜1μmである。これよりも大きな膜厚では導電化に必要なイオンビームのエネルギーが高くなり、イオンビーム照射の高コスト化をもたらし、実用的ではない場合がある。また、非導電性DLC膜の膜厚が大きすぎると、非導電性DLC膜を透過する加速エネルギーを有するイオンビームを照射した場合でも、非導電性DLC膜の表層のみが導電性DLC膜に変換されることもある。また、これよりも小さい膜厚では導電性DLC膜が得られたとしても、その耐久性などが不十分になり、種々の用途に使用できない場合がある。   The film thickness of the nonconductive DLC film formed in the step (1) is not particularly limited, but is preferably about 3 nm to 10 μm, more preferably 5 nm to 5 μm, and further preferably 10 nm to 1 μm. If the film thickness is larger than this, the energy of the ion beam necessary for the conduction becomes high, resulting in high cost of ion beam irradiation, which may not be practical. If the film thickness of the non-conductive DLC film is too large, only the surface layer of the non-conductive DLC film is converted into the conductive DLC film even when an ion beam having acceleration energy that passes through the non-conductive DLC film is irradiated. Sometimes it is done. Further, even if a conductive DLC film is obtained with a film thickness smaller than this, its durability and the like are insufficient and may not be used for various applications.

また、基材表面に非導電性DLC膜を成膜する場合、非導電性DLC膜と基材との密着性を一層向上させるために、Cr、Ti、W等を含む中間層を形成した後に、非導電性Dを入れることも可能である。この場合も、中間層込の全体の膜厚を上記範囲内に収めることが好ましい。   In addition, when forming a non-conductive DLC film on the surface of the substrate, in order to further improve the adhesion between the non-conductive DLC film and the substrate, after forming an intermediate layer containing Cr, Ti, W, etc. It is also possible to insert non-conductive D. Also in this case, it is preferable that the total film thickness including the intermediate layer falls within the above range.

次に、工程(2)では、工程(1)で得られた非導電性DLC膜に対して所定のイオンビームを照射することにより、非導電性DLC膜を導電性DLC膜に変換できる。所定のイオンビームとは、非導電性DLC膜を透過する加速エネルギーを有するイオンビームであり、かつイオンビーム照射量を3×1015/cm2〜1×1018/cm2の範囲とすることである。高導電性の導電性DLC膜を安定的に得るためには、イオンビーム照射量は好ましくは1×1016/cm2〜1×1018/cm2の範囲である。 Next, in the step (2), the nonconductive DLC film can be converted into a conductive DLC film by irradiating the nonconductive DLC film obtained in the step (1) with a predetermined ion beam. The predetermined ion beam is an ion beam having an acceleration energy that passes through the non-conductive DLC film, and the ion beam irradiation dose is in the range of 3 × 10 15 / cm 2 to 1 × 10 18 / cm 2. It is. In order to stably obtain a highly conductive DLC film, the ion beam irradiation amount is preferably in the range of 1 × 10 16 / cm 2 to 1 × 10 18 / cm 2 .

本発明の製造方法では、非導電性DLC膜に照射するイオンビームが、該非導電性DLC膜を透過する加速エネルギー(運動エネルギー)を有することが必要である。非導電性DLC膜を透過するとは、イオンビームが到達する距離(深さ)が高分子膜を貫通して基材に達することを意味する。なお、イオンビームが到達する距離は、同じ加速エネルギーでもイオン種(元素)によって到達距離及び照射量に影響が生じる場合がある。イオンビームの元素種、非導電性DLC膜を構成する成分の種類、非導電性DLC膜の厚さ等を適宜変更して予備実験を行なうことにより、非導電性DLC膜を透過可能なイオンビームの加速エネルギーをイオンビームの元素種に応じて容易に求めることができる。   In the manufacturing method of the present invention, it is necessary that the ion beam irradiated to the nonconductive DLC film has acceleration energy (kinetic energy) that passes through the nonconductive DLC film. The transmission through the non-conductive DLC film means that the distance (depth) that the ion beam reaches reaches the substrate through the polymer film. Note that the distance reached by the ion beam may affect the arrival distance and the irradiation amount depending on the ion species (element) even with the same acceleration energy. An ion beam that can be transmitted through the non-conductive DLC film by appropriately changing the element type of the ion beam, the type of components constituting the non-conductive DLC film, the thickness of the non-conductive DLC film, etc. The acceleration energy can be easily obtained according to the element type of the ion beam.

導電性DLC膜を得るためのイオンビーム照射量は、3×1015/cm2〜1×1018/cm2の範囲である。この範囲を外れた量のイオンビームを照射しても、本発明の導電性DLC膜を得ることはできない。また、イオンビームの照射量を上記所定範囲から選択すると共に、イオンビーム照射時のエネルギー密度(加速(運動)エネルギー×ビーム電流密度)も抵抗率を決定する大きな要素となる。本発明では、イオンビームのエネルギー密度を0.2W/cm2以上とすることが好ましい。これにより、安定的に低抵抗率すなわち高導電性のDLC膜を得ることができる。 The ion beam dose for obtaining the conductive DLC film is in the range of 3 × 10 15 / cm 2 to 1 × 10 18 / cm 2 . Even if an ion beam of an amount outside this range is irradiated, the conductive DLC film of the present invention cannot be obtained. In addition, the ion beam irradiation amount is selected from the predetermined range, and the energy density (acceleration (kinetic) energy × beam current density) at the time of ion beam irradiation is also a large factor for determining the resistivity. In the present invention, the energy density of the ion beam is preferably 0.2 W / cm 2 or more. Thereby, a low resistivity, that is, a highly conductive DLC film can be obtained stably.

イオンビーム照射に用いる装置はイオン源、質量分離器、加速部、ビームスキャナーから構成されるいわゆるイオン注入装置であれば特に限定されず、また、イオン種も多種のものを用いることができる。本発明の目的におけるイオンビーム装置ではイオン種に制限はないので、ヘリウム、窒素、ネオン、アルゴン等のガスを原料とするイオン源、加速部、試料ステージのみからなるような簡易な低コストの装置を利用することができる。また、イオンビームのイオン種としては特に制限はないが、例えば、Ga+、Si+、Au+などの金属イオンビーム、He+、Ne+、Ar+、Kr+、N+などの不活性ガスイオンビームなどがあげられる。 The apparatus used for ion beam irradiation is not particularly limited as long as it is a so-called ion implantation apparatus including an ion source, a mass separator, an acceleration unit, and a beam scanner, and various types of ions can be used. In the ion beam apparatus for the purposes of the present invention, there are no restrictions on the ion species, so a simple and low-cost apparatus consisting only of an ion source, an accelerating unit, and a sample stage using a gas such as helium, nitrogen, neon, or argon as a raw material. Can be used. The ion species of the ion beam is not particularly limited. For example, metal ion beams such as Ga + , Si + and Au +, and inert gases such as He + , Ne + , Ar + , Kr + and N + are used. An ion beam etc. are mention | raise | lifted.

本発明は非導電性DLC膜へのイオンビームの照射による導電性DLC膜の製造に関する技術であるが、本発明のイオンビーム照射条件は、高抵抗炭素材料の導電化にも有効である。高抵抗炭素材料としては特に限定されないが、例えば、炭素からなるスパッタ膜などが挙げられる。このような高抵抗炭素膜に対して上記照射条件でイオンビームを照射することにより、導電性DLC膜が得られるものと考えられる。   Although the present invention is a technique related to the production of a conductive DLC film by irradiating a non-conductive DLC film with an ion beam, the ion beam irradiation conditions of the present invention are also effective for conducting a high-resistance carbon material. Although it does not specifically limit as a high resistance carbon material, For example, the sputtered film etc. which consist of carbon are mentioned. It is considered that a conductive DLC film can be obtained by irradiating such a high resistance carbon film with an ion beam under the above irradiation conditions.

以下に実施例に基づいて本発明を詳細に説明する。なお、本実施例において、イオンビームの照射は、イオンビーム照射装置(商品名:SR20、日新イオン機器(株)製)を用いて実施した。   Hereinafter, the present invention will be described in detail based on examples. In this example, ion beam irradiation was performed using an ion beam irradiation apparatus (trade name: SR20, manufactured by Nissin Ion Instruments Co., Ltd.).

(実施例1)
アンバランスマグネトロンスパッタ(UBMS)蒸着装置(商品名:UBMS202、(株)神戸製鋼所製)を用いて、非導電性DLC膜を形成した。
酸化層(SiO2層)100nmを表面に持つシリコン基板及びカーボンターゲットを該蒸着装置のチャンパ―内の所定位置に導入した。次いで、カーボンターゲットに2.0kWの電圧を印加し、メタン5体積%と残部Arとからなるプロセスガスを用い、全圧1.0Pa、負バイアス電圧100Vで成膜を行なった。得られた膜厚約200nmの膜は、ラマン散乱スペクトルの測定結果からDLC膜であり、さらに抵抗率の測定結果から非導電性であった。なお、抵抗率及びラマン散乱スペクトルの測定方法については後述する。
Example 1
A non-conductive DLC film was formed using an unbalanced magnetron sputtering (UBMS) vapor deposition apparatus (trade name: UBMS202, manufactured by Kobe Steel, Ltd.).
A silicon substrate having a surface with an oxide layer (SiO 2 layer) of 100 nm and a carbon target were introduced into a predetermined position in the chamber of the vapor deposition apparatus. Next, a voltage of 2.0 kW was applied to the carbon target, and a film was formed at a total pressure of 1.0 Pa and a negative bias voltage of 100 V using a process gas composed of 5% by volume of methane and the balance Ar. The obtained film having a thickness of about 200 nm was a DLC film from the measurement result of Raman scattering spectrum, and was non-conductive from the measurement result of resistivity. In addition, the measuring method of a resistivity and a Raman scattering spectrum is mentioned later.

得られた非導電性DLC膜に対し、加速エネルギー75keV、電流密度30〜50
μA/cm2の範囲、イオンビーム照射量3×1015〜1×1017/cm2の範囲で窒素イオンビームを照射し、本発明の導電性DLC膜を作製した。
For the obtained non-conductive DLC film, the acceleration energy is 75 keV and the current density is 30 to 50.
The conductive DLC film of the present invention was produced by irradiating a nitrogen ion beam in a range of μA / cm 2 and an ion beam irradiation amount of 3 × 10 15 to 1 × 10 17 / cm 2 .

(実施例2)
フィルター型カソーディック真空蒸着(FCVA)装置を用いて、非導電性DLC膜を形成した。すなわち、酸化層(SiO2層)100nmを表面に持つシリコン基板を該蒸着装置のチャンパ―内の所定位置に導入した。次いで、キャンパー内にガスを導入することなく、該シリコン基板に負バイアス電圧100V(DC)を印加しつつ成膜を行なった。得られた膜厚約200nmの膜は、ラマン散乱スペクトルの測定結果からDLC膜であり、さらに抵抗率の測定結果から非導電性であった。得られた非導電性DLC膜は水素を含まないものであった。この非導電性DLC膜に対し、実施例1と同じ条件で窒素イオンビームを照射し、本発明の導電性DLC膜を作製した。
(Example 2)
A non-conductive DLC film was formed using a filter type cathodic vacuum deposition (FCVA) apparatus. That is, a silicon substrate having an oxide layer (SiO 2 layer) of 100 nm on the surface was introduced into a predetermined position in the chamber of the vapor deposition apparatus. Next, film formation was performed while applying a negative bias voltage of 100 V (DC) to the silicon substrate without introducing gas into the camper. The obtained film having a thickness of about 200 nm was a DLC film from the measurement result of Raman scattering spectrum, and was non-conductive from the measurement result of resistivity. The obtained non-conductive DLC film did not contain hydrogen. This non-conductive DLC film was irradiated with a nitrogen ion beam under the same conditions as in Example 1 to produce a conductive DLC film of the present invention.

(実施例3)
実施例1〜2において、導電性DLC膜作製時のイオンビーム照射量を1×1015/cm2、1×1016/cm2、5.0×1016/cm2又は1×1017/cm2とする以外は実施例1〜2と同様にして、それぞれ、導電性DLC膜として実施例1に準じたcvdDLC膜及び実施例2に準じたfcvaDLC膜を作製した。
(Example 3)
In Examples 1 and 2, the ion beam irradiation dose at the time of producing the conductive DLC film is 1 × 10 15 / cm 2 , 1 × 10 16 / cm 2 , 5.0 × 10 16 / cm 2, or 1 × 10 17 / A cvdDLC film according to Example 1 and an fcvaDLC film according to Example 2 were produced as conductive DLC films in the same manner as in Examples 1 and 2 except that cm 2 .

得られた各導電性DLC膜の抵抗率(mΩ・cm)を、抵抗率計(商品名:ロレスタ、四探針法、三菱化学アナリテック(株)製)により評価した。結果を図1に示す。図1から、いずれの非導電性DLC膜も、イオンビームの照射により、10mΩ・cm未満への低抵抗化(導電化)が可能であり、特に実施例2に準じた水素を含まない非導電性DLC膜にイオンビームを照射することにより、非常に高い導電性が得られることが分る。したがって、本発明の条件により、非導電性DLC膜が導電性DLC膜に変換されることが確認された。   The resistivity (mΩ · cm) of each conductive DLC film obtained was evaluated by a resistivity meter (trade name: Loresta, four-probe method, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The results are shown in FIG. From FIG. 1, any non-conductive DLC film can be reduced in resistance (conductive) to less than 10 mΩ · cm by ion beam irradiation, and in particular, non-conductive without hydrogen according to Example 2. It can be seen that very high conductivity can be obtained by irradiating an ion beam to the conductive DLC film. Therefore, it was confirmed that the non-conductive DLC film was converted to the conductive DLC film under the conditions of the present invention.

(実施例4)
実施例1〜2において、導電性DLC膜作製時のイオンビーム照射量を5×1015/cm2、1×1016/cm2又は5.0×1016/cm2とする以外は実施例1〜2と同様にして、それぞれ導電性DLC膜として、実施例1に準じたcvdDLC膜及び実施例2に準じたfcvaDLC膜を作製した。
Example 4
In Examples 1-2, the ion beam irradiation amount at the time of producing the conductive DLC film was set to 5 × 10 15 / cm 2 , 1 × 10 16 / cm 2, or 5.0 × 10 16 / cm 2. In the same manner as in 1-2, a cvdDLC film according to Example 1 and an fcvaDLC film according to Example 2 were prepared as conductive DLC films, respectively.

得られた各導電性DLC膜の硬度を、ナノインデンター(商品名:ENT−1100、(株)エリオニクス製)を用いて測定した。結果を図2に示す。図2によれば、DLCの範疇に入るか否か境界線であるHV900(ほぼ9GPa)と同程度かそれを超えていることが明らかである。また、特に実施例2に準じた水素を含まない非導電性DLC膜にイオンビームを照射することにより、非常に高い硬度が得られることが分る。以上の結果から、非導電性DLC膜に本発明の条件でイオンビームを照射しても、非導電性DLC膜が本来有している高硬度が維持され、さらに向上することが確認された。   The hardness of each conductive DLC film obtained was measured using a nanoindenter (trade name: ENT-1100, manufactured by Elionix Co., Ltd.). The results are shown in FIG. According to FIG. 2, it is clear that whether or not to fall within the category of DLC is equal to or exceeding the boundary line HV900 (approximately 9 GPa). It can also be seen that very high hardness can be obtained by irradiating the non-conductive DLC film containing no hydrogen according to Example 2 with an ion beam. From the above results, it was confirmed that even when the nonconductive DLC film was irradiated with an ion beam under the conditions of the present invention, the high hardness inherent in the nonconductive DLC film was maintained and further improved.

(実施例5)
実施例1において、導電性DLC膜作製時のイオンビーム照射量を3×1016/cm2とする以外は、実施例1と同様にしてDLC膜を作製した。イオンビーム照射前の非導電性DLC膜及びイオンビーム照射後の導電性DLC膜のラマン散乱スペクトルを、ラマン分光光度計(商品名:NRS−5100、日本分光(株)製)により測定した。結果を図3及び図4に示す。図3は、イオンビーム照射前の非導電性DLC膜のラマン散乱スペクトルである。図4は、イオンビーム照射後の導電性DLC膜のラマン散乱スペクトルである。
(Example 5)
In Example 1, a DLC film was produced in the same manner as in Example 1 except that the ion beam irradiation amount at the production of the conductive DLC film was 3 × 10 16 / cm 2 . The Raman scattering spectra of the non-conductive DLC film before ion beam irradiation and the conductive DLC film after ion beam irradiation were measured with a Raman spectrophotometer (trade name: NRS-5100, manufactured by JASCO Corporation). The results are shown in FIGS. FIG. 3 is a Raman scattering spectrum of the non-conductive DLC film before ion beam irradiation. FIG. 4 is a Raman scattering spectrum of the conductive DLC film after ion beam irradiation.

(実施例6)
実施例2において、導電性DLC膜作製時のイオンビーム照射量を3×1016/cm2とする以外は、実施例2と同様にしてDLC膜を作製した。イオンビーム照射前の非導電性DLC膜及びイオンビーム照射後の導電性DLC膜のラマン散乱スペクトルを、ラマン分光光度計(商品名:NRS−5100、日本分光(株)製)により測定した。結果を図5及び図6に示す。図5は、イオンビーム照射前の非導電性DLC膜のラマン散乱スペクトルである。図6は、イオンビーム照射後の導電性DLC膜のラマン散乱スペクトルである。
(Example 6)
In Example 2, a DLC film was produced in the same manner as in Example 2 except that the ion beam irradiation amount at the production of the conductive DLC film was 3 × 10 16 / cm 2 . The Raman scattering spectra of the non-conductive DLC film before ion beam irradiation and the conductive DLC film after ion beam irradiation were measured with a Raman spectrophotometer (trade name: NRS-5100, manufactured by JASCO Corporation). The results are shown in FIGS. FIG. 5 is a Raman scattering spectrum of the non-conductive DLC film before ion beam irradiation. FIG. 6 is a Raman scattering spectrum of the conductive DLC film after ion beam irradiation.

図3及び図5から、イオンビーム照射前の非導電性DLC膜は、ラマンシフト1570/cm付近のGバンド、及びラマンシフト1350/cm付近のDバンドというDLCに特有のピークを有し、DLC膜であることが確認された。また、図4及び図6から、イオンビーム照射後の導電性DLC膜のラマン散乱スペクトルにおいても、ラマンシフト1570/cm付近のGバンド、及びラマンシフト1350/cm付近のDバンドは保持され、DLC構造が維持されていることが確認された。   3 and 5, the non-conductive DLC film before ion beam irradiation has a DLC-specific peak with a G band in the vicinity of Raman shift 1570 / cm and a D band in the vicinity of Raman shift 1350 / cm. It was confirmed to be a membrane. 4 and 6, also in the Raman scattering spectrum of the conductive DLC film after the ion beam irradiation, the G band near the Raman shift 1570 / cm and the D band near the Raman shift 1350 / cm are retained. It was confirmed that the structure was maintained.

また、本発明の導電性DLC膜は、DLCに特有のGバンド及びDバンドを維持しながら、全体としてほぼ台形状のピークを有するという特徴を有している。このようなほぼ台形状のピークが形成される理由としては、通常のGバンドとDバンド以外に非導電性DLCではほとんど認識できない1150/cm付近のピーク及び1500/cm付近のピークが明確に現れることによるものと推測される。これら2つのピークは、現状ではポリアセチレン構造又はそれに近い構造に由来するものと推測される。   In addition, the conductive DLC film of the present invention is characterized by having a substantially trapezoidal peak as a whole while maintaining the G band and D band specific to DLC. The reason why such a substantially trapezoidal peak is formed is that a peak near 1150 / cm and a peak near 1500 / cm, which are hardly recognized by non-conductive DLC, appear clearly other than the normal G band and D band. This is presumed to be due to this. These two peaks are presumed to be derived from a polyacetylene structure or a structure close thereto at present.

以上の結果から、本発明の条件でイオンビームを照射することにより、非導電性であるDLC膜が、そのDLC構造や特性を維持したまま、導電性DLC膜に変換されることが明らかである。   From the above results, it is clear that by irradiating with an ion beam under the conditions of the present invention, a non-conductive DLC film is converted into a conductive DLC film while maintaining its DLC structure and characteristics. .

(参考例1)
スパッタ装置に炭素ターゲットを装着し、50nmの酸化膜を表面に持つシリコン基板上に膜厚およそ100nmの炭素膜を形成した。抵抗率計(ロレスタ)により抵抗率を測定すると244Ω・cmであり、十分な導電性を有していなかった。この炭素膜に加速エネルギー75keV、電流密度30〜50μA/cm2の範囲、イオンビーム照射量3×1016〜1×1017/cm2の範囲で窒素イオンビームを照射した。得られた炭素膜の抵抗率は17〜19mΩ・cmに低下し、導電性の向上が確認された、これは、イオンビームの照射により、DLC膜ではない高抵抗の炭素膜が導電性DLC膜に変換されたがものであると考えられる。
(Reference Example 1)
A carbon target was mounted on the sputtering apparatus, and a carbon film having a thickness of about 100 nm was formed on a silicon substrate having a 50 nm oxide film on the surface. When the resistivity was measured with a resistivity meter (Loresta), it was 244 Ω · cm, and it did not have sufficient conductivity. This carbon film was irradiated with a nitrogen ion beam at an acceleration energy of 75 keV, a current density of 30 to 50 μA / cm 2 , and an ion beam irradiation amount of 3 × 10 16 to 1 × 10 17 / cm 2 . The resistivity of the obtained carbon film was reduced to 17 to 19 mΩ · cm, and the improvement in conductivity was confirmed. This is because the high resistance carbon film that is not a DLC film is made conductive by the ion beam irradiation. Is considered to have been converted to.

Claims (3)

化学気相成長法又は物理気相成長法により非導電性DLC膜を成膜する工程と、前記工程で得られた前記非導電性DLC膜に、該非導電性DLC膜を透過可能な加速エネルギーを有するイオンビームを、照射量3×1015/cm2〜1×1018/cm2の範囲で照射し、前記非導電性DLC膜を導電性DLC膜に変換する工程と、を含む、導電性DLC膜の製造方法。 A step of forming a non-conductive DLC film by chemical vapor deposition or physical vapor deposition, and an acceleration energy that can be transmitted through the non-conductive DLC film to the non-conductive DLC film obtained in the step And irradiating an ion beam having a dose of 3 × 10 15 / cm 2 to 1 × 10 18 / cm 2 to convert the non-conductive DLC film into a conductive DLC film. A method for manufacturing a DLC film. 前記非導電性DLC膜の水素含有量が5原子組成%以下である、請求項1に記載の導電性DLC膜の製造方法。   The method for producing a conductive DLC film according to claim 1, wherein the hydrogen content of the nonconductive DLC film is 5 atomic percent or less. 前記イオンビームのエネルギー密度が0.2W/cm2以上である、請求項1又は2に記載の導電性DLC膜の製造方法。 The method for producing a conductive DLC film according to claim 1 or 2, wherein an energy density of the ion beam is 0.2 W / cm 2 or more.
JP2016193242A 2016-09-30 2016-09-30 Method for manufacturing conductive DLC film Active JP6684488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016193242A JP6684488B2 (en) 2016-09-30 2016-09-30 Method for manufacturing conductive DLC film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016193242A JP6684488B2 (en) 2016-09-30 2016-09-30 Method for manufacturing conductive DLC film

Publications (2)

Publication Number Publication Date
JP2018052784A true JP2018052784A (en) 2018-04-05
JP6684488B2 JP6684488B2 (en) 2020-04-22

Family

ID=61833559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016193242A Active JP6684488B2 (en) 2016-09-30 2016-09-30 Method for manufacturing conductive DLC film

Country Status (1)

Country Link
JP (1) JP6684488B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021028399A1 (en) * 2019-08-14 2021-02-18 Ihi Hauzer Techno Coating B.V. Method of coating one or more metal components of a fuel cell stack, component of a fuel cell stack and apparatus for coating one or more components of a fuel cell stack
CN115612989A (en) * 2022-09-27 2023-01-17 苏州辉钻纳米新材料有限公司 Novel high-order static dissipation film composite material containing silicon and oxygen and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144705A (en) * 1984-08-09 1986-03-04 Toshiba Corp Method for forming electrically conductive carbon film
JPH11130589A (en) * 1997-10-28 1999-05-18 Nippon Hoso Kyokai <Nhk> Deposition of diamond film or diamondlike carbon film and apparatus therefor and cold anode produced by using the same deposition and apparatus
JP2002538594A (en) * 1999-02-26 2002-11-12 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング Electron emitting material and method of manufacturing electron emitting material
US20050181523A1 (en) * 2004-02-12 2005-08-18 Takeshi Kijima Ferroelectric capacitor, method of manufacturing the same, and ferroelectric memory
US20050237669A1 (en) * 2004-04-23 2005-10-27 Sae Magnetics (H.K.) Ltd. Manufacturing method of thin-film magnetic head, thin-film magnetic head, head gimbal assembly with thin-film magnetic head, and magnetic disk apparatus with head gimbal assembly
JP2014129839A (en) * 2012-12-28 2014-07-10 Minebea Co Ltd Porous metal sliding member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144705A (en) * 1984-08-09 1986-03-04 Toshiba Corp Method for forming electrically conductive carbon film
JPH11130589A (en) * 1997-10-28 1999-05-18 Nippon Hoso Kyokai <Nhk> Deposition of diamond film or diamondlike carbon film and apparatus therefor and cold anode produced by using the same deposition and apparatus
JP2002538594A (en) * 1999-02-26 2002-11-12 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング Electron emitting material and method of manufacturing electron emitting material
US20050181523A1 (en) * 2004-02-12 2005-08-18 Takeshi Kijima Ferroelectric capacitor, method of manufacturing the same, and ferroelectric memory
US20050237669A1 (en) * 2004-04-23 2005-10-27 Sae Magnetics (H.K.) Ltd. Manufacturing method of thin-film magnetic head, thin-film magnetic head, head gimbal assembly with thin-film magnetic head, and magnetic disk apparatus with head gimbal assembly
JP2014129839A (en) * 2012-12-28 2014-07-10 Minebea Co Ltd Porous metal sliding member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021028399A1 (en) * 2019-08-14 2021-02-18 Ihi Hauzer Techno Coating B.V. Method of coating one or more metal components of a fuel cell stack, component of a fuel cell stack and apparatus for coating one or more components of a fuel cell stack
CN115612989A (en) * 2022-09-27 2023-01-17 苏州辉钻纳米新材料有限公司 Novel high-order static dissipation film composite material containing silicon and oxygen and preparation method thereof

Also Published As

Publication number Publication date
JP6684488B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
Leng et al. Preparation and properties of SnO2 film deposited by magnetron sputtering
JP5966199B2 (en) Piezoelectric thin film and manufacturing method thereof
Arshi et al. Effects of nitrogen composition on the resistivity of reactively sputtered TaN thin films
Li et al. Highly electron transparent graphene for field emission triode gates
Bikowski et al. The correlation between the radial distribution of high-energetic ions and the structural as well as electrical properties of magnetron sputtered ZnO: Al films
Choi et al. Tin nitride thin films fabricated by reactive radio frequency magnetron sputtering at various nitrogen gas ratios
Panwar et al. Few layer graphene synthesized by filtered cathodic vacuum arc technique
JP6684488B2 (en) Method for manufacturing conductive DLC film
Jeong et al. Surface characteristics of MoN x thin films obtained by reactive rf magnetron sputtering in UHV system
JP4150789B2 (en) Amorphous carbon nitride film and manufacturing method thereof
Pasaja et al. Mo-containing tetrahedral amorphous carbon deposited by dual filtered cathodic vacuum arc with selective pulsed bias voltage
JP5295102B2 (en) Conductive protective film and manufacturing method thereof
Ahmed et al. Microstructure and residual stress dependence of molybdenum films on DC magnetron sputtering conditions
Endrino et al. Electronic structure and conductivity of nanocomposite metal (Au, Ag, Cu, Mo)-containing amorphous carbon films
US6217722B1 (en) Process for producing Ti-Cr-Al-O thin film resistors
KR101888557B1 (en) ta-C composite coating layer, apparatus for manufacturing ta-C composite coating layer and method for manufacturing using the same
TWI404129B (en) Method for manufacturing carbon film with semiconductor properties
Elahi et al. The Effect of Deposition Rate on Morphology and Structural Properties of Carbon‐Nickel Composite Films
JP2004217975A (en) Carbon thin film and manufacturing method therefor
KR101695590B1 (en) ELECTRODE FOR WATER TREATMENT WITH DIAMOND COATING LAYER ON Ti SUBSTRATE AND MANUFACTURING METHOD THREREOF
Nulhakim et al. Influence of polarity inversion on the electrical properties of Ga‐doped ZnO thin films
Zhao et al. Structural and Electrical Studies on ZnO‐Based Thin Films by Laser Irradiation
Chen et al. Influence of Annealing Temperature on the Characteristics of Ti‐Codoped GZO Thin Solid Film
Lomon et al. Diamond-like carbon films prepared by high power impulse magnetron sputtering
JP6466197B2 (en) Semiconductor-metal composite material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200319

R150 Certificate of patent or registration of utility model

Ref document number: 6684488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250