JPH01318227A - Photo assisted cvd device - Google Patents

Photo assisted cvd device

Info

Publication number
JPH01318227A
JPH01318227A JP15009388A JP15009388A JPH01318227A JP H01318227 A JPH01318227 A JP H01318227A JP 15009388 A JP15009388 A JP 15009388A JP 15009388 A JP15009388 A JP 15009388A JP H01318227 A JPH01318227 A JP H01318227A
Authority
JP
Japan
Prior art keywords
lamp
pressure mercury
magnetic field
substrate
mercury lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15009388A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nozaki
野崎 秀俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15009388A priority Critical patent/JPH01318227A/en
Publication of JPH01318227A publication Critical patent/JPH01318227A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize substrate temperature and to improve the element characteristics and reproducibility characteristics of an element which is formed by an optical CVD device by providing a low pressure mercury lamp in a magnetic field applied externally. CONSTITUTION:A magnetic field application means 12 is provided which applies a magnetic field in a longitudinal direction of a low pressure mercury lamp 11. When a magnetic filed is applied in the longitudinal direction of a low pressure mercury lamp, charged particles such as argon ions and electrons which exist in discharge plasma inside a lamp tube carry out a spiral movement around a central axis inside the lamp tube which is parallel to the longitudinal direction of the lamp. Therefore, discharge can be concentrated around the central axis to keep discharge away from an inner wall of the lamp. Since the number of charged particles which collide to the inner wall of the lamp can be reduced to prevent heating of the lamp in this way, temperature rise of a substrate after the lamp is illuminated can be prevented. According to this constitution, temperature of the substrate after the lamp illuminated can be stabilized and a deposited initial film becomes uniform, thus realizing improvement of element characteristics and reproducibility.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、低圧水銀ランプを具備した光CVD装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a photo-CVD apparatus equipped with a low-pressure mercury lamp.

(従来の技術) A戊 従来の輪圧水銀2ンプを具備した元口装置の一例を第3
図に示す0真壁反応容器(31)の?に仮サセプター(
32)上にヒーター(33)より加熱された基板(34
)が設置され、ランプ室(35)の低圧水銀ランプ(3
6)から石英窓(37)を通して照射される紫外線が、
ガス導入パルプ(38)より供給される原料ガスを分解
するかあるいは水銀などの増感剤を励起しその励起され
た増感剤が原料ガスを分解することlこより基板(34
J上に薄膜が堆積する。原料ガス導入前に31の真壁反
応容器は高X窒排気バルブ(39)を通して高真空lこ
排気され、碑大したガスはバルブ(40)を通して排気
される。
(Prior art) An example of a conventional head-mouth device equipped with two circular pressure mercury pumps is shown in the third example.
What about the zero Makabe reaction vessel (31) shown in the figure? Temporary susceptor (
32) A substrate (34) heated by a heater (33) is placed on top of the substrate (34).
) is installed, and a low-pressure mercury lamp (3) in the lamp chamber (35) is installed.
6) through the quartz window (37),
The substrate (34) decomposes the raw material gas supplied from the gas introduction pulp (38) or excites a sensitizer such as mercury, and the excited sensitizer decomposes the raw material gas.
A thin film is deposited on J. Before introducing the raw material gas, the Makabe reaction vessel 31 is evacuated to a high vacuum through the high-X nitrogen exhaust valve (39), and the excessively large gas is exhausted through the valve (40).

連常のプロセスでは、薄膜の堆積方向へのj良質を均質
にするため、十分基板(34)の温度が安定状態に達し
た後に、36の低圧水銀ランプを点灯し薄膜を堆積する
。しかしながら、低圧水銀ランプの発光効率は全投入パ
ワーの約15〜20%栓度であり、残りの80〜85俤
は主に熱にf換されるため、ランプ点灯後に基板の流度
が次第に上昇するという問題があった。一般に、堆積膜
のi質は基板温度に強く依存するため、その結果、初期
の堆積膜の均質性が著しく損なわれ、この薄膜を用いた
素子特性の不良および素子特性の再現性の不良な招いて
いた。
In the continuous process, in order to make the quality of the thin film uniform in the direction of deposition, after the temperature of the substrate (34) has sufficiently reached a stable state, the low pressure mercury lamp 36 is turned on to deposit the thin film. However, the luminous efficiency of low-pressure mercury lamps is about 15-20% of the total input power, and the remaining 80-85 watts is mainly converted into heat, so the flow rate of the substrate gradually increases after the lamp is lit. There was a problem. In general, the i-quality of the deposited film strongly depends on the substrate temperature, and as a result, the initial homogeneity of the deposited film is significantly impaired, leading to poor device characteristics and poor reproducibility of device characteristics using this thin film. was.

(発明が解決しようとする線順) 以上のように、従来の低圧水銀ランプを用いた光(至)
装置では、低圧水銀ランプ点灯後に基板温度が次第に上
昇し、初期の堆積膜の均質性が損なわれるのでこの薄膜
を用いた素子特性が不良になり、加えて素子特性の再現
性も劣るという問題があった〇 本発明は、上記の問題を解決するためlこなされたもの
であり、低圧水銀ランプを点灯しても基板温度の安定化
が実現し、初期の堆積膜の均質化が図られ、素子特性お
よび再ノー−1性の向上を実現できる光已の装置を提供
することを目的とでる。
(Line order to be solved by the invention) As described above, light (to) using a conventional low-pressure mercury lamp
In the device, the substrate temperature gradually rises after the low-pressure mercury lamp is turned on, which impairs the homogeneity of the initial deposited film, resulting in poor device characteristics using this thin film and, in addition, poor reproducibility of device characteristics. The present invention was developed to solve the above problems, and even when a low-pressure mercury lamp is turned on, the substrate temperature can be stabilized, and the initial deposited film can be homogenized. The object of the present invention is to provide an optical device that can improve device characteristics and reproducibility.

〔発明の構成〕[Structure of the invention]

(腺迦を解決するための手段) 本発明は、低圧水銀ランプを具備した光CVD装置lこ
おいて、前記低圧水銀ランプの長さ方向に磁場を引加す
る磁場引加手段を設けたものである。
(Means for solving the problem) The present invention provides an optical CVD apparatus equipped with a low-pressure mercury lamp, which is provided with a magnetic field applying means for applying a magnetic field in the length direction of the low-pressure mercury lamp. It is.

本発明の磁場引加手段は、直N、または交流電流をコイ
ルに流すことにより磁場を発生する手段であっても、永
久磁石lζより磁場を発生てる手段であってもよい。
The magnetic field applying means of the present invention may be a means for generating a magnetic field by passing a direct N or alternating current through a coil, or a means for generating a magnetic field from a permanent magnet lζ.

本発明の光CVD装置は、水銀などのバ1感剤を用いた
光CVD法や増感剤を用いない直接励起光(至)法のい
ずれにも適用できるとともに、アモルファスシリコン(
以下 a−8iと記す)などの半導体薄膜や窒化膜、酸
化膜などの絶縁物薄膜の製造tご用いることができる。
The photo-CVD apparatus of the present invention can be applied to either a photo-CVD method using a sensitizer such as mercury or a direct excitation light method that does not use a sensitizer.
It can be used to manufacture semiconductor thin films such as (hereinafter referred to as a-8i) and insulating thin films such as nitride films and oxide films.

また本発明の磁場の強度は、低圧水銀ランプ内の封入ア
ルゴンガス圧力や放電電流などの条件に応じて適切な範
囲が存在するが、放電をランプの中心軸付近に集中させ
られる強度であれば艮い〇(作#4) 低圧水銀ランプから発せられる熱線(赤外線。
The strength of the magnetic field of the present invention has an appropriate range depending on the conditions such as the pressure of the argon gas sealed in the low-pressure mercury lamp and the discharge current, but as long as it is strong enough to concentrate the discharge near the central axis of the lamp.艮〇(Work #4) Heat rays (infrared rays) emitted from a low-pressure mercury lamp.

遠赤外線)の大きな原因として、放電中のランプ内で生
じるアルゴンイオンや電子が石英製のランプ内壁に衝突
しランプを加熱することが挙げられる。
A major cause of far-infrared rays is that argon ions and electrons generated within the lamp during discharge collide with the quartz lamp inner wall, heating the lamp.

低圧水銀ランプの長さ力回に磁場が加わった礪膏、ラン
プ管内の放電プラズマ中に存在するアルゴンイオンや電
子などの荷電粒子は、ランプ長さ方向と平行なうンプ管
内の中心軸付近でらせん運動を行うため、放電をランプ
管内中心軸付近に集中させることができ、放電をランプ
内壁から遠ざけることができる。その結果、ランプ内壁
lこ衝突する荷電粒子数が減少し、ランプの加熱を防止
できるためランプ点灯後の基板温度の上昇を防止できる
When a magnetic field is applied to the length of a low-pressure mercury lamp, charged particles such as argon ions and electrons present in the discharge plasma inside the lamp tube spiral near the central axis inside the pump tube, which is parallel to the length direction of the lamp. Because of the movement, the discharge can be concentrated near the central axis within the lamp tube, and the discharge can be moved away from the inner wall of the lamp. As a result, the number of charged particles colliding with the inner wall of the lamp is reduced, and heating of the lamp can be prevented, thereby preventing an increase in substrate temperature after the lamp is turned on.

このよう−こして、本発明の光O■装置の構成をとれば
、ランプ点灯後の基板温度の安定化が図られるので、堆
積初期膜が均質になり、素子特性の向上および再現性の
向上が実現できる。
In this way, by adopting the configuration of the optical O2 device of the present invention, the temperature of the substrate after the lamp is turned on can be stabilized, so that the initially deposited film becomes homogeneous, and the device characteristics and reproducibility are improved. can be realized.

【実施例) 以下、本発明の実施例を図面を参照して畦細に説明する
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、−実施例Iこよる光CVD装置の低圧水銀ラ
ンプの平面図である。低圧水銀ランプ11に磁場発生用
コイル12を巻き、ランプ長さ方向(こ磁場を印加する
0ここで13は磁場発生用コイル124ζ[流または交
流電流を通すための直流または交流電源である。磁場は
、第2図に示すようlζ22の低圧水銀ランプ長さ方向
に磁場が印加されるように配置すれば良い。
FIG. 1 is a plan view of a low-pressure mercury lamp of a photo-CVD apparatus according to Example I. A magnetic field generating coil 12 is wound around a low-pressure mercury lamp 11, and a magnetic field is applied in the lengthwise direction of the lamp. may be arranged so that a magnetic field is applied in the length direction of the low pressure mercury lamp lζ22 as shown in FIG.

この実施例による低圧水銀ランプを具備した元C’VD
装置の低圧水銀ランプ点灯後の基板表面温度の温度上杵
を従来の場合と比較した。ランプ点灯Qi口こは、ヒー
ター33により基板表面温度を200〜250℃の範囲
のある特定m度において一定lこ保った。低圧水銀ラン
プへの入カバワーは100W 。
Original C'VD equipped with low pressure mercury lamp according to this embodiment
The temperature of the substrate surface after the device's low-pressure mercury lamp was turned on was compared with the conventional case. When the lamp was turned on, the substrate surface temperature was kept constant at a certain degree in the range of 200 to 250 degrees Celsius by means of a heater 33. The input power to the low pressure mercury lamp is 100W.

低圧水銀ランプと基板間の距離は50mrnの条件を用
いた。また反応室にはヘリウムガスを導入し、ガス圧力
を0.1〜1 torr(1)範囲で一定に保った。比
較の結果、従来の光CVD装置6ζおいては、低王水嫁
ランプ点灯後の基板温度が次第に上昇し、点灯後30分
では約40℃上昇したが、−1本実施例の光CVD装置
ではランプ点灯後、数分以内に基板温度は安定し、基板
温度上昇を3℃以内に抑制することができた。
The distance between the low-pressure mercury lamp and the substrate was set at 50 mrn. Further, helium gas was introduced into the reaction chamber, and the gas pressure was kept constant in the range of 0.1 to 1 torr (1). As a result of the comparison, in the conventional photo-CVD apparatus 6ζ, the substrate temperature gradually rose after the low aqua regia lamp was turned on, and rose by about 40 degrees Celsius 30 minutes after turning on, but -1 in the photo-CVD apparatus of this embodiment. In this case, the substrate temperature stabilized within several minutes after the lamp was turned on, and the rise in substrate temperature could be suppressed to within 3°C.

本実施例の元CVD 4!置によって形成した水素化非
晶質シリコン薄膜または水素化非晶質シリコンを母体と
した窒素あるいは酸素を含有する絶縁体薄膜を用いた素
子は、初期堆積膜が均質1こなる効果により、従来例よ
りも明らかに特性を改善することができた。
Original CVD of this example 4! Elements using a hydrogenated amorphous silicon thin film formed by a chemical process or an insulating thin film containing nitrogen or oxygen using hydrogenated amorphous silicon as a matrix are superior to conventional devices due to the effect that the initially deposited film is homogeneous. The characteristics were clearly improved.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、低圧水銀ランプを外部より印加され
た磁場中に設置することにより、基板温度の安定化を図
ることができ、本実施例の光(2)装置で形成した素子
特性や素子の再現性特性を改善することができる。
As described above, by installing a low-pressure mercury lamp in an externally applied magnetic field, it is possible to stabilize the substrate temperature, and to improve the device characteristics and reproducibility characteristics can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

11.22.36・・・低圧水銀ランプ、12・・・磁
杓発生用コイル、13・・・磁場発生用コイルの直流ま
たは交流電源、 21.23・・・1iB83発生用永
久磁石、31・・・真伊反応容器。
11.22.36...Low-pressure mercury lamp, 12...Magnetic scoop generation coil, 13...DC or AC power supply for magnetic field generation coil, 21.23...1iB83 generation permanent magnet, 31. ...Mai reaction vessel.

Claims (1)

【特許請求の範囲】[Claims]  低圧水銀ランプを具備した光CVD装置において、前
記低圧水銀ランプの長さ方向に磁場を引加する磁場引加
手段を設けたことを特徴とする光CVD装置。
An optical CVD apparatus equipped with a low-pressure mercury lamp, characterized in that the apparatus is provided with a magnetic field applying means for applying a magnetic field in the longitudinal direction of the low-pressure mercury lamp.
JP15009388A 1988-06-20 1988-06-20 Photo assisted cvd device Pending JPH01318227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15009388A JPH01318227A (en) 1988-06-20 1988-06-20 Photo assisted cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15009388A JPH01318227A (en) 1988-06-20 1988-06-20 Photo assisted cvd device

Publications (1)

Publication Number Publication Date
JPH01318227A true JPH01318227A (en) 1989-12-22

Family

ID=15489359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15009388A Pending JPH01318227A (en) 1988-06-20 1988-06-20 Photo assisted cvd device

Country Status (1)

Country Link
JP (1) JPH01318227A (en)

Similar Documents

Publication Publication Date Title
JP2635021B2 (en) Deposition film forming method and apparatus used for the same
JPH01318227A (en) Photo assisted cvd device
JPS6141763A (en) Thin film manufacturing apparatus
JP4643168B2 (en) Method for oxidizing silicon substrate
JPS59207621A (en) Formation of thin film
JP5193488B2 (en) Method and apparatus for forming oxide film
JPH0786240A (en) Surface treatment device
JPS62127472A (en) Apparatus for forming thin film
JP2001274150A (en) Plasma processing system, member for generating and introducing plasma, and slot electrode
JPH0693454A (en) Glow discharge method and device therefor
JPH0978245A (en) Formation of thin film
JPS6417869A (en) Microwave plasma chemical vapor deposition device
JP3088446B2 (en) Plasma processing apparatus and plasma processing method
JPH0817801A (en) Ecr plasma etching method of diamond thin film
JPH02263799A (en) Base plate heating device and its operation
JPH0723547B2 (en) Plasma equipment
JPH05125546A (en) Plasma treating device
JPS61288431A (en) Manufacture of insulating layer
JPH0340422A (en) Film formation device
JPH0677196A (en) Divided batch-type heat treatment apparatus
JPH05275390A (en) Plasma processing method
JPH02207528A (en) Plasma chemical reaction film forming equipment and its method
JPS61284579A (en) Plasma concentration type cvd device
JP2990838B2 (en) Dry etching equipment
JPH06124904A (en) Plasma processing apparatus