JPS61284579A - Plasma concentration type cvd device - Google Patents

Plasma concentration type cvd device

Info

Publication number
JPS61284579A
JPS61284579A JP12652085A JP12652085A JPS61284579A JP S61284579 A JPS61284579 A JP S61284579A JP 12652085 A JP12652085 A JP 12652085A JP 12652085 A JP12652085 A JP 12652085A JP S61284579 A JPS61284579 A JP S61284579A
Authority
JP
Japan
Prior art keywords
plasma
anode
magnetic field
substrate
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12652085A
Other languages
Japanese (ja)
Other versions
JPH0465149B2 (en
Inventor
Zenichi Yoshida
善一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12652085A priority Critical patent/JPS61284579A/en
Publication of JPS61284579A publication Critical patent/JPS61284579A/en
Publication of JPH0465149B2 publication Critical patent/JPH0465149B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To gather high-density plasma to just above a substrate and to deposit uniformly a thin film having high quality on the substrate at a high speed by bending perpendicularly the plasma radiated from the circumference of a vacuum vessel by using a cusp magnetic field thereby concentrating the plasma to the substrate. CONSTITUTION:The plasma of a large area is formed from an annular slit when nitrogen is introduced as the gas to be ionized from plural gas introducing ports 16 of the vacuum vessel 15 toward an annular plasma source 21 in the direction X. The intensity of the magnetic field enough to conduct electric discharge is assured in two intermediate electrodes 18, 19 by making use of the cusp magnetic field generated by two annular magnets 20 in which equiv. currents flow in opposite directions. An anode 23 having a powerful magnet 24 is disposed perpendicularly to the initial plasma flow to concentrate the plasma flow to the neighborhood of the anode 23. For example, a gaseous silane is passed from the ports 26 near the anode 23 by which the nitride film is uniformly deposited on the anode 23.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体プロセス技術2表面処理技術等の膜付け
を行なうプラズマ集中型CV D (Chemical
Vapor Deposition )装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention applies to semiconductor process technology 2, plasma-intensive CVD (Chemical
The present invention relates to a Vapor Deposition (Vapor Deposition) device.

従来の技術 第6図は従来のプラズマCVD装置の原理的構成図であ
シ、1は真空槽、2はガス導入口、3は排気系、4は真
空槽1内に設けられたプラズマ発生用の高周波電極、6
は高周波電極4と対向配置された試料台、6は試料台5
の上に配置された試料基板である。
Conventional technology FIG. 6 is a basic configuration diagram of a conventional plasma CVD apparatus. 1 is a vacuum chamber, 2 is a gas inlet, 3 is an exhaust system, and 4 is a plasma generation device provided in the vacuum chamber 1. high frequency electrode, 6
6 is a sample stand placed opposite the high-frequency electrode 4, and 6 is a sample stand 5.
The sample substrate is placed on top of the sample substrate.

以上のように構成された従来のプラズマCVD装置の動
作について説明する。すなわち、試料台5を300〜5
00℃に加熱し、ガス導入口2より、たとえばシランガ
ス(S i H4)およびアンモニアガス(NH3)を
導入し、高周波電源7から高周波電極4に電力を印加し
て、一般にガス圧1Q〜105Paでプラズマ8を発生
させ、SiH4やNH3が解離し、この解離したイオン
やラジカルが、試料基板6の表面上で反応・化合し、窒
化シリコン膜を堆積させるものである。
The operation of the conventional plasma CVD apparatus configured as described above will be explained. That is, the sample stage 5 is
For example, silane gas (S i H4) and ammonia gas (NH3) are introduced from the gas inlet 2, and power is applied from the high frequency power source 7 to the high frequency electrode 4, generally at a gas pressure of 1 Q to 105 Pa. Plasma 8 is generated to dissociate SiH4 and NH3, and the dissociated ions and radicals react and combine on the surface of sample substrate 6 to deposit a silicon nitride film.

さらにもう一つの従来例として、第6図に示すようなマ
イクロ波放電によシ発生したプラズマを試料まで輸送し
て膜形成を行うプラズマ輸送法CVD装置がある。9は
真空槽、10は真空槽9のまわシにまかれたコイル、1
1は真空槽10内に設けられたプラズマ源、12はプラ
ズマ源11に対向配置された試料であり、導波管12に
よシマイクロ波をプラズマ源11に導入する。この従来
例ではマイクロ波放電によって発生したプラズマ14を
、コイル10からの平行磁界によシ、熱的拡散によって
プラズマ流14′を試料13の表面に輸送することによ
り、試料6に膜形成を行うものである。
Yet another conventional example is a plasma transport CVD apparatus, as shown in FIG. 6, in which plasma generated by microwave discharge is transported to a sample to form a film. 9 is a vacuum chamber, 10 is a coil wound around the vacuum chamber 9, 1
1 is a plasma source provided in a vacuum chamber 10, 12 is a sample placed opposite to the plasma source 11, and microwaves are introduced into the plasma source 11 through a waveguide 12. In this conventional example, a film is formed on the sample 6 by transporting plasma 14 generated by microwave discharge to the surface of the sample 13 through thermal diffusion using a parallel magnetic field from the coil 10. It is something.

発F3Aか解決しようとする問題点 しかし、第5図のような構造のプラズマCVD装置では
、S I H4やNH3の分解が不充分で、水素が多量
に膜内に取り込まれたり、結合の不完全部分が多く残シ
、緻密性のよい膜が得られないという問題点があった。
Problems that F3A is trying to solve However, in the plasma CVD apparatus with the structure shown in Figure 5, the decomposition of S I H4 and NH3 is insufficient, and a large amount of hydrogen is incorporated into the film, resulting in poor bonding. There were problems in that many complete parts remained and a film with good density could not be obtained.

つまり、プラズマ8が生成される所に試料基板6がある
ので、プラズマ密度が低く、解離が充分に行われていな
い状態で、試料基板6の表面上で反応・化合するためで
あった。
That is, since the sample substrate 6 is located in a place where the plasma 8 is generated, the plasma density is low, and reactions and combinations occur on the surface of the sample substrate 6 without sufficient dissociation.

また、第6図のような構造のプラズマ輸送法CVD装置
では、プラズマ流14の径が2cm程度と小さく、膜形
成可能な面積が従来のプラズマCVD装置に比較して小
さく、生産性が低いという問題点があった。
In addition, in the plasma transport CVD apparatus having the structure shown in Fig. 6, the diameter of the plasma flow 14 is as small as about 2 cm, and the area where a film can be formed is smaller than that of conventional plasma CVD apparatuses, resulting in low productivity. There was a problem.

つまり、プラズマ流14の径がプラズマ源11の口径に
より決定されるためであった。
That is, this is because the diameter of the plasma flow 14 is determined by the diameter of the plasma source 11.

そこで、本発明は上記従来の問題点を解消するもので、
従来のプラズマCVD装置の特長を生かし、良質の薄膜
を大面積にわたって高速で均一に形成できるプラズマ集
中型CVD装置を提供することを目的とする。
Therefore, the present invention solves the above-mentioned conventional problems.
It is an object of the present invention to provide a plasma-intensive CVD device that can uniformly form a high-quality thin film over a large area at high speed by taking advantage of the features of conventional plasma CVD devices.

問題点を解決するための手段 本発明の装置は、真空槽と、真空槽にプラズマが放射さ
れるように設置されたプラズマ源と、プラズマ源とは垂
直に配置された陽極と、プラズマ源から放射されたプラ
ズマ陽極上に集中させるためにプラズマ流を曲げるため
の磁界と、陽極近傍にガスを導入するだめのガス導入管
を備えたものある。
Means for Solving the Problems The apparatus of the present invention includes a vacuum chamber, a plasma source installed so that plasma is radiated into the vacuum chamber, an anode disposed perpendicularly to the plasma source, and a plasma source disposed from the plasma source. Some are equipped with a magnetic field to bend the plasma stream to concentrate the emitted plasma onto the anode, and a gas inlet tube to introduce gas near the anode.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち、真空槽の周りから放射されたプラズマをカス
プ磁界を用いて、垂直方向に曲げ、基板にプラズマを集
中させる。
That is, the plasma radiated from around the vacuum chamber is bent in the vertical direction using a cusp magnetic field, and the plasma is concentrated on the substrate.

この結果、高密度のプラズマを基板の真上に集めること
ができ、高速で均一に高品質の薄膜を堆積させることが
できる。
As a result, high-density plasma can be collected directly above the substrate, and a high-quality thin film can be deposited uniformly at high speed.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例におけるプラズマ集中型
高速CVD装置の構成を示すものである。
FIG. 1 shows the configuration of a plasma concentrated high speed CVD apparatus in a first embodiment of the present invention.

第1図において、15は真空槽、16はガス導入口、1
7は放電陰極、18は第1の中間電極、19は第2の中
間電極、2Qは第1の中間電極18内に設けられた磁石
、21は放電陰極17と第1の電極18と第2の電極1
9とで構成されたリング状のプラズマ源−22はコイル
−23はプラズマ源21の陽極、24は陽極23の下に
配置された棒状の磁石、25は陽極23を冷却するだめ
の冷却水、26はリング状ガス導入口、27は排気系で
ある。
In FIG. 1, 15 is a vacuum chamber, 16 is a gas inlet, and 1
7 is a discharge cathode, 18 is a first intermediate electrode, 19 is a second intermediate electrode, 2Q is a magnet provided in the first intermediate electrode 18, and 21 is a discharge cathode 17, a first electrode 18, and a second intermediate electrode. electrode 1
9, a ring-shaped plasma source 22 is composed of a coil 23, an anode of the plasma source 21, a rod-shaped magnet 24 placed under the anode 23, and a cooling water 25 for cooling the anode 23; 26 is a ring-shaped gas inlet, and 27 is an exhaust system.

以上のように構成された第1の実施例のプラズマ集中型
CVD装置について以下その動作を説明する。
The operation of the plasma concentrated CVD apparatus of the first embodiment configured as described above will be explained below.

まず、リング状のプラズマ源21に被イオン化ガスとし
てたとえば窒素を複数のガス導入口16からX方向に導
入すると、環状のスリット(たとえばスリット幅1.5
mm)から大面積のプラズマが生成される。二つの中間
電極18.19によって、陰極領域と陽極領域に圧力差
がつけである。直流電源2日によって、陰極17と第1
の中間電極18との電位差は、たとえば40v、第1の
中間電極18と第2の中間電極19とは、たとえば35
V、第2の中間電極19と陽極23とは、たとえば2Q
Vの放電々圧である。二つの中間電極18.19の中で
は放電を導くのに充分な磁場の強さを確保するために、
逆方向に等価電流の流れる二つのりング状磁石20によ
ってつくられるカスプ磁界を利用した。
First, when a gas to be ionized, such as nitrogen, is introduced into the ring-shaped plasma source 21 in the X direction from a plurality of gas introduction ports 16, a ring-shaped slit (for example, a slit width of 1.5
mm), a large area plasma is generated. Two intermediate electrodes 18, 19 provide a pressure difference between the cathode region and the anode region. By DC power supply 2 days, cathode 17 and 1st
The potential difference between the first intermediate electrode 18 and the second intermediate electrode 19 is, for example, 40 V, and the potential difference between the first intermediate electrode 18 and the second intermediate electrode 19 is, for example, 35 V.
V, the second intermediate electrode 19 and the anode 23 are, for example, 2Q
This is the discharge voltage of V. In order to ensure sufficient magnetic field strength to guide the discharge between the two intermediate electrodes 18 and 19,
A cusp magnetic field created by two ring-shaped magnets 20 in which equivalent currents flow in opposite directions was utilized.

プラズマ源21から水平方向に放射されたプラズマを陽
極23近傍に集中させるには、プラズマを90度近く曲
げる必要がある。陽極23は初期のプラズマ流に対して
直角に配置されており、その内部に強力な磁石24(た
とえば希土類マグネットのSmC06)を持っている。
In order to concentrate the plasma emitted horizontally from the plasma source 21 near the anode 23, it is necessary to bend the plasma by nearly 90 degrees. The anode 23 is placed perpendicular to the initial plasma flow and has a strong magnet 24 (for example, a rare earth magnet SmC06) inside it.

陽極23の表面と磁石24のS極表面は約2crn離さ
れて充分水冷できる構造になっている。第1図において
、初期のプラズマ流に沿って(プラズマ源21の軸に沿
って)X軸を定め、陽極23の表面に垂直に中心よりy
軸を定めると、プラズマの方向を変えるためにプラズマ
中の電子流はエネルギーが小さく、運動が熱化していな
いので水平磁場BIと垂直磁場Bアを用いて磁力線に沿
って収束させながら曲マ中電子流のエネルギーをV。(
eV)とすれば、となる。(1)式は、プラズマ流を曲
げるためにはプラズマ29中の電子のサイクロトロン半
径が、プラズマ流の半径より小さくなければならないこ
とを意味している。
The surface of the anode 23 and the S pole surface of the magnet 24 are separated by about 2 crn, so that they can be sufficiently cooled with water. In FIG. 1, the X axis is defined along the initial plasma flow (along the axis of the plasma source 21), and the y
Once the axis is determined, the energy of the electron flow in the plasma is small and the movement is not thermalized in order to change the direction of the plasma. The energy of the electron flow is V. (
eV), it becomes. Equation (1) means that in order to bend the plasma flow, the cyclotron radius of the electrons in the plasma 29 must be smaller than the radius of the plasma flow.

X方向の磁場B工は、逆方向に電流の流れる二つのコイ
ル22によってつくられるカスプ磁界によって得る。第
3図aにコイル22によってつくられた磁力線30を示
した。第6図すはコイル22に流れる電流の方向を示し
た模式図である。コイル22によるy方向の中心磁場は
零であり、y方向の磁場Bアは陽極23申の磁石24に
よって殆んど独立に決定されている。
The magnetic field B in the X direction is obtained by a cusp magnetic field created by two coils 22 in which current flows in opposite directions. FIG. 3a shows the magnetic field lines 30 created by the coil 22. FIG. 6 is a schematic diagram showing the direction of current flowing through the coil 22. The central magnetic field in the y direction due to the coil 22 is zero, and the magnetic field B in the y direction is almost independently determined by the magnet 24 of the anode 23.

高速で均一な膜堆積を得るためにはBx  とBアの関
係と、プラズマ流の曲がり方及び陽極23表面への収束
のされ方が影響してくる。
In order to obtain uniform film deposition at high speed, the relationship between Bx and Ba, the way the plasma flow curves, and the way it is focused on the surface of the anode 23 are influenced.

第3図に示した磁場配位では、第2の中間電極19近傍
のプラズマ拡散領域の磁場を急激に低下させることがで
きる。このため幅の広いプラズマを得ることかできる。
With the magnetic field configuration shown in FIG. 3, the magnetic field in the plasma diffusion region near the second intermediate electrode 19 can be rapidly reduced. Therefore, it is possible to obtain a wide plasma.

また第6図は第2の実施例における磁場配位を示し、第
2の中間電極19近傍のプラズマ拡散領域の磁場が徐々
に低下するので、収束したプラズマを得ることができる
Further, FIG. 6 shows the magnetic field configuration in the second embodiment, and since the magnetic field in the plasma diffusion region near the second intermediate electrode 19 gradually decreases, a focused plasma can be obtained.

このようにして陽極23の近傍に集中されたたとえば窒
素のプラズマが得られる。この時、陽極23の近傍にリ
ング状ガス導入口26から、たとえばシランガスを流す
ことにより、陽極23上に窒化膜を堆積させることがで
きる。
In this way, a plasma of nitrogen, for example, concentrated in the vicinity of the anode 23 is obtained. At this time, a nitride film can be deposited on the anode 23 by flowing, for example, silane gas from the ring-shaped gas inlet 26 near the anode 23.

以上のように本実施例によれば、プラズマ流を曲げ陽極
23の真上に集中させることにより、陽極23近傍での
プラズマ密度が増し、高真空中で膜堆積速度を速めるこ
とができる。また、磁場BxとBアの関係を適切にする
ことにより、陽極23表面でのプラズマの均一性をよく
することができ、大面積でも膜堆積の均一性をよくする
ことができる。
As described above, according to this embodiment, by concentrating the plasma flow directly above the bent anode 23, the plasma density near the anode 23 is increased, and the film deposition rate can be increased in a high vacuum. Further, by optimizing the relationship between the magnetic fields Bx and Ba, it is possible to improve the uniformity of plasma on the surface of the anode 23, and it is possible to improve the uniformity of film deposition even over a large area.

発明の効果 本発明は高密度のプラズマを試料の真上に集中させるこ
とにより、高速で均一に高品質の薄膜を堆積させること
ができるプラズマ集中型CVD装置を実現できるもので
ある。
Effects of the Invention The present invention makes it possible to realize a plasma-concentrated CVD apparatus that can uniformly deposit a high-quality thin film at high speed by concentrating high-density plasma directly above a sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例におけるプラズマ集中型
CVD装置の構成図、第2図は同斜視図、第3図a、 
 b及び第4図a、  bは磁界を示す模式  図、第
5図は従来のプラズマCVD装置の構成図、第6図は従
来のプラズマ輸送性CVD装置の構成図である。 16・・・・・・真空槽、21・・・・・・プラズマ源
、23・・・・・・陽極、26・・・・・・ガス導入口
、29・・・・・・プラズマ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名tr
−一具τi言 jG、21;−−vz %y 、O qo、M−一縄石 2′−一丁う2’12会 〃−−−ゴ弓ル 23−−−73.碍 2に一一ンftP→〈 27−−−琲気系 S−Z涜 fJ           ”−デ2パ′ts 、f9
− 片7’、”I’を罹 zo、24=i笠石 2/−−フ1うγマシ臣 2Z−−−ゴうル 23−−−1h−謹 第3図      to、s−携る 22−−ゴ4ル zy−III孜 男 4 図             7Q、24−磁
モ22−−ゴ^ル 23〜−−ア!l掻 (b)
FIG. 1 is a configuration diagram of a plasma concentrated CVD apparatus according to a first embodiment of the present invention, FIG. 2 is a perspective view thereof, and FIG.
4b and 4a and 4b are schematic diagrams showing magnetic fields, FIG. 5 is a block diagram of a conventional plasma CVD apparatus, and FIG. 6 is a block diagram of a conventional plasma transport CVD apparatus. 16... Vacuum chamber, 21... Plasma source, 23... Anode, 26... Gas inlet, 29... Plasma. Name of agent: Patent attorney Toshio Nakao and one other person
- One tool τi word j G, 21; --vz%y, O qo, M-Ichinawaishi 2'-Itchou 2'12 meeting〃---Goyuuru 23---73.碍2に11んftP→〈27---琲空性 S-Z blasphemy fJ ''-De2P'ts, f9
- Piece 7', take "I", 24 = i Kasaishi 2/--fu 1 Ugamma Shiomi 2Z---Goul 23--1h-謹Fig. 3 to, s-carry 22 --Gol 4 zy-III Keio 4 Figure 7Q, 24-magnetic mo22--Gol 23~--A!l scratch (b)

Claims (2)

【特許請求の範囲】[Claims] (1)真空槽と、この真空槽にプラズマが放射されるよ
うに設置されたプラズマ源と、このプラズマ源とは垂直
に配置された陽極と、プラズマ源から放射されたプラズ
マを陽極上に集中させるためにプラズマ流を曲げる磁界
と、上記陽極近傍にガスを導入するためのガス導入管を
備えたプラズマ集中型CVD装置。
(1) A vacuum chamber, a plasma source installed so that plasma is radiated into the vacuum chamber, an anode arranged vertically to this plasma source, and a plasma radiated from the plasma source concentrated on the anode. A plasma concentration type CVD apparatus comprising a magnetic field for bending a plasma flow and a gas introduction pipe for introducing gas into the vicinity of the anode.
(2)磁界は、プラズマ源をはさむ二つのコイルによっ
てつくられるカスプ磁場配位と陽極の下に配置された磁
石によって得られることを特徴とする特許請求の範囲第
1項記載のプラズマ集中型CVD装置。
(2) The plasma concentrated CVD according to claim 1, wherein the magnetic field is obtained by a cusp magnetic field arrangement created by two coils sandwiching the plasma source and a magnet placed under the anode. Device.
JP12652085A 1985-06-11 1985-06-11 Plasma concentration type cvd device Granted JPS61284579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12652085A JPS61284579A (en) 1985-06-11 1985-06-11 Plasma concentration type cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12652085A JPS61284579A (en) 1985-06-11 1985-06-11 Plasma concentration type cvd device

Publications (2)

Publication Number Publication Date
JPS61284579A true JPS61284579A (en) 1986-12-15
JPH0465149B2 JPH0465149B2 (en) 1992-10-19

Family

ID=14937239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12652085A Granted JPS61284579A (en) 1985-06-11 1985-06-11 Plasma concentration type cvd device

Country Status (1)

Country Link
JP (1) JPS61284579A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156536A (en) * 1986-12-20 1988-06-29 Toobi:Kk Reactive plasma beam film forming device
US4941430A (en) * 1987-05-01 1990-07-17 Nihon Sinku Gijutsu Kabusiki Kaisha Apparatus for forming reactive deposition film
US5099790A (en) * 1988-07-01 1992-03-31 Canon Kabushiki Kaisha Microwave plasma chemical vapor deposition apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558362A (en) * 1978-10-26 1980-05-01 Matsushita Electric Ind Co Ltd Preparation of thin film
JPS55117856A (en) * 1979-03-02 1980-09-10 Hitachi Ltd Method and apparatus for separating impurities
JPS59205470A (en) * 1983-05-02 1984-11-21 Kowa Eng Kk Apparatus and method for forming hard film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558362A (en) * 1978-10-26 1980-05-01 Matsushita Electric Ind Co Ltd Preparation of thin film
JPS55117856A (en) * 1979-03-02 1980-09-10 Hitachi Ltd Method and apparatus for separating impurities
JPS59205470A (en) * 1983-05-02 1984-11-21 Kowa Eng Kk Apparatus and method for forming hard film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156536A (en) * 1986-12-20 1988-06-29 Toobi:Kk Reactive plasma beam film forming device
JPH0757313B2 (en) * 1986-12-20 1995-06-21 株式会社ト−ビ Reactive plasma beam film forming equipment
US4941430A (en) * 1987-05-01 1990-07-17 Nihon Sinku Gijutsu Kabusiki Kaisha Apparatus for forming reactive deposition film
US5099790A (en) * 1988-07-01 1992-03-31 Canon Kabushiki Kaisha Microwave plasma chemical vapor deposition apparatus

Also Published As

Publication number Publication date
JPH0465149B2 (en) 1992-10-19

Similar Documents

Publication Publication Date Title
US5451259A (en) ECR plasma source for remote processing
US5039548A (en) Plasma chemical vapor reaction method employing cyclotron resonance
KR101920842B1 (en) Plasma source design
TW200303035A (en) Method and apparatus for substrate processing
JPS5915982B2 (en) Electric discharge chemical reaction device
JPH0421781A (en) Plasma cvd device
JPS61284579A (en) Plasma concentration type cvd device
JP2524461B2 (en) High density plasma processing equipment
JPH01302645A (en) Discharging device
JPS6235265B2 (en)
JPH0686663B2 (en) Film forming equipment using microwave plasma
JPH0415921A (en) Method and apparatus for activating plasma
JP2969651B2 (en) ECR plasma CVD equipment
JPS6417869A (en) Microwave plasma chemical vapor deposition device
JPS59133364A (en) Electric discharge chemical reaction device
JPH0578849A (en) High magnetic field microwave plasma treating device
JPH0680640B2 (en) Plasma equipment
JPS619577A (en) Plasma chemical vapor phase growing method
JPH0732076B2 (en) Microwave plasma processing apparatus and processing method thereof
JPH09153486A (en) Plasma processing method and device
JPH0340422A (en) Film formation device
JPH01298174A (en) Formation of thin film using ion cyclotron resonance and device therefor
JPS62143418A (en) Thin film forming device
JP2002241947A (en) Thin film deposition apparatus
JPH0294628A (en) Plasma generation apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees