JPS63156536A - Reactive plasma beam film forming device - Google Patents

Reactive plasma beam film forming device

Info

Publication number
JPS63156536A
JPS63156536A JP30463786A JP30463786A JPS63156536A JP S63156536 A JPS63156536 A JP S63156536A JP 30463786 A JP30463786 A JP 30463786A JP 30463786 A JP30463786 A JP 30463786A JP S63156536 A JPS63156536 A JP S63156536A
Authority
JP
Japan
Prior art keywords
plasma beam
gas
reactive gas
reactive
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30463786A
Other languages
Japanese (ja)
Other versions
JPH0757313B2 (en
Inventor
Tetsuya Nomachi
野町 ▲てつ▼也
Masanori Konno
正則 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOBI KK
Tobi Co Ltd
Original Assignee
TOOBI KK
Tobi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOBI KK, Tobi Co Ltd filed Critical TOOBI KK
Priority to JP61304637A priority Critical patent/JPH0757313B2/en
Publication of JPS63156536A publication Critical patent/JPS63156536A/en
Publication of JPH0757313B2 publication Critical patent/JPH0757313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Coating Apparatus (AREA)

Abstract

PURPOSE:To form a thin compd. film having a uniform composition, by providing a reactive gas introducing device capable of controlling the partial pressure of the gas as the gas introducing system, introducing the reactive gas into a plasma beam. CONSTITUTION:An inert gas such as argon is introduced from the gas introducing device 10, and the vacuum of a plasma beam generator is controlled to about 1Torr. A break-down voltage at about 1kV is then impressed to generate plasma discharge, and a plasma beam 11 is radiated. When a thin SiO2 film is formed, for example, Si is used as the vaporization source substance 7, oxygen is introduced at 2X10<-3>Torr partial pressure as the reactive gas, the oxygen is projected on the Si as the oxygen plasma beam 11, and a homogeneous SiO2 film is formed on a substrate 5. Methane is introduced at 5X10<-3>Torr in the same way, and the thin film of SiC can be formed.

Description

【発明の詳細な説明】 (技術分野) この発明は、反応性プラズマビーム製膜装置に関するも
のである。さらに詳しくは、この発明は、反応性プラズ
マビームによって、基板表面に、反応性がコントロール
された酸化物、窒化物、炭化物、硫化物あるいは有機ポ
リマー、それらのハイブリッド化合物等の化合物薄膜を
製造するための装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a reactive plasma beam film forming apparatus. More specifically, the present invention provides a method for producing a thin film of a compound such as an oxide, nitride, carbide, sulfide, organic polymer, or a hybrid compound thereof on the surface of a substrate using a reactive plasma beam. The invention relates to a device.

(背景技術) 金属、ガラス、セラミックス、プラスチック等の基板の
表面に、金属、無機物、あるいは有機ポリマーなどの蒸
着薄膜を形成する方法のひとつとして、蒸発源から蒸発
した成分粒子、またはガスをグロー放電によってプラズ
マ・イオン化して行う、いわゆるイオンブレーティング
と呼ばれている方法が知られている。このイオンブレー
ティング法は、絶縁膜、反射膜、光学フィルム、装飾、
さらには表示素子、電子デバイスなどの多様な分野に応
用されており、機能性薄膜の製造技術として今後一層の
発展が期待されているものである。
(Background technology) One method for forming a vapor-deposited thin film of metal, inorganic material, or organic polymer on the surface of a substrate such as metal, glass, ceramics, or plastic is to use glow discharge to evaporate component particles or gas from an evaporation source. A method called ion brating, which uses plasma ionization, is known. This ion blating method is used for insulating films, reflective films, optical films, decorations,
Furthermore, it has been applied to various fields such as display elements and electronic devices, and further development is expected in the future as a manufacturing technology for functional thin films.

しかしながら、このイオンブレーティング技術について
は、所望の物性、機能を持った薄膜を製造するためには
、反応装置、反応プロセスにいまだ多くの改善すべき課
題があり、また、その反応については様々な見地からの
検討が必要とされている現状にある。
However, in order to produce thin films with the desired physical properties and functions, there are still many issues to be improved regarding the reaction equipment and reaction process for this ion blating technology, and there are various issues regarding the reaction. The current situation requires consideration from this perspective.

このような課題として、これまでの技術によっては、反
応性を十分にコントロールすることが困難であったこと
があげられる。たとえば、圧電素子であるZnOや光学
薄膜であるT 102、SiO、保護膜であるSi  
N  、5iC1AfJ203、EC材料であるWO2
などが検討されているが、酸化物、窒化物、炭化物など
の反応性が十分にコントロールできないために、反応の
再現性が悪く、薄膜組成の均一化、特性の均一化が難し
いという問題があった。
One such problem is that it has been difficult to sufficiently control reactivity using conventional techniques. For example, ZnO is a piezoelectric element, T102 is an optical thin film, SiO is a protective film, and Si is a protective film.
N, 5iC1AfJ203, EC material WO2
However, because the reactivity of oxides, nitrides, carbides, etc. cannot be adequately controlled, the reproducibility of the reaction is poor and it is difficult to make the thin film composition uniform and the properties uniform. Ta.

従来のイオンブレーティング法には、平行平板型、ホロ
カソード型、あるいは高周波励起型などの方式があるが
、これらのいずれの方式、そして装置においても、反応
をM#するためのパラメーターが多く、特に、プラズマ
状態のコントロールが容易でないために、蒸発速度のば
らつきにより反応物質の組成が変化しやすく、しかも、
反応性ガス成分との反応が均一に進行しないという欠点
があった。
Conventional ion blating methods include parallel plate type, holocathode type, and high frequency excitation type, but each of these methods and devices requires many parameters to control the reaction M#, especially , since it is not easy to control the plasma state, the composition of the reactants tends to change due to variations in the evaporation rate.
There was a drawback that the reaction with the reactive gas component did not proceed uniformly.

(発明の目的) この発明は、このような事情を鑑みてなされたものであ
り、所望の組成を均一に有する化合物薄膜を、従来法の
ような欠点を克服し、再現性良く、高効率で製造するこ
とのできる反応性プラズマビーム製膜装置を提供するこ
とを目的としている。
(Objective of the Invention) This invention was made in view of the above circumstances, and it is an object of the present invention to overcome the drawbacks of conventional methods and to produce a compound thin film having a uniform desired composition with good reproducibility and high efficiency. It is an object of the present invention to provide a reactive plasma beam film forming apparatus that can be manufactured.

(発明の開示) この発明のプラズマビーム製膜装置は、上記の目的を実
現するため、真空室と、該真空室内の基板系と、排気系
と、ガス導入系と、薄膜形成材料の蒸発源と、圧力勾配
型のプラズマビーム発生装置とからなり、ガス導入系と
して、ガス分圧の制御を可能とした反応性ガス半導体装
置を有し、該導入装置により反応性ガスをプラズマビー
ム中に供給し、プラズマビームが蒸発源物質のイオン化
励起を行って基板表面に化合物薄膜を形成するようにし
たことを特徴としている。
(Disclosure of the Invention) In order to achieve the above object, the plasma beam film forming apparatus of the present invention includes a vacuum chamber, a substrate system in the vacuum chamber, an exhaust system, a gas introduction system, and an evaporation source for a thin film forming material. and a pressure gradient type plasma beam generator, and has a reactive gas semiconductor device as a gas introduction system that enables control of gas partial pressure, and the introduction device supplies reactive gas into the plasma beam. The method is characterized in that the plasma beam ionizes and excites the evaporation source material to form a compound thin film on the substrate surface.

この発明の装置に用いるプラズマビーム発生装置は、陰
極と陽極との間に中間電極を介在させて、  ゛陰極領
域は1Torr前後に、そして陽極領域は10’Tor
r程度に保って放電を行うものである。この発生装置か
ら放電されるプラズマビームは、磁石手段による磁界に
よってその形状が変形可能であり、シート状の平板ビー
ムとすることや、直進、あるいは偏向させることも自在
にできる。
The plasma beam generating device used in the apparatus of this invention has an intermediate electrode interposed between the cathode and the anode, and the cathode region has a pressure of about 1 Torr, and the anode region has a pressure of 10 Torr.
The discharge is performed while maintaining the temperature at about r. The shape of the plasma beam discharged from this generator can be changed by the magnetic field produced by the magnet means, and can be made into a sheet-like flat beam, or can be made to travel straight or be deflected.

しかもこのプラズマビームのイオン化率は、30%以上
の高レベルにあり、なおかつ安定しているという重要な
特徴を有している。
Moreover, the ionization rate of this plasma beam is at a high level of 30% or more, and has the important feature that it is stable.

このプラズマビームが、蒸発源物質のイオン化励起と、
反応性ガスとの反応を誘起する。
This plasma beam ionizes and excites the evaporation source material.
Induces reactions with reactive gases.

この発明の装置においては、このようなプラズマビーム
発生装置を用い、しかも、該装置によって生成されたプ
ラズマビーム中に反応性ガスをその分圧がコントロール
された状態で供給することを特徴としている。
The apparatus of the present invention uses such a plasma beam generating apparatus and is characterized in that a reactive gas is supplied into the plasma beam generated by the apparatus with its partial pressure being controlled.

添付した図面に沿って、この発明の製膜装置について詳
しく説明する。
The film forming apparatus of the present invention will be described in detail with reference to the attached drawings.

第1図は、この発明の装置の一例を示した断面図である
。この第1図において、真空室(1)は、ベルジャ(2
)によって気密に保たれている。この真空室(1)は真
空ポンプによる排気系(3)によって排気する。ベルジ
ャ(2)には、ガス導入口(4)を設けている。
FIG. 1 is a sectional view showing an example of the device of the present invention. In this Figure 1, the vacuum chamber (1) is a bell jar (2
) is kept airtight. This vacuum chamber (1) is evacuated by an evacuation system (3) using a vacuum pump. The bell jar (2) is provided with a gas inlet (4).

薄膜形成時には、まずベルジャ(2)内を排気系(3)
によって排気して、10〜1O−5T o r r程度
の真空度にする。次いで、ガス導入口(4)より不活性
ガスを導入して不活性ガス分圧をおよそ10〜10’T
orr程度に調整する。この不活性ガスは、アルゴン、
ヘリウム、水素などから選択することができる。
When forming a thin film, first exhaust the inside of the bell jar (2) using the exhaust system (3).
The chamber is evacuated to a degree of vacuum of about 10 to 1 O-5 Torr. Next, inert gas is introduced through the gas inlet (4) to bring the inert gas partial pressure to approximately 10 to 10'T.
Adjust to about orr. This inert gas is argon,
You can choose from helium, hydrogen, etc.

ベルジャ(2)の内部には、基板(5)およびホルダー
(6)からなる基板系と、薄膜形成のための蒸発源物質
(7)およびハース(8)とともに、プラズマビーム発
生装置(9)を設ける。このプラズマビーム発生装置に
は、プラズマ放電のための不活性ガス導入装置(10)
を設けている。
Inside the bell jar (2), a plasma beam generator (9) is installed along with a substrate system consisting of a substrate (5) and a holder (6), an evaporation source material (7) for thin film formation, and a hearth (8). establish. This plasma beam generator includes an inert gas introduction device (10) for plasma discharge.
has been established.

アルゴン等の不活性ガスを導入装置(10)から導入し
てプラズマビーム発生装置の真空度をITorr程度に
なるようにする。次にIKV程度の放電開始電圧を印加
してプラズマ放電を生起させ、プラズマビーム(11)
を放射させる。
An inert gas such as argon is introduced from the introduction device (10) to bring the degree of vacuum of the plasma beam generator to approximately ITorr. Next, a discharge starting voltage of about IKV is applied to generate a plasma discharge, and a plasma beam (11) is generated.
radiate.

このプラズマビーム(11)は、蒸発源物質(7)に集
束して、蒸発源物質(7)の蒸発とイオン化励起を行う
、プラズマビーム(11)の集束化、安定化のために、
磁石(12>  (13)を設けてもよい、この磁石に
よる磁界により、プラズマビームはより効果的に集束す
る。
This plasma beam (11) is focused on the evaporation source material (7) to evaporate and ionize and excite the evaporation source material (7). In order to focus and stabilize the plasma beam (11),
A magnet (12> (13)) may be provided, the magnetic field of which focuses the plasma beam more effectively.

また、ベルジャ(2)には、反応性ガスの導入袋v、(
14ンを設ける。この装置(14)は、反応性ガスをプ
ラズマビーム中に供給するようにする。供給する位置と
しては、対象とする化合物薄膜、蒸発源、ガスの種類に
よって変更することができる。プラズマビーム発生装置
の近傍に設けてもよいし、あるいは蒸発源近傍に設けて
もよい。
In addition, the bell jar (2) has reactive gas introduction bags v, (
A total of 14 units will be provided. This device (14) is adapted to feed a reactive gas into the plasma beam. The supply position can be changed depending on the target compound thin film, evaporation source, and type of gas. It may be provided near the plasma beam generator or may be provided near the evaporation source.

いずれの場合でも、反応性ガスがプラズマビーム中に供
給されるようにする。
In either case, a reactive gas is provided into the plasma beam.

第2図は、基板として高速で移動するフィルムを用いる
装置の例を示している。ロール(15)(16)の間を
移動する過程でフィルム表面に薄膜を形成する。この例
においては、反応性ガス導入袋a (17)はガスの供
給が蒸発源近傍において行われるようにしている。
FIG. 2 shows an example of an apparatus using a fast moving film as the substrate. A thin film is formed on the film surface during the process of moving between the rolls (15) and (16). In this example, the reactive gas introduction bag a (17) allows gas to be supplied near the evaporation source.

第3図は、別の装置の例を示している。この例において
は、プラズマビームは、蒸発源物質(18)に集束しな
いで、磁石(19)による磁界によってシート状に変形
されて、基板に平行に直進し、磁石(20)に集束して
いる。蒸発源物質(18)は、抵抗加熱、電子ビーム照
射等によって蒸発される。蒸発粒子は、プラズマビーム
と交叉することによりイオン化励起される0反応性ガス
は、導入袋Tl < 21 )によってプラズマビーム
「[弓こ供給している。
FIG. 3 shows an example of another device. In this example, the plasma beam is not focused on the evaporation source material (18), but is deformed into a sheet by the magnetic field of the magnet (19), travels straight parallel to the substrate, and is focused on the magnet (20). . The evaporation source material (18) is evaporated by resistance heating, electron beam irradiation, or the like. The evaporated particles are ionized and excited by intersecting with the plasma beam. A reactive gas is supplied to the plasma beam by an introduction bag Tl < 21).

たとえば、第1図の装置を用いて、S i O2薄膜を
形成する場合には、蒸発源物質としてStを用い、反応
性ガスとして酸素を2X10−3Torr分圧で導入す
る。酸素は酸素プラズマビームとしてSiに照射され、
基板上に、均質なS iO2膜が形成される。
For example, when forming a SiO2 thin film using the apparatus shown in FIG. 1, St is used as the evaporation source material, and oxygen is introduced as the reactive gas at a partial pressure of 2×10 −3 Torr. Oxygen is irradiated onto Si as an oxygen plasma beam,
A homogeneous SiO2 film is formed on the substrate.

同様に、メタンを5X10−3Torr導入して、Si
Cの薄膜を形成することができる。
Similarly, methane was introduced at 5X10-3 Torr, and Si
A thin film of C can be formed.

Siの蒸発速度は、20〜50A/秒と良好である。反
応ガス分圧のコントロール、さらには基板の加熱などは
適宜に行うことができる。いずれにしても、この発明は
、以上の例に限定されるものではなく、様々な態様が可
能である。
The evaporation rate of Si is good at 20 to 50 A/sec. Control of the partial pressure of the reaction gas, heating of the substrate, etc. can be performed as appropriate. In any case, the present invention is not limited to the above examples, and various embodiments are possible.

(発明の効果) この発明の装置により、以上のとおり、反応性薄膜、さ
らにはその多層膜が、均質な組成、良好な特性を有する
ものとして、高効率で製造することが可能となる。
(Effects of the Invention) As described above, the apparatus of the present invention makes it possible to produce reactive thin films, and even multilayer films thereof, with a homogeneous composition and good properties with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、および第3図は、各々、この発明の一
例を示した断面図である。 図中の番号は次のものを示している。 1・・・真空室、 2・・・ベルジャ、3・・・排気系
、4・・・ガス導入口、5・・・基板、6・・・基板ボ
ルダ−17・・・蒸発源物質、8・・・ハース、9・・
・プラズマビーム発生装置、 10・・・不活性ガス導入装置、 11・・・プラズマビーム、12.13・・・磁石、1
4・・・反応性ガス導入装置、15.16・・・ロール
、17・・・反応性ガス導入装置、18・・・蒸発源物
質、19.20・・・磁石、21・・・反応性ガス導入
装置。 代理人 弁理士  西  澤 利  夫第1図 第  2  図
FIG. 1, FIG. 2, and FIG. 3 are sectional views each showing an example of the present invention. The numbers in the figure indicate the following. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Belljar, 3... Exhaust system, 4... Gas inlet, 5... Substrate, 6... Substrate boulder-17... Evaporation source material, 8 ...Haas, 9...
・Plasma beam generator, 10... Inert gas introduction device, 11... Plasma beam, 12.13... Magnet, 1
4... Reactive gas introducing device, 15.16... Roll, 17... Reactive gas introducing device, 18... Evaporation source material, 19.20... Magnet, 21... Reactivity Gas introduction device. Agent Patent Attorney Toshio Nishizawa Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 真空室と、該真空室内の基板系と、排気系と、ガス導入
系と、薄膜形成材料の蒸発源と、圧力勾配型のプラズマ
ビーム発生装置とからなり、ガス導入系として、ガス分
圧の制御を可能とした反応性ガス半導体装置を有し、該
導入装置により反応性ガスをプラズマビーム中に供給し
、プラズマビームが蒸発源物質のイオン化励起を行って
基板表面に化合物薄膜を形成するようにしたことを特徴
とする反応性プラズマビーム製膜装置。
It consists of a vacuum chamber, a substrate system in the vacuum chamber, an exhaust system, a gas introduction system, an evaporation source for thin film forming material, and a pressure gradient type plasma beam generator. It has a reactive gas semiconductor device that can be controlled, and the introduction device supplies reactive gas into the plasma beam, so that the plasma beam ionizes and excites the evaporation source material to form a compound thin film on the substrate surface. A reactive plasma beam film forming apparatus characterized by:
JP61304637A 1986-12-20 1986-12-20 Reactive plasma beam film forming equipment Expired - Lifetime JPH0757313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61304637A JPH0757313B2 (en) 1986-12-20 1986-12-20 Reactive plasma beam film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304637A JPH0757313B2 (en) 1986-12-20 1986-12-20 Reactive plasma beam film forming equipment

Publications (2)

Publication Number Publication Date
JPS63156536A true JPS63156536A (en) 1988-06-29
JPH0757313B2 JPH0757313B2 (en) 1995-06-21

Family

ID=17935434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304637A Expired - Lifetime JPH0757313B2 (en) 1986-12-20 1986-12-20 Reactive plasma beam film forming equipment

Country Status (1)

Country Link
JP (1) JPH0757313B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873770A (en) * 1981-10-28 1983-05-04 Joshin Uramoto Ion plating device of high efficiency utilizing magnetic field of magnet and coil
JPS61284579A (en) * 1985-06-11 1986-12-15 Matsushita Electric Ind Co Ltd Plasma concentration type cvd device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873770A (en) * 1981-10-28 1983-05-04 Joshin Uramoto Ion plating device of high efficiency utilizing magnetic field of magnet and coil
JPS61284579A (en) * 1985-06-11 1986-12-15 Matsushita Electric Ind Co Ltd Plasma concentration type cvd device

Also Published As

Publication number Publication date
JPH0757313B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US6454912B1 (en) Method and apparatus for the fabrication of ferroelectric films
EP0280315B1 (en) Method of forming a diamond film
JPH0635323B2 (en) Surface treatment method
US5651825A (en) Plasma generating apparatus and plasma processing apparatus
JPH05275345A (en) Plasma cvd method and its device
JPS63156536A (en) Reactive plasma beam film forming device
JPH03122266A (en) Production of thin nitride film
JPS60251269A (en) Method and apparatus for ionic plating
JPH01279748A (en) Device for forming film by reactive plasma beam
JPH0417669A (en) Film forming method using plasma and rf ion plating device
JPS63109162A (en) Ion plating method and its device
JPH01234397A (en) Method and apparatus for producing diamond-like thin film
KR20190008702A (en) Thin film processing apparatus using large area e-beam
JP2951564B2 (en) Thin film formation method
JPH06291063A (en) Surface treatment device
JPH03115561A (en) Method for coating film and coating device
JPH01184273A (en) Method and apparatus for producing film with reactive plasma beam
JP2739286B2 (en) Plasma processing method
JPH05271904A (en) Production of cubic boron nitride film
JP2715277B2 (en) Thin film forming equipment
JPH03275597A (en) Coating method with diamond thin film
JP2769977B2 (en) Plasma processing method
JPS62280357A (en) Ion plating using electron beam evaporation and apparatus therefor
KR100223988B1 (en) Manufactruing method of diamond phase carbon filmed field emitter by plasma chemical deposition
JPS63107899A (en) Formation of thin film