JPH01282803A - Manufacture of ceramic group superconducting magnet - Google Patents

Manufacture of ceramic group superconducting magnet

Info

Publication number
JPH01282803A
JPH01282803A JP63112115A JP11211588A JPH01282803A JP H01282803 A JPH01282803 A JP H01282803A JP 63112115 A JP63112115 A JP 63112115A JP 11211588 A JP11211588 A JP 11211588A JP H01282803 A JPH01282803 A JP H01282803A
Authority
JP
Japan
Prior art keywords
coil
wire rod
copper
powder
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63112115A
Other languages
Japanese (ja)
Inventor
Masamitsu Ichihara
市原 政光
Shunzaburo Nakamura
中村 俊三郎
Takeshi Uchiyama
剛 内山
Seiichi Miyake
清市 三宅
Yuichiro Oda
勇一郎 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP63112115A priority Critical patent/JPH01282803A/en
Publication of JPH01282803A publication Critical patent/JPH01282803A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a magnet formed by a wire rod having excellent characteristics extending over the longitudinal direction by removing one part or whole of a copper pipe through dipping into an acid liquid after the formation of a coil and exposing compression-molded powder. CONSTITUTION:The inside of a copper or copper alloy pipe is filled with the powder of a ceramic superconductor or mixed powder composed of a component forming the ceramic superconductor through heat treatment. The powder is molded to a wire rod through area reducing working. The outer circumference of the wire rod is covered with a porous insulating material. Consequently, the wire rod acquired is wound on a spool consisting of an acid-resistant material, thus shaping a coil. The coil is dipped into an acid liquid, and copper or a copper alloy is melted and removed chemically. The coil is thermally treated in an oxidizing atmosphere, and impregnated with a cured resin. Accordingly, a magnet formed by the excellent wire rod extending over the longitudinal direction is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導マグネットの製造方法に係り、特にセラ
ミックス系の超電導マグネットの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a superconducting magnet, and particularly to a method for manufacturing a ceramic superconducting magnet.

[従来の技術] 近年、特に−昨年の秋以降、セラミックス系超電導体の
開発が世界中で活発に進められている。
[Prior Art] In recent years, especially since last fall, the development of ceramic superconductors has been actively progressing all over the world.

この超電導体は、従来の最高の臨界温度を示すNb3G
eの23Kを大巾に越えるもので、Ba−La−Cu−
0系セラミツクス(臨界温度35K ) 、La−8r
−Cu−0系セラミツクス(超電導開始温度37に以上
)、La−Ca−Cu−0系セラミツクス、Y−Ba−
Cu−0系セラミツクス(ゼロ抵抗温度93K)等のほ
か、233にあるいは室温以上の臨界温度を示すセラミ
ックスも報告されている。
This superconductor is Nb3G, which has the highest conventional critical temperature.
It greatly exceeds 23K of e, and is Ba-La-Cu-
0 series ceramics (critical temperature 35K), La-8r
-Cu-0 ceramics (superconductivity starting temperature 37 or higher), La-Ca-Cu-0 ceramics, Y-Ba-
In addition to Cu-0 ceramics (zero resistance temperature of 93 K), ceramics exhibiting a critical temperature of 233 or higher than room temperature have also been reported.

このようにセラミックス系超電導材料は臨界温度が液体
窒素温度以上や室温で用いることができる可能性があり
、この場合、高価な液体ヘリウムを使用しなくても済む
ため、経済的に極めて有利となるほか、超電導発電機等
に使用されると構造がシンプルで熱機関の効率も向上す
る等の利点を有する。
In this way, it is possible that ceramic-based superconducting materials can be used with a critical temperature higher than liquid nitrogen temperature or at room temperature, and in this case, there is no need to use expensive liquid helium, which would be extremely advantageous economically. In addition, when used in superconducting generators, etc., it has the advantage of having a simple structure and improving the efficiency of heat engines.

しかしながら、セラミックスは硬くて、かつ脆いため、
現在実用化されているNb−Ti系やNb3Sn系の超
電導線のように線材に加工することが困難であり、この
点を克服することがセラミックス系の超電導マグネット
の実用化への第1歩となる。
However, since ceramics are hard and brittle,
It is difficult to process into wire rods like the Nb-Ti and Nb3Sn-based superconducting wires that are currently in practical use, and overcoming this point is the first step toward practical application of ceramic-based superconducting magnets. Become.

現在線材の製造方法として、アモルファスのテープある
いは線材を酸素雰囲気下で加熱処理する方法、銅系合金
管内にセラミックスを充填し、熱処理および圧延加工等
を施して線材やテープ状に成形する方法、等が提案され
ている。
Current methods for manufacturing wire rods include a method of heat treating amorphous tape or wire rod in an oxygen atmosphere, a method of filling a copper alloy tube with ceramics, and forming it into a wire rod or tape shape by heat treatment and rolling, etc. is proposed.

しかしながら、前者の方法では、極めて急速な冷却を必
要とするため、細線や薄膜のテープしか得られず、また
長尺の線材を連続的に製造することが困難であり、さら
に後者の方法ではセラミックス超電導体生成の熱処理を
コイル成形後に施すことができず、したがってその特性
も低下せざるを得ないという難点を有しており、マグネ
ットの製造が困難であった。
However, since the former method requires extremely rapid cooling, only thin wires or thin film tapes can be obtained, and it is difficult to continuously manufacture long wire rods. It is difficult to manufacture magnets because the heat treatment for forming the superconductor cannot be performed after the coil is formed, and its properties must therefore deteriorate.

[発明が解決しようとする課題] 本発明は、以上の難点を解決するためになされたもので
、アモルファス化のための急速冷却を必要とせず、かつ
、セラミックス超電導体生成の熱処理をコイル成形後に
施すことができ、これにより長さ方向に亘って良好な特
性を有するセラミックス系超電導線からなるマグネット
を製造する方法を提供することをその目的とする。
[Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned difficulties, and it does not require rapid cooling for amorphization, and the heat treatment for producing a ceramic superconductor can be performed after coil forming. It is an object of the present invention to provide a method for manufacturing a magnet made of a ceramic superconducting wire that can be applied to a ceramic superconducting wire and thereby has good characteristics over its length.

[課題を解決するための手段] 本発明のセラミックス系超電導マグネットの製造方法は
、 (イ)セラミックス超電導体の粉末あるいは熱処理によ
りセラミックス超電導体を生成する構成材料よりなる混
合粉末を銅あるいは銅合金管内に充填する工程と、 (ロ)次いで減面加工を施し線材に成形する工程と、 (ハ)この外周に多孔性の絶縁材を被覆する工程と、 (ニ)このようにして得られた線材を耐酸性の材料から
なる巻枠上に巻回してコイルを形成する工程と、 (ホ)前記コイルを酸液中に浸漬して前記鋼あるいは銅
合金を化学的に溶解除去する工程と、(へ)このコイル
を酸化性雰囲気中で加熱処理した後、硬化性樹脂を含浸
する工程とからなることを特徴とする。
[Means for Solving the Problems] The method for manufacturing a ceramic superconducting magnet of the present invention includes: (a) Powder of a ceramic superconductor or a mixed powder of constituent materials that produce a ceramic superconductor by heat treatment is placed in a copper or copper alloy tube. (b) Next, the step of subjecting the wire rod to area reduction processing and forming it into a wire rod; (c) The step of covering the outer periphery with a porous insulating material; (d) The wire rod obtained in this way (e) immersing the coil in an acid solution to chemically dissolve and remove the steel or copper alloy; f) The coil is heat-treated in an oxidizing atmosphere and then impregnated with a curable resin.

本発明におけるセラミックス超電導体としては、たとえ
ばYBa2 Cu30x (x < 14 :ペロブス
カイト)や、これにフッ素等を添加したものを挙げるこ
とができ、これは700〜1000℃で焼成後、機械的
に破砕して粉末状にして用いることができる。あるいは
超電導体を構成する酸素以外の成分の粉末またはその酸
化物や炭酸塩等の混合粉末、たとえばY2 03 、B
aCJやCuOの粉末を混合して用いることができる。
Examples of the ceramic superconductor in the present invention include YBa2Cu30x (x < 14: perovskite) and those to which fluorine etc. are added, which are mechanically crushed after firing at 700 to 1000°C. It can be used in powder form. Or a powder of components other than oxygen constituting the superconductor, or a mixed powder of its oxides and carbonates, such as Y2 03 , B
A mixture of powders of aCJ and CuO can be used.

また減面加工としては、予め静水圧加圧成型後、静水圧
押出加工を施すことが好ましく、次いでスウエージング
加工、伸線加工や圧延加工が施される。
Further, as for area reduction processing, it is preferable to perform isostatic pressure extrusion processing after isostatic pressure molding in advance, and then swaging processing, wire drawing processing, and rolling processing.

上記の多孔性の絶縁材としては、石英ヤーンの袋編みが
好適する。
As the above-mentioned porous insulating material, bag-knitted quartz yarn is suitable.

[作用] 本発明においては、コイル形成後の酸液中への浸漬によ
り銅(合金)管の一部または全部が除去され圧縮成形さ
れた粉末が露出するため、最終形状のコイルの状態で超
電導セラミックスの連続体を生成することができ、これ
により長さ方向に亘り特性の良好な線材により形成され
たマグネットを製造することができる。
[Function] In the present invention, part or all of the copper (alloy) tube is removed by immersion in an acid solution after the coil is formed, and the compression molded powder is exposed. A continuous body of ceramics can be produced, thereby making it possible to manufacture a magnet made of a wire with good properties over its length.

また減面加工として静水圧押出加工を施した場合には、
粉末を均一かつ高度に圧縮した状態で押出加工すること
ができ、全長の亘り均一な変形が可能となる。
In addition, when hydrostatic extrusion processing is applied as area reduction processing,
The powder can be extruded in a uniform and highly compressed state, allowing for uniform deformation over the entire length.

[実施例コ まずY2 03 、BaCO3およびCuOの粉末を所
定量配合して、これを700〜900℃の温度で焼成し
Y−Ba−Cu−0系のセラミックス超電導体を作製し
た。
[Example] First, predetermined amounts of powders of Y2 03 , BaCO3 and CuO were blended and fired at a temperature of 700 to 900°C to produce a Y-Ba-Cu-0 ceramic superconductor.

これを機械的に破砕して5μmφ以下の粉体状としX線
回折による分析を行った結果、 YBa2 Cu30x (X’:i 7 )が生成され
ていることが確認された。
This was mechanically crushed into a powder having a diameter of 5 μm or less and analyzed by X-ray diffraction. As a result, it was confirmed that YBa2Cu30x (X':i 7 ) was produced.

次に、上記の粉体をゴムチューブ内に充填して、xoo
ookg/cjの圧力で3分間静水圧加圧処理を施した
。このようにして得られた成形体の寸法は24IIII
φX長さ150■である。
Next, fill the above powder into a rubber tube and xoo
Hydrostatic pressure treatment was performed for 3 minutes at a pressure of ookg/cj. The dimensions of the molded body thus obtained are 24III
φX length is 150mm.

この成形体を外径35+amφ、内径25a110φの
Cu−Ni合金管に収容して、その両端を密封し押出ビ
ットを作製した。このビレットに2段階の静水圧押出加
工を施して外径111a+a+φのロッドを作製した後
、スウエージング加工により、外径311Ilφの線材
とし、次いで圧延加工を施して幅3I−1厚さ1■のテ
ープを製造した。このテープの外側に石英ヤーンを袋編
みし、次いでステンレス巻枠上に巻回した後、酸液中に
浸漬してCu−N1合金を溶解除去し、さらに水洗乾燥
後、2kgf/ dの酸素気流中で800℃に加熱し、
次いでエポキシ樹脂を含浸してマグネットを製造した。
This molded body was housed in a Cu-Ni alloy tube with an outer diameter of 35+amφ and an inner diameter of 25mm and 110φ, and both ends of the tube were sealed to produce an extrusion bit. This billet was subjected to two-step hydrostatic extrusion processing to produce a rod with an outer diameter of 111a+a+φ, and then swaged into a wire rod with an outer diameter of 311Ilφ, and then rolled to a wire rod with a width of 3I-1 and a thickness of 1. manufactured the tape. A quartz yarn is bag-knitted on the outside of this tape, then wound on a stainless steel frame, and then immersed in an acid solution to dissolve and remove the Cu-N1 alloy, washed with water, dried, and then exposed to an oxygen stream of 2 kgf/d. Heat to 800℃ in
The magnet was then impregnated with epoxy resin to produce a magnet.

[発明の効果コ[Effects of invention

Claims (2)

【特許請求の範囲】[Claims] (1)(イ)セラミックス超電導体の粉末あるいは熱処
理によりセラミックス超電導体を生成する構成材料より
なる混合粉末を銅あるいは銅合金管内に充填する工程と
、 (ロ)次いで減面加工を施し線材に成形する工程と、 (ハ)この外周に多孔性の絶縁材を被覆する工程と、 (ニ)このようにして得られた線材を耐酸性の材料から
なる巻枠上に巻回してコイルを形成する工程と、 (ホ)前記コイルを酸液中に浸漬して前記銅あるいは銅
合金を化学的に溶解除去する工程と、(ヘ)このコイル
を酸化性雰囲気中で加熱処理した後、硬化性樹脂を含浸
する工程とからなることを特徴とするセラミックス系超
電導マグネットの製造方法。
(1) (a) Filling a copper or copper alloy tube with powder of a ceramic superconductor or a mixed powder of constituent materials that produce a ceramic superconductor through heat treatment, and (b) Next, subjecting it to area reduction processing and forming it into a wire rod. (c) covering the outer periphery with a porous insulating material; (d) winding the wire obtained in this way onto a winding frame made of acid-resistant material to form a coil. (e) immersing the coil in an acid solution to chemically dissolve and remove the copper or copper alloy; and (f) heat-treating the coil in an oxidizing atmosphere and then applying a hardening resin. 1. A method for manufacturing a ceramic superconducting magnet, comprising the step of impregnating with.
(2)多孔性の絶縁材は石英ヤーンの袋編構造よりなる
請求項1記載のセラミックス系超電導マグネットの製造
方法。
(2) The method for manufacturing a ceramic superconducting magnet according to claim 1, wherein the porous insulating material has a bag-knitted structure of quartz yarn.
JP63112115A 1988-05-09 1988-05-09 Manufacture of ceramic group superconducting magnet Pending JPH01282803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63112115A JPH01282803A (en) 1988-05-09 1988-05-09 Manufacture of ceramic group superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63112115A JPH01282803A (en) 1988-05-09 1988-05-09 Manufacture of ceramic group superconducting magnet

Publications (1)

Publication Number Publication Date
JPH01282803A true JPH01282803A (en) 1989-11-14

Family

ID=14578546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63112115A Pending JPH01282803A (en) 1988-05-09 1988-05-09 Manufacture of ceramic group superconducting magnet

Country Status (1)

Country Link
JP (1) JPH01282803A (en)

Similar Documents

Publication Publication Date Title
JPH0494019A (en) Manufacture of bismuth-based oxide superconductor
JPH01282803A (en) Manufacture of ceramic group superconducting magnet
JPH01282804A (en) Manufacture of ceramic group superconducting magnet
JP2592838B2 (en) Method for manufacturing compound superconducting wire
JP3574461B2 (en) Manufacturing method of oxide superconducting wire
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JP4701631B2 (en) Superconducting wire manufacturing method
JPS63272017A (en) Manufacture of superconducting ceramic magnet
JPH05114313A (en) Superconducting current limiting wire and its manufacture
JPH05266726A (en) Oxide superconducting wire
JP4709455B2 (en) Oxide high-temperature superconducting wire and manufacturing method
JP2554660B2 (en) Method for producing compound superconducting wire
JPH01279507A (en) Manufacture of ceramic superconductor
JPH04259203A (en) Manufacture of ceramic superconductor coil
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JPH01281611A (en) Ceramic superconducting wire
JPS62219411A (en) Manufacture of pbmo6s8 system compound superconductor
JPH03134917A (en) Manufacture of ceramic superconductor
JPH0465034A (en) Manufacture of oxide superconducting wire
JPH01128406A (en) Manufacture of ceramics system superconductive coil
JPH04269407A (en) Manufacture of ceramic superconductive conductor
JPH05174642A (en) Oxide superconductive wire rod
JPH01311520A (en) Manufacture of ceramic superconducting wire