JPH01128406A - Manufacture of ceramics system superconductive coil - Google Patents

Manufacture of ceramics system superconductive coil

Info

Publication number
JPH01128406A
JPH01128406A JP28664687A JP28664687A JPH01128406A JP H01128406 A JPH01128406 A JP H01128406A JP 28664687 A JP28664687 A JP 28664687A JP 28664687 A JP28664687 A JP 28664687A JP H01128406 A JPH01128406 A JP H01128406A
Authority
JP
Japan
Prior art keywords
coil
material powder
raw material
powder
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28664687A
Other languages
Japanese (ja)
Inventor
Masayoshi Nakagawa
雅善 中川
Chiaki Saito
斎藤 千明
Tamami Shimomura
珠三 霜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP28664687A priority Critical patent/JPH01128406A/en
Publication of JPH01128406A publication Critical patent/JPH01128406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to form a coil concerned directly of raw material powder or a mixture of the raw material powder by firstly processing powder of a ceramics system superconductive material or its raw material powder in a coil, using a metallic container by drawing and coiling followed by sintering. CONSTITUTION:Superconductive material powder is densely filled in a metallic container to be drawn together with the metallic container so as to obtain a wire rod. Then, the wire rod obtained by drawing is coiled so as to obtain a coil having the desired size and shape for being put to a sintering process in order to sinter the superconductive material powder existing inside a coil wire rod. Next, the coil passed the sintering process is insulated, while, when there is a gap between the neighboring wires, the gap is impregnated with the electrically insulating varnish followed by heat-hardening or the like. In this case, when there is no gap between the neighboring wires at least a part of a metal housing originating in the metallic container on the wire surface is removed by chemical treatment or the like so as to provide the gap between the neighboring wires for insulation treatment. Thereby, the coil can be formed directly of powder of a raw material ceramics system conductive material or a mixture of the raw material powder so as not to require a coiling process of a wire rod.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導体コイルの製造方法に関し、詳細には
希土類元素の酸化物を含存するセラミックス系超電導体
のコイルの新規な製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a superconductor coil, and more particularly to a novel method for manufacturing a ceramic superconductor coil containing an oxide of a rare earth element. It is.

〔従来の技術〕[Conventional technology]

超電導現象は成る温度以下で電気抵抗が全く無くなる現
象をいうが、この超電導現象はそれが起こる温度(E!
!界温度)が材料によってそれぞれ異なる。臨界温度が
高い材料はど冷却が容易であるため、できるだけ臨界温
度の高い材料の開発が特に最近隆盛を極めている。また
、高い臨界温度だけでなく超電導状態で流せる上限の電
流(臨界電流)もセラミックス材料の実用化の重要なポ
イントとなる。これは実用化にはたとえば線材にしなけ
ればならないが、セラミックス材料は単位断面積当りに
流せる電流が小さいため、どれだけ高い臨界電流が得ら
れるかが実用化への大きな鍵を握っているからである。
Superconducting phenomenon refers to the phenomenon in which electrical resistance completely disappears below the temperature at which this superconducting phenomenon occurs (E!
! temperature) differs depending on the material. Since materials with high critical temperatures can be easily cooled, the development of materials with as high critical temperatures as possible has been particularly popular recently. In addition to a high critical temperature, the upper limit of current that can be passed in a superconducting state (critical current) is also an important point for the practical application of ceramic materials. This is because, for practical use, it must be made into a wire, for example, but since the current that can be passed per unit cross-sectional area of ceramic materials is small, the key to practical application is how high a critical current can be obtained. be.

ところで超電導現象を起こす材料としては、合金系、セ
ラミックス系が周知であり、最近はセラミックス系材料
の開発が特に進められており、臨界温度の高いセラミッ
クス系超電導材料の開発は日進月歩である。しかしなが
ら、その実用化に際しては超電導材料を長尺の線材、テ
ープなどに加工する必要があるにもかかわらず、セラミ
ックス系超電導材料は硬くて脆いために金属材のように
線引きできない問題がある。セラミックス系超電導線材
をモータのコイルとして使用する場合には更に線材をコ
イル巻きする必要があるが、このコイル巻き時に線材が
破断したり、あるいは破断しないまでも巻き応力を加え
ることにより線材の超電導特性が低下する等の問題があ
る。
By the way, alloy-based and ceramic-based materials are well known as materials that cause superconducting phenomena, and the development of ceramic-based materials has been particularly advanced recently, and the development of ceramic-based superconducting materials with high critical temperatures is progressing rapidly. However, although it is necessary to process superconducting materials into long wires, tapes, etc. for practical use, ceramic superconducting materials are hard and brittle and cannot be drawn into wires like metal materials. When ceramic superconducting wire is used as a motor coil, it is necessary to further wind the wire into a coil, but the wire may break during coil winding, or even if it does not break, the superconducting properties of the wire may be affected by applying winding stress. There are problems such as a decrease in

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って本発明の目的は、以上の点を鑑みて、セラミック
ス系超電導材料の粉末またはその原料粉末の混合物から
直接当該材料のコイルを製造する新規な方法を提供する
ことにある。
Therefore, in view of the above points, an object of the present invention is to provide a new method for directly manufacturing a coil of ceramic superconducting material from a powder of the material or a mixture of its raw material powder.

〔問題点を解決するための手段] 前記目的は、金属性容器の中にセラミックス系M4電導
材料の粉末またはその原料粉末を充填し、金属性容器ご
と線引きし、得られた線材を所望の寸法にコイル巻きし
、得られたコイル巻き物を焼結工程に付し、ついでコイ
ルの隣接線間を電気絶縁ワニスを用いて絶縁することを
特徴とするセラミックス系超電導体コイルの製造方法に
より達成される。
[Means for solving the problem] The purpose is to fill a metal container with powder of a ceramic M4 conductive material or its raw material powder, draw a wire together with the metal container, and cut the obtained wire into desired dimensions. This is achieved by a method for manufacturing a ceramic superconductor coil, which is characterized in that the coil is wound into a coil, the obtained coil is subjected to a sintering process, and then adjacent wires of the coil are insulated using an electrically insulating varnish. .

本発明の製造方法の特徴は、セラミックス系超電導材料
の粉末またはその原料粉末を金属性容器を用いて線引き
及びコイル巻きにより予め所望の寸法、構造のコイル状
に加工しておき、ついで焼結するので従来問題の多かっ
た線材のコイル巻き加工が不要であり、コイル巻き加工
に付随した種々の問題が全て解消することである。
The manufacturing method of the present invention is characterized in that ceramic superconducting material powder or its raw material powder is processed in advance into a coil shape with desired dimensions and structure by wire drawing and coil winding using a metal container, and then sintered. Therefore, there is no need for coil winding of the wire, which has been a problem in the past, and all the various problems associated with coil winding can be solved.

超電導材料としては、セラミックス系のものであれば特
に制限はなく、特に希土類元素の酸化物を含有するセラ
ミックス系であることが好ましい。
The superconducting material is not particularly limited as long as it is ceramic-based, and ceramic-based materials containing rare earth element oxides are particularly preferred.

かかる材料としては、たとえば材料の成分としてバリウ
ム・イットリウム・銅・酸素、バリウム・ランタン・銅
・酸素、ストロンチウム・ランタン・銅・酸素、バリウ
ム・スカンジウム・銅・酸素、またはカルシウム・ラン
タン・銅・酸素を組成とするセラミックスなどがあり、
好ましくはセラミックス材料で主流になりつつあるイツ
トリウム系であるバリウム・イットリウム・銅・酸素の
組成からなる材料である。さらにこのイツトリウム系超
電導材料を使用する場合にその好ましい配合比はBa:
 Y :Cu: O=2 : 1 : 3 : 6〜7
である。
Such materials include, for example, barium/yttrium/copper/oxygen, barium/lanthanum/copper/oxygen, strontium/lanthanum/copper/oxygen, barium/scandium/copper/oxygen, or calcium/lanthanum/copper/oxygen as material components. There are ceramics with a composition of
Preferably, it is a material consisting of barium, yttrium, copper, and oxygen, which is a yttrium-based material that is becoming mainstream in ceramic materials. Furthermore, when using this yttrium-based superconducting material, the preferred blending ratio is Ba:
Y:Cu:O=2:1:3:6-7
It is.

本発明においては、かかる組成を有するセラミックスの
粉体が用いられる。当該粉末を製造する方法は、従来既
知の方法によればよく、特に制限はない、たとえば原料
粉末(たとえばバリウム・イットリウム・銅・酸素系の
超電導材料の場合は、炭酸バリウム、酸化イツトリウム
および酸化銅等)の混合→焼結→焼給体の再粉末化とい
う工程で行われる固体プロセスなどによって製造すれば
よい。
In the present invention, ceramic powder having such a composition is used. The method for producing the powder may be any conventionally known method and is not particularly limited. etc.) → sintering → re-powdering of the sintered body.

更に本発明においては、炭酸バリウム、酸化イツトリウ
ムおよび酸化銅等の原料粉末の混合物をも使用すること
が出来る0本発明においては、セラミックス系超電導材
料の粉末またはその原料粉末の混合物等を以下総称的に
超電導材料わ)末と呼ぶ。
Furthermore, in the present invention, a mixture of raw material powders such as barium carbonate, yttrium oxide, and copper oxide can also be used. Superconducting materials are called superconducting materials.

本発明の方法においては、まず金属性容器の中に超電導
材料粉末を緻密に充填し、金属性容器ごと線引きして線
材を得る。金属性容器としては、銀、銅、ステンレス、
アルミニウム等からなる有底パイプが好ましい。
In the method of the present invention, first, a metal container is densely filled with superconducting material powder, and the metal container is drawn into a wire to obtain a wire. Metal containers include silver, copper, stainless steel,
A bottomed pipe made of aluminum or the like is preferred.

線引きにより得られた線材をついで所望の寸法及び形状
のコイルとなるようにコイル巻きし、得られたコイル巻
き物を焼結工程に付し、コイル線材の内部に存在する超
電導材料粉末を焼結する。
The wire obtained by drawing is then coiled to form a coil of desired dimensions and shape, and the obtained coil is subjected to a sintering process to sinter the superconducting material powder present inside the coil wire. .

焼結温度は、使用したセラミックスによりことなるが、
上記した超電導材料粉末の場合、700〜1000°C
1好ましくは800〜950°C程度であり、焼結に要
する時間は1〜24時間程度である。なお、この焼結時
線材内の超電導材料粉末に十分な量の酸素を供給するた
めに従来周知の方法、たとえば酸素雰囲気中での焼結、
等を講じることが好ましい。
The sintering temperature varies depending on the ceramic used, but
In the case of the superconducting material powder described above, the temperature is 700 to 1000°C.
1 Preferably, the temperature is about 800 to 950°C, and the time required for sintering is about 1 to 24 hours. In addition, in order to supply a sufficient amount of oxygen to the superconducting material powder in the wire during this sintering, conventionally known methods such as sintering in an oxygen atmosphere,
It is preferable to take the following measures.

焼結工程を経て得たコイルは、隣接線同土間に間隙があ
る場合には当該間隙に電気絶縁ワニスを含浸し、ついで
加夕、さ硬化する等して絶縁すればよいが、隣接線同土
間に間隙がない場合には、線表面の金属性容器に由来す
る金属外皮の少なくとも1部を薬品処理等により除去し
て隣接線同土間に間隙を設け、ついで上記と同様にして
絶縁処理すればよい。
If the coil obtained through the sintering process has a gap between the adjacent wires, the gap can be insulated by impregnating the gap with electrically insulating varnish and then hardening. If there is no gap between the soil and the adjacent wire, remove at least part of the metal sheath derived from the metal container on the surface of the wire by chemical treatment, etc., create a gap between the soil and the adjacent wire, and then insulate it in the same manner as above. Bye.

(実施例〕 以下、本発明の方法を実施例に基づいてより具体的に説
明する。
(Examples) Hereinafter, the method of the present invention will be explained in more detail based on Examples.

実施例1 セラミックス系超電導材料として、その組成がバリウム
・イットリウム・銅・酸素で、配合比をBa:Y:Cu
:O=2 : 1 : 3 :6.lに調製した平均粒
径的5μmの材料粉末を一端の封止した外径6IIII
l、肉1’I0.5msの銀パイプ内に真空下で緻密に
充填し、カセットダイスを用いて線引きして外径Inの
線材を得た。ついでこの線材を外径10閣、長さ50閣
のセラミック製の円柱、に緻密に螺旋巻きしてコイル状
に成形した後、酸素雰囲気下の900 ’Cで24時間
焼結し、最後に20重量%硝酸水溶液でコイルの銀外皮
の大部分を溶解除去し、十分水洗乾燥して超電導コイル
を得た。得られた当該コイルを減圧下でポリイミドワニ
スに浸漬し、ついで十分に垂れ分が無くなった状態とし
て250°Cで焼付する工程を5回くり返してコイル線
間を電気絶縁処理した。
Example 1 A ceramic superconducting material whose composition is barium, yttrium, copper, and oxygen, with a mixing ratio of Ba:Y:Cu.
:O=2:1:3:6. A material powder with an average particle diameter of 5 μm prepared in a diameter of 6 III sealed at one end
It was densely packed into a silver pipe with a diameter of 1'I0.5ms under vacuum and drawn using a cassette die to obtain a wire with an outer diameter of In. Next, this wire rod was tightly spirally wound around a ceramic cylinder with an outer diameter of 10 mm and a length of 50 mm to form a coil, and then sintered at 900'C in an oxygen atmosphere for 24 hours, and finally Most of the silver sheath of the coil was dissolved and removed using a wt % nitric acid aqueous solution, and the superconducting coil was thoroughly washed with water and dried to obtain a superconducting coil. The obtained coil was immersed in polyimide varnish under reduced pressure, and the process of baking at 250° C. with sufficient sag removed was repeated five times to electrically insulate between the coil wires.

実施例2 配合比をBa:Y:Cu:O=2二L:3:1.0に調
製した平均粒径的5μmの材料粉末を用いて実施例iと
同様の方法および条件で電気絶縁処理されたコイルを得
た。
Example 2 Electrical insulation treatment was carried out using the same method and conditions as in Example i using material powder with an average particle size of 5 μm prepared at a blending ratio of Ba:Y:Cu:O=22L:3:1.0. I got a coil.

実施例3 セラミックス系超電導材料として、その組成がバリウム
・ランタン・銅・酸素で、配合比をBa:Y :Cu:
 0=0.15:0.85: 1 : 4に調製した平
均粒径的5μmの材料粉末を用いて実施例1と同様の方
法および条件で電気絶縁処理されたコイルを得た。
Example 3 A ceramic superconducting material whose composition is barium, lanthanum, copper, and oxygen, with a mixing ratio of Ba:Y:Cu:
An electrically insulated coil was obtained in the same manner and under the same conditions as in Example 1 using material powder with an average particle size of 5 μm prepared in the ratio of 0=0.15:0.85:1:4.

各実施例で得られた各コイルの臨界温度並びに臨界電流
密度を以下の方法によって測定し、第1表に示す結果を
得た。
The critical temperature and critical current density of each coil obtained in each example were measured by the following method, and the results shown in Table 1 were obtained.

(臨界温度、臨界電流密度の測定方法)1)臨界温度 サンプル(長さ2〜3cm)を電流密度0.1 A/c
dとして液体ヘリウムで冷却しなから4端子法により電
気抵抗変化と温度変化をX−Yレコーダーにより測定し
、電気抵抗値がゼロになる温度を求めた。
(Method for measuring critical temperature and critical current density) 1) A critical temperature sample (2 to 3 cm long) at a current density of 0.1 A/c
(d) After cooling with liquid helium, changes in electrical resistance and temperature were measured using an X-Y recorder using a four-terminal method, and the temperature at which the electrical resistance value became zero was determined.

2)臨界電流密度 サンプル(長さ2〜3C11)をパワーリードと共に液
体ヘリウム中に浸漬し、徐々に電流値を上げなから4端
子法によりiRドロップと電流変化をX−Yレコーダー
により測定し、!Rドロップが出現する電流値を求めた
2) Immerse the critical current density sample (length 2 to 3C11) in liquid helium together with the power lead, gradually increase the current value, and measure the iR drop and current change with an X-Y recorder using the four-terminal method. ! The current value at which R drop appears was determined.

第1表 〔発明の効果〕 以上説明した如く、本発明の製造方法によればセラミッ
クス系超電導材料の粉末またはその原料粉末の混合物を
用いて直接当該材料のコイルを製造することができる。
Table 1 [Effects of the Invention] As explained above, according to the manufacturing method of the present invention, it is possible to directly manufacture a coil made of a ceramic superconducting material powder or a mixture of its raw material powders.

したがって従来問題の多かった線材のコイル巻き加工が
不要であり、コイル巻き加工に付随した種々の問題が全
て解消する。
Therefore, there is no need for coil winding of the wire, which has been problematic in the past, and all the various problems associated with coil winding are solved.

Claims (2)

【特許請求の範囲】[Claims] (1) 金属性容器の中にセラミックス系超電導材料の
粉末またはその原料粉末を充填し、金属性容器ごと線引
きし、得られた線材を所望の寸法にコイル巻きし、得ら
れたコイル巻き物を焼結工程に付し、コイルの隣接線間
を電気絶縁ワニスを用いて絶縁することを特徴とするセ
ラミックス系超電導体コイルの製造方法。
(1) Fill a metal container with ceramic superconducting material powder or its raw material powder, draw a wire together with the metal container, wind the obtained wire into a coil to the desired size, and bake the obtained coiled material. A method for manufacturing a ceramic superconductor coil, which comprises insulating adjacent wires of the coil using an electrically insulating varnish during the tying process.
(2) 前記超電導材料の成分がバリウム・イットリウ
ム・銅・酸素、バリウム・ランタン・銅・酸素、ストロ
ンチウム・ランタン・銅・酸素、バリウム・スカンジウ
ム・銅・酸素、またはカルシウム・ランタン・銅・酸素
であることを特徴とする特許請求の範囲第(1)項に記
載のセラミックス系超電導体コイルの製造方法。
(2) The components of the superconducting material are barium/yttrium/copper/oxygen, barium/lanthanum/copper/oxygen, strontium/lanthanum/copper/oxygen, barium/scandium/copper/oxygen, or calcium/lanthanum/copper/oxygen. A method for manufacturing a ceramic superconductor coil according to claim (1), characterized in that:
JP28664687A 1987-11-12 1987-11-12 Manufacture of ceramics system superconductive coil Pending JPH01128406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28664687A JPH01128406A (en) 1987-11-12 1987-11-12 Manufacture of ceramics system superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28664687A JPH01128406A (en) 1987-11-12 1987-11-12 Manufacture of ceramics system superconductive coil

Publications (1)

Publication Number Publication Date
JPH01128406A true JPH01128406A (en) 1989-05-22

Family

ID=17707121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28664687A Pending JPH01128406A (en) 1987-11-12 1987-11-12 Manufacture of ceramics system superconductive coil

Country Status (1)

Country Link
JP (1) JPH01128406A (en)

Similar Documents

Publication Publication Date Title
EP0472197A1 (en) High-temperature superconductive conductor winding
JP4752505B2 (en) Method for manufacturing oxide superconducting wire and method for modifying oxide superconducting wire
JP3783538B2 (en) Manufacturing method of oxide superconducting wire
WO1988008618A2 (en) Ceramic superconducting devices and fabrication methods
JPH01128406A (en) Manufacture of ceramics system superconductive coil
JP2574161B2 (en) Manufacturing method of ceramic superconductor coil
JP2003331660A (en) Metal-sheathed superconductor wire, superconducting coil, and its manufacturing method
JP2727565B2 (en) Superconductor manufacturing method
JPH0353415A (en) Superconductor wire rod
JP2509642B2 (en) Superconducting power lead manufacturing method
JP2699077B2 (en) Manufacturing method of ceramic superconductor coil
US5583094A (en) "Method for preparing hollow oxide superconductors"
JPH05114313A (en) Superconducting current limiting wire and its manufacture
JP2554660B2 (en) Method for producing compound superconducting wire
JPS63314721A (en) Processing method for ceramic-based superconductive material
JPH02246101A (en) Oxide superconductive coil
JPS63281318A (en) Manufacture of compound superconductive wire
JPH05144330A (en) Tape-like oxide superconductive wire rod
JPH04259203A (en) Manufacture of ceramic superconductor coil
JPS63281319A (en) Manufacture of compound superconductive wire
JPH0661682A (en) Supperconducting magnetic shield
JPH01144517A (en) Oxide-based superconductive cable
JPH01128409A (en) Manufacture of ceramics system superconductor coil
JPH01105411A (en) Manufacture of composite oxide ceramic wire material coated by metallic material
JPH01175116A (en) Oxide superconducting wire