JP2574161B2 - Manufacturing method of ceramic superconductor coil - Google Patents

Manufacturing method of ceramic superconductor coil

Info

Publication number
JP2574161B2
JP2574161B2 JP28664787A JP28664787A JP2574161B2 JP 2574161 B2 JP2574161 B2 JP 2574161B2 JP 28664787 A JP28664787 A JP 28664787A JP 28664787 A JP28664787 A JP 28664787A JP 2574161 B2 JP2574161 B2 JP 2574161B2
Authority
JP
Japan
Prior art keywords
ceramic
coil
copper
oxygen
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28664787A
Other languages
Japanese (ja)
Other versions
JPH01128407A (en
Inventor
雅善 中川
千明 斎藤
珠三 霜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP28664787A priority Critical patent/JP2574161B2/en
Publication of JPH01128407A publication Critical patent/JPH01128407A/en
Application granted granted Critical
Publication of JP2574161B2 publication Critical patent/JP2574161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導体コイルの製造方法に関し、詳細に
希土類元素の酸化物を含有するセラミックス系超電導体
のコイルの新規な製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a superconducting coil, and more particularly to a novel method for producing a ceramic-based superconducting coil containing an oxide of a rare earth element. is there.

〔従来の技術〕[Conventional technology]

超電導現象は或る温度以下で電気抵抗が全く無くなる
現象をいうが、この超電導現象はそれが起こる温度(臨
界温度)が材料によってそれぞれ異なる。臨界温度が高
い材料ほど冷却が容易であるため、できるだけ臨界温度
の高い材料の開発が特に最近隆盛を極めている。また、
高い臨界温度だけでなく超電導状態で流せる上限の電流
(臨界電流)もセラミックス材料の実用化の重要なポイ
ントとなる。これは実用化にはたとえば線材にしなけれ
ばならないが、セラミックス材料は単位断面積当りに流
せる電流が小さいため、どれだけ高い臨界電流が得られ
るかが実用化への大きな鍵を握っているからである。
The superconductivity phenomenon is a phenomenon in which the electric resistance is completely lost below a certain temperature, and the temperature at which the superconductivity occurs (critical temperature) differs depending on the material. Since a material having a higher critical temperature is easier to cool, the development of a material having a critical temperature as high as possible has been particularly prosperous recently. Also,
Not only the high critical temperature but also the upper limit current (critical current) that can flow in the superconducting state is an important point in the practical use of ceramic materials. For practical use, for example, wires must be used, but ceramic materials have a small current that can be passed per unit cross-sectional area, so the key to practical use is how high a critical current can be obtained. is there.

ところで超電導現象を起こす材料としては、合金系、
セラミックス系が周知であり、最近はセラミックス系材
料の開発が特に進められており、臨界温度の高いセラミ
ックス系超電導材料の開発は日進月歩である。しかしな
がら、その実用化に際しては超電導材料を長尺の線材、
テープなどに加工する必要があるにもかかわらず、セラ
ミックス系超電導材料は硬くて脆いために金属材によう
に線引きできない問題がある。セラミックス系超電導線
材をモータのコイルとして使用する場合には、更に線材
をコイル巻きする必要があるが、このコイル巻き時に線
材が破断したり、あるいは破断しないまでも巻き応力を
加えることにより線材の超電導特性が低下する等の問題
がある。
By the way, materials that cause superconductivity are alloys,
Ceramics are well known, and the development of ceramics materials has been particularly advanced in recent years, and the development of ceramics-based superconducting materials having a high critical temperature is constantly evolving. However, for practical use, superconducting materials were converted to long wires,
Despite the necessity of processing into a tape or the like, there is a problem that a ceramic-based superconducting material cannot be drawn like a metal material because it is hard and brittle. When a ceramic-based superconducting wire is used as a coil for a motor, it is necessary to wind the wire further.However, the wire breaks during this coil winding, or by applying a winding stress until it does not break, the superconductivity of the wire is increased. There are problems such as deterioration of characteristics.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従って本発明の目的は、以上の点を鑑みて、セラミッ
クス系超電導材料の粉末またはその原料粉末の混合物か
ら直接当該材料のコイルを製造する新規な方法を提供す
ることにある。
Accordingly, an object of the present invention is to provide a novel method for directly manufacturing a coil of a ceramic-based superconducting material from a powder or a mixture of the raw material powders in view of the above points.

〔問題点を解決するための手段〕[Means for solving the problem]

前記目的は、金属性容器の中心部にセラミックス系超
電導材料の粉末又はその原料粉末を充填し、当該セラミ
ックス系超電導材料粉末の充填層と金属性容器内壁との
間に電気絶縁性のセラミックス粉末を充填し、金属性容
器ごと線引きし、得られた線材を所望の寸法にコイル巻
きし、得られたコイル巻き物を焼結工程に付し、ついで
コイルの金属外皮を除去することを特徴とするセラミッ
クス系超電導体コイルの製造方法により達成される。
The object is to fill a ceramic superconducting material powder or its raw material powder into a central portion of a metallic container, and to provide an electrically insulating ceramic powder between a filled layer of the ceramic superconducting material powder and an inner wall of the metallic container. A ceramic characterized by being filled and drawn together with a metal container, winding the obtained wire into a coil of a desired size, subjecting the obtained coil wound to a sintering process, and then removing the metal sheath of the coil. This is achieved by a method of manufacturing a superconducting coil.

本発明の特定発明による製造方法の特徴は、セラミッ
クス系超電導材料の粉末またはその原料粉末を金属性容
器を用いて線引き及びコイル巻きにより予め所望の寸
法、構造のコイル状に加工しておき、ついで焼結するの
で従来問題の多かった線材のコイル巻き加工が不要であ
り、コイル巻き加工に付随した種々の問題が全て解消す
ることである。
The feature of the manufacturing method according to the specific invention of the present invention is that the powder of the ceramic-based superconducting material or its raw material powder is processed into a coil having a desired size and structure in advance by drawing and coiling using a metal container. Since sintering is performed, coil winding of a wire, which has conventionally been problematic, is not required, and various problems associated with coil winding are all eliminated.

超電導材料としては、セラミックス系のものであれば
特に制限はなく、特に希土類元素の酸化物を含有するセ
ラミックス系であることが好ましい。
The superconducting material is not particularly limited as long as it is a ceramic material, and is preferably a ceramic material containing an oxide of a rare earth element.

かかる材料としては、たとえば材料の成分としてバリ
ウム・イットリウム・銅・酸素・バリウム・ランタン・
銅・酸素、ストロンチウム・ランタン・銅・酸素、バリ
ウム・スカンジウム・銅・酸素、またはカルシウム・ラ
ンタン・銅・酸素を組成とするセラミックスなどがあ
り、好ましくはセラミック材料で主流になりつつあるイ
ットリウム系であるバリウム・イットリウム・銅・酸素
の組成からなる材料である。さらにこのイットリウム系
超電導材料を使用する場合にその好ましい配合比はBa:
Y:Cu:O=2:1:3:6〜7である。本発明においては、かか
る組成を有するセラミックスの粉体が用いられる。当該
粉末を製造する方法は、従来既知の方法によればよく、
特に制限はない。たとえば原料粉末(たとえばバリウム
・イットリウム・銅・酸素系の超電導材料の場合は、炭
酸バリウム、酸化イットリウムおよび酸化銅等)の混合
→焼結→焼結体の再粉末化という工程で行われる固体プ
ロセスなどによって製造すればよい。更に本発明におい
ては、炭酸バリウム、酸化イットリウムおよび酸化銅等
の原料粉末の混合物をも使用することが出来る。本発明
においては、セラミックス系超電導材料の粉末またはそ
の原料粉末の混合物等を以下総称的に超電導材料粉末と
呼ぶ。
Such materials include, for example, barium, yttrium, copper, oxygen, barium, lanthanum,
There are ceramics containing copper / oxygen, strontium / lanthanum / copper / oxygen, barium / scandium / copper / oxygen, or calcium / lanthanum / copper / oxygen. It is a material composed of a certain composition of barium, yttrium, copper and oxygen. Furthermore, when using this yttrium-based superconducting material, its preferred compounding ratio is Ba:
Y: Cu: O = 2: 1: 3: 6 to 7 In the present invention, a ceramic powder having such a composition is used. The method for producing the powder may be a conventionally known method,
There is no particular limitation. For example, a solid process performed in a process of mixing raw material powders (for example, in the case of barium / yttrium / copper / oxygen based superconducting materials, barium carbonate, yttrium oxide, copper oxide, etc.) → sintering → re-powdering the sintered body It may be manufactured by such as. Further, in the present invention, a mixture of raw material powders such as barium carbonate, yttrium oxide, and copper oxide can be used. In the present invention, the powder of the ceramic-based superconducting material or a mixture of the raw material powders is hereinafter generally referred to as superconducting material powder.

本発明の方法においては、まず金属性容器の中心部に
セラミックス系超電導材料粉末を充填し、当該セラミッ
クス系超電導材料粉末の充填層と金属性容器内壁との間
に電気絶縁性のセラミックス粉末を充填し、金属性容器
ごと線引きして線材を得る。金属性容器としては、銀、
銅、ステンレス、アルミニウム等からなる有底パイプが
好ましい。
In the method of the present invention, first, a ceramic-based superconducting material powder is filled in a central portion of a metallic container, and an electrically insulating ceramic powder is filled between a filling layer of the ceramic-based superconducting material powder and an inner wall of the metallic container. Then, the entire metal container is drawn to obtain a wire. Silver,
A bottomed pipe made of copper, stainless steel, aluminum or the like is preferable.

線引きにより得られた線材を、ついて所望の寸法及び
形状のコイルとなるようにコイル巻きし、得られたコイ
ル巻き物を焼結工程に付し、コイル線材の内部に存在す
る超電導材料粉末及び電気絶縁性のセラミックス粉末を
焼結する。
The wire obtained by wire drawing is wound into a coil having a desired size and shape, and the obtained coil wound is subjected to a sintering process to obtain a superconducting material powder and an electric insulating material present inside the coil wire. Sinterable ceramic powder.

焼結温度は、使用したセラミックスにより異なるが、
上記した超電導材料粉末の場合、700〜1000℃、好まし
くは800〜950℃程度であり、焼結に要する時間は1〜24
時間程度である。なお、この焼結時に線材内の超電導材
料粉末に十分な量の酸素を供給するために従来周知の方
法、たとえば酸素雰囲気中での焼結、等を講じることが
好ましい。
The sintering temperature depends on the ceramic used,
In the case of the above-described superconducting material powder, the temperature is 700 to 1000 ° C., preferably about 800 to 950 ° C., and the time required for sintering is 1 to 24.
About an hour. In order to supply a sufficient amount of oxygen to the superconducting material powder in the wire during the sintering, it is preferable to adopt a conventionally known method, for example, sintering in an oxygen atmosphere.

焼結工程を経て得たコイルの表面には金属性容器に由
来する金属外皮が存在するので、次いでこの金属外皮は
薬品処理、機械的削除等の方法により除去される。処理
薬品としては、除去対象となる金属種に応じた適当な
酸、アルカリ等を、必要に応じて2種以上を組合わせ使
用するとよい。
Since the metal sheath derived from the metal container exists on the surface of the coil obtained through the sintering process, the metal sheath is then removed by a method such as chemical treatment or mechanical removal. As the treatment chemical, an acid, an alkali, or the like appropriate for the type of metal to be removed may be used in combination of two or more as needed.

得られた超電導体コイルは、表面層が電気絶縁層とな
っているのでそのまま実用に供してもよいが、更にその
表面に前記絶縁ワニスを塗布、焼付して絶縁層を形成す
ると一層好ましい。
The obtained superconducting coil may be used as it is because the surface layer is an electric insulating layer, but it is more preferable that the insulating layer is formed by coating and baking the insulating varnish on the surface.

〔実施例〕〔Example〕

以下、本発明の方法を実施例に基づいてより具体的に
説明する。
Hereinafter, the method of the present invention will be described more specifically based on examples.

実施例1 一端に封止した内径6mm、肉厚0.5mmの銀パイプに外径
5mmの銅マンドレルを同心円状に挿入設置し、該銀パイ
プと同マンドレルとの間に生じた断面リング状間隙内に
電気絶縁性のセラミックス粉末(平均粒径約5μmの酸
化イットリウムと酸化銅の1:1重量比混合物)を真空下
で緻密に充填し、次いで銅マンドレルを引き抜き、生じ
た穴に超電導セラミックス材料として、その組成がバリ
ウム・イットリウム・銅・酸素で、配合比をBa:Y:Cu:O
=2:1:3:6.1に調製した平均粒径約5μmの材料粉末を
真空下で緻密に充填し、カセットダイスを用いて線引き
して外形1mmの線材を得た。ついでこの線材を外径10m
m、流さ50mmのセラミック製の円柱の表面に緻密に巻き
つけてコイルを成形した後、酸素雰囲気下の900℃6で2
4時間焼結し、室温に冷却後、濃度10重量%の硝酸水溶
液でコイルの銀外引を溶解除去し、十分水洗乾燥して表
面にセラミックス電気絶縁層を有する超電導コイルを得
た。
Example 1 Outer diameter of a silver pipe sealed at one end and having a 6 mm inner diameter and a 0.5 mm wall thickness
A copper mandrel of 5 mm is inserted and installed concentrically, and an electrically insulating ceramic powder (yttrium oxide and copper oxide having an average particle size of about 5 μm) is inserted into a ring-shaped cross section formed between the silver pipe and the mandrel. : 1 weight ratio mixture) under vacuum, then densely withdraw the copper mandrel, and in the resulting hole as a superconducting ceramic material, the composition is barium, yttrium, copper, oxygen, and the mixing ratio is Ba: Y: Cu : O
= 2: 1: 3: 6.1 The material powder having an average particle size of about 5 μm prepared densely under vacuum was drawn and drawn using a cassette die to obtain a wire having an outer diameter of 1 mm. Next, this wire rod has an outer diameter of 10m.
m, wound tightly around the surface of a ceramic cylinder with a flow of 50 mm to form a coil.
After sintering for 4 hours and cooling to room temperature, the silver extraction of the coil was dissolved and removed with a 10% by weight aqueous nitric acid solution, washed sufficiently with water and dried to obtain a superconducting coil having a ceramic electric insulating layer on the surface.

実施例2 配合比をBa:Y:Cu:O=2:1:3:7.0に調製した平均粒径約
5μmの材料粉末を用いて実施例1と同様の方法および
条件で電気絶縁処理されたコイルを得た。
Example 2 A material powder having an average particle diameter of about 5 μm prepared at a mixing ratio of Ba: Y: Cu: O = 2: 1: 3: 7.0 was subjected to electrical insulation treatment in the same manner and under the same conditions as in Example 1. A coil was obtained.

実施例3 セラミックス系超電導材料として、その組成がバリウ
ム・ランタン・銅・酸素で、配合比をBa:Y:Cu:O=0.15:
0.85:1:4に調製した平均粒径約5μmの材料粉末を用い
て実施例1と同様の方法および条件で電気絶縁処理され
たコイルを得た。
Example 3 As a ceramic-based superconducting material, the composition was barium / lanthanum / copper / oxygen, and the mixing ratio was Ba: Y: Cu: O = 0.15:
Using a material powder having an average particle size of about 5 μm prepared at 0.85: 1: 4, a coil subjected to electrical insulation treatment was obtained in the same manner and under the same conditions as in Example 1.

各実施例で得られた各線材の臨界温度並びに臨界電流
密度を以下の方法によって測定し、第1表に示す結果を
得た。
The critical temperature and critical current density of each wire obtained in each example were measured by the following methods, and the results shown in Table 1 were obtained.

(臨界温度、臨界電流密度の測定方法) 1)臨界温度 サンプル(長さ2〜3cm)を電流密度0.1A/cm2として
液体ヘリウムで冷却しながら4端子法により電気抵抗変
化と温度変化をX−Yレコーダーにより測定し、電気抵
抗値がゼロになる温度を求めた。
(Measurement method of critical temperature and critical current density) 1) Critical temperature A sample (2 to 3 cm in length) was cooled to a current density of 0.1 A / cm 2 with liquid helium, and the electrical resistance change and temperature change were determined by the four-terminal method. The temperature at which the electric resistance value became zero was determined by measuring with a -Y recorder.

2)臨界電流密度 サンプル(長さ2〜3cm)をパワーリードと共に液体
ヘリウム中に浸漬し、徐々に電流値を上げながら4端子
法によりIRドロップと電流変化をX−Yレコーダーによ
り測定し、IRドロップが出現する電流値を求めた。
2) Critical current density A sample (2 to 3 cm in length) is immersed in liquid helium together with a power lead, and while gradually increasing the current value, the IR drop and the change in current are measured by a four-terminal method using an XY recorder. The current value at which the drop appears was determined.

〔発明の効果〕 以上説明した如く、本発明の製造方法によればセラミ
ックス系超電導材料の粉末まはその原料粉末を混合物を
用いて直接当該材料のコイルを製造することができる。
したがって従来問題の多かった線材のコイル巻き加工が
不要であり、コイル巻き加工に付随した種々の問題が全
て解消する。また本発明の方法を得たコイルは電気絶縁
性のセラミックスをその表面層に有するので電気絶縁処
理の必要がない。
[Effects of the Invention] As described above, according to the manufacturing method of the present invention, it is possible to directly manufacture a ceramic superconducting material powder or a coil of the raw material powder by using a mixture thereof.
Therefore, coil winding of the wire rod, which has many problems in the related art, is unnecessary, and all the various problems associated with the coil winding are eliminated. Further, since the coil obtained by the method of the present invention has an electrically insulating ceramic on its surface layer, there is no need for an electrical insulation treatment.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属性容器の中心部にセラミックス系超電
導材料の粉末またはその原料粉末を充填し、当該セラミ
ックス系超電導材料粉末の充填層と金属性容器内壁との
間に電気絶縁性のセラミックス粉末を充填し、金属性容
器ごと線引きし、得られた線材を所望の寸法にコイル巻
きし、得られたコイル巻き物を焼結工程に付し、ついで
コイルの金属外皮を除去することを特徴とするセラミッ
クス系超電導体コイルの製造方法。
An electric insulating ceramic powder is filled between a filling layer of a ceramic-based superconducting material powder and an inner wall of a metallic container by filling a central portion of a metallic container with a powder of a ceramic-based superconducting material or a raw material powder thereof. Is filled, and the whole metal container is drawn, the obtained wire is coil-wound to a desired size, the obtained coil winding is subjected to a sintering step, and then the metal outer skin of the coil is removed. A method for manufacturing a ceramic superconductor coil.
【請求項2】前記超電導材料の成分がバリウム・イット
リウム・銅・酸素、バリウム・ランタン・銅・酸素・ス
トロンチウム・ランタン・銅・酸素、バリウム・スカン
ジウム・銅・酸素、またはカルシウム・ランタン・銅・
酸素であることを特徴とする特許請求の範囲第(1)項
に記載のセラミックス系超電導体コイルの製造方法。
2. The composition of the superconducting material is barium / yttrium / copper / oxygen, barium / lanthanum / copper / oxygen / strontium / lanthanum / copper / oxygen, barium / scandium / copper / oxygen, or calcium / lanthanum / copper.
The method for producing a ceramic superconductor coil according to claim 1, wherein the method is oxygen.
JP28664787A 1987-11-12 1987-11-12 Manufacturing method of ceramic superconductor coil Expired - Lifetime JP2574161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28664787A JP2574161B2 (en) 1987-11-12 1987-11-12 Manufacturing method of ceramic superconductor coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28664787A JP2574161B2 (en) 1987-11-12 1987-11-12 Manufacturing method of ceramic superconductor coil

Publications (2)

Publication Number Publication Date
JPH01128407A JPH01128407A (en) 1989-05-22
JP2574161B2 true JP2574161B2 (en) 1997-01-22

Family

ID=17707132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28664787A Expired - Lifetime JP2574161B2 (en) 1987-11-12 1987-11-12 Manufacturing method of ceramic superconductor coil

Country Status (1)

Country Link
JP (1) JP2574161B2 (en)

Also Published As

Publication number Publication date
JPH01128407A (en) 1989-05-22

Similar Documents

Publication Publication Date Title
JP4752505B2 (en) Method for manufacturing oxide superconducting wire and method for modifying oxide superconducting wire
JP3783538B2 (en) Manufacturing method of oxide superconducting wire
JP2574161B2 (en) Manufacturing method of ceramic superconductor coil
EP0310033A3 (en) Superconducting wire and method of producing the same
WO1988008618A2 (en) Ceramic superconducting devices and fabrication methods
EP0409150B1 (en) Superconducting wire
JPH01128406A (en) Manufacture of ceramics system superconductive coil
JP2699077B2 (en) Manufacturing method of ceramic superconductor coil
JP2727565B2 (en) Superconductor manufacturing method
JP2549697B2 (en) Method for producing oxide-based superconducting wire
JPH05266726A (en) Oxide superconducting wire
JPH01276516A (en) Manufacture of superconductive wire rod having high critical current density
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JP2573506B2 (en) Manufacturing method of ceramic superconducting wire
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
JPH05114313A (en) Superconducting current limiting wire and its manufacture
JPH07109170A (en) Production of bi-based oxide superconductor and material for forming the same
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JPH0661682A (en) Supperconducting magnetic shield
JPH05144330A (en) Tape-like oxide superconductive wire rod
JPH01143108A (en) Manufacture of ceramics superconductive wire
JPH0982147A (en) Oxide superconduting wire and its manufacture
JPH01105411A (en) Manufacture of composite oxide ceramic wire material coated by metallic material
JPH01144517A (en) Oxide-based superconductive cable
JPH01123405A (en) Manufacture of superconducting power lead