JPS63314721A - Processing method for ceramic-based superconductive material - Google Patents

Processing method for ceramic-based superconductive material

Info

Publication number
JPS63314721A
JPS63314721A JP62150534A JP15053487A JPS63314721A JP S63314721 A JPS63314721 A JP S63314721A JP 62150534 A JP62150534 A JP 62150534A JP 15053487 A JP15053487 A JP 15053487A JP S63314721 A JPS63314721 A JP S63314721A
Authority
JP
Japan
Prior art keywords
ceramic
wire
aluminum pipe
copper
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62150534A
Other languages
Japanese (ja)
Inventor
Makoto Yoshikawa
吉川 允
Keisuke Yamamoto
啓介 山本
Seiji Suzuki
清司 鈴木
Makoto Hiraoka
誠 平岡
Yoshinori Takada
高田 善典
Shigenori Suketani
重徳 祐谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP62150534A priority Critical patent/JPS63314721A/en
Publication of JPS63314721A publication Critical patent/JPS63314721A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make ceramic-based superconductive material into wire, tape, etc., by filling the ceramic-based superconductive material in an aluminum pipe and wire-drawing the pipe. CONSTITUTION:Constituents of a superconductive material (Ba.Y.Cu.O), (Ba.La.Cu.O), (Sr.La.Cu.O), (Ba.Sc.Cu.O) and (Ca.La.Cu.O) are filled into an aluminum pipe. Setting the wire-drawing temperature of the aluminum pipe below the melting point of aluminum, the aluminum pipe is wire-drawn. According to this constitution, it is possible to make the ceramic material easily into wire material, tape, coil, etc., without deteriorating the superconductivity of the ceramic material and to greatly contribute to the practical use of the ceramic material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導材料の加工方法に関し、詳細には希土
類元素の酸化物を含有するセラミックス系超電導材料を
線材、テープ、コイルなどく特に線材)に加工する方法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for processing superconducting materials, and more particularly, the present invention relates to a method for processing superconducting materials, and in particular, processing ceramic superconducting materials containing rare earth element oxides into wire rods, tapes, coils, etc. ).

〔従来の技術・発明が解決しようとする問題点〕超電導
現象は成る温度以下で電気抵抗が全く無くなる現象をい
うが、この超電導現象はそれが起こる温度(臨界温度)
が材料によってそれぞれ異なる。臨界温度が高い材料は
ど冷却が容易であるため、できるだけ臨界温度の高い材
料の開発が特に最近隆盛を極めている。また、高い臨界
温度だけでなく超電導状態で流せる上限の電流(臨界電
流)もセラミックス材料の実用化の重要なポイントとな
る。これは実用化にはたとえば線材にしなければならな
いが、セラミックス材料は単位断面積当りに流せる電流
が小さいため、どれだけ高い臨界電流が得られるかが実
用化への大きな鍵を握っているからである。
[Problems to be solved by conventional technology/inventions] Superconducting phenomenon refers to a phenomenon in which electrical resistance completely disappears below the temperature at which this phenomenon occurs (critical temperature).
differs depending on the material. Since materials with high critical temperatures can be easily cooled, the development of materials with as high critical temperatures as possible has been particularly popular recently. In addition to a high critical temperature, the upper limit of current that can be passed in a superconducting state (critical current) is also an important point for the practical application of ceramic materials. This is because, for practical use, it must be made into a wire, for example, but since the current that can be passed per unit cross-sectional area of ceramic materials is small, the key to practical application is how high a critical current can be obtained. be.

ところで超電導現象を起こす材料としては、合金系、化
合物系が周知であり、最近はセラミックス系材料の開発
が特に進められている。臨界温度の高いセラミックス系
超電導材料の開発は日進月歩であるが、実用化に際して
は超電導材料を線材、テープ、コイルなどに加工する必
要があり、たとえば超電導状態の永久に流れる電流を利
用して強力な電磁石を作る場合、コイルに加工しなけれ
ばならない、しかしながら、材料の粉末を焼き固めたセ
ラミックスは硬くて跪り、合金のように曲げたり、コイ
ルに巻いたりするなどの加工が大変能しい、そのため、
その欠点を克服し、より実用化に近づけるために、セラ
ミックス材料の開発と共にその加工方法の開発も押し進
められている。
By the way, alloy-based and compound-based materials are well known as materials that cause superconductivity, and recently, the development of ceramic-based materials has been particularly advanced. The development of ceramic superconducting materials with high critical temperatures is progressing rapidly, but in order to put them into practical use, it is necessary to process superconducting materials into wires, tapes, coils, etc. When making an electromagnet, it must be processed into a coil. However, ceramics, which are made by firing and solidifying powdered materials, are hard and bendable, and can be bent like alloys or wound into coils. ,
In order to overcome these drawbacks and bring them closer to practical use, progress is being made in the development of ceramic materials and processing methods.

しかしてこれまでの加工法としてたとえば線材化する例
を挙げると、超電導特性を有するセラミックス材料を銅
または銀からなる金属パイプ内に充填し、当該金属パイ
プを比較的低温(25℃程度)で線引きする方法(いわ
ゆる冷間加工)が周知である。実用化の上で1つの重要
な点は、いかにして超電導特性を劣化させないで線材に
するかということである。この立場から各種金属パイプ
またはインゴット内に超電導セラミックス材料を詰め、
線引きする試みがなされている。しかしながら、上述し
た如(これまでのところパイプ材料としては銅や銀ぐら
いしか開発されていないのが実情である。
However, as an example of conventional processing methods, for example, to make wire rods, a ceramic material with superconducting properties is filled into a metal pipe made of copper or silver, and the metal pipe is drawn into a wire at a relatively low temperature (about 25 degrees Celsius). A method of doing this (so-called cold working) is well known. One important point for practical application is how to make wire rods without deteriorating their superconducting properties. From this standpoint, we fill various metal pipes or ingots with superconducting ceramic materials,
Attempts are being made to draw the line. However, as mentioned above, the reality is that only copper and silver have been developed as pipe materials so far.

従って本発明の目的は、以上の点を鑑みて、セラミック
ス系超電導材料を線材、テープ、コイルなど(特に線材
)に実用化するに当り、できる限りセラミックス材料が
本来もつ超電導特性を劣化させないでその加工を容易に
行う方法を提供することにある。
Therefore, in view of the above points, it is an object of the present invention to utilize ceramic superconducting materials into wire rods, tapes, coils, etc. (especially wire rods) without deteriorating the superconducting properties inherent in the ceramic materials as much as possible. The object of the present invention is to provide a method that facilitates processing.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的は、アルミニウムパイプ内に、希土類元素の酸
化物を含有するセラミックス系超電導材料の粉末または
ペレットを充填し、当該アルミニウムパイプを線引きす
ることを特徴とする超電導材料の加工方法により達成さ
れる。
The above object is achieved by a method for processing a superconducting material, which comprises filling an aluminum pipe with powder or pellets of a ceramic superconducting material containing an oxide of a rare earth element, and drawing the aluminum pipe.

本発明の加工方法の特徴は、線引用のパイプとしてアル
ミニウムパイプを用いることである0本発明の加工方法
においては、線引時にアルミニウムパイプの融点以下で
、超電導セラミックス材料を詰めたアルミニウムパイプ
を線引きするものであり、線引に関しては通常の冷間加
工または熱間加工である。
A feature of the processing method of the present invention is that an aluminum pipe is used as a pipe for drawing the wire. In the processing method of the present invention, an aluminum pipe filled with a superconducting ceramic material is drawn at a temperature below the melting point of the aluminum pipe during wire drawing. As for wire drawing, it is a normal cold working or hot working.

しかしてアルミニウムの融点は約660℃(参考として
銅は約1080℃、銀は約960℃)であり、線引はこ
のアルミニウムの融点よりも低い温度で行い、たとえば
通常の冷間加工では10〜30℃、熱間加工では250
〜600℃、好ましくは350〜450℃程度である。
The melting point of aluminum is approximately 660°C (for reference, copper is approximately 1080°C and silver is approximately 960°C), and wire drawing is performed at a temperature lower than the melting point of aluminum. 30℃, 250℃ for hot processing
~600°C, preferably about 350~450°C.

また線引後は冷間加工では通常熱処理として400〜6
00℃程度で焼結が、また熱間加工でも冷間加工と同様
の温度の焼結などの処理が必要であり、これらの処理も
常套手段で行えばよい。
In addition, after drawing, cold working usually involves heat treatment of 400 to 6
Treatments such as sintering at about 00° C. and sintering at the same temperature as cold working are required in hot working, and these treatments may be performed by conventional means.

超電導材料は、セラミックス系超電導材料であれば特に
制限はなく、特に希土類元素の酸化物を含有するセラミ
ックス系であることが好ましい。
The superconducting material is not particularly limited as long as it is a ceramic-based superconducting material, and is particularly preferably a ceramic-based material containing an oxide of a rare earth element.

かかる材料としては、既存の材料を供すればよいが、た
とえば材料の成分としてバリウム・イットリウム・銅・
酸素、バリウム・ランタン・銅・酸素、ストロンチウム
・ランタン・銅・酸素、バリウム・スカンジウム・銅・
酸素、またはカルシウム・ランタン・銅・酸素を組成と
するセラミックスなどがあり、好ましくはセラミックス
材料で主流になりつつあるインドリウム系であるバリウ
ム・イツトリウム・銅・酸素の組成からなる材料である
。さらにこのインドリウム系超電導材料を使用する場合
にその好ましい配合比はBa:Y:Cu:0−2:l:
3=6〜7である。
Existing materials may be used as such materials, but for example, barium, yttrium, copper,
Oxygen, barium/lanthanum/copper/oxygen, strontium/lanthanum/copper/oxygen, barium/scandium/copper/
There are ceramics with a composition of oxygen, calcium, lanthanum, copper, and oxygen, and preferably a material with a composition of barium, yttrium, copper, and oxygen, which is an indium-based material that is becoming mainstream in ceramic materials. Furthermore, when using this indium-based superconducting material, the preferred blending ratio is Ba:Y:Cu:0-2:l:
3=6-7.

またこれら組成原料からセラミックスに製造する方法は
、従来既知の方法によればよ(、特に制限はない、たと
えばセラミックスを製造するプロセスとして、原料−焼
結原料一成形一焼結という段階で行われる固体プロセス
などによって製造すればよい、得られた超電導特性を有
するセラミックス材料の粉末またはペレットを前記アル
ミニウムパイプ内に充填する。
The method for manufacturing ceramics from these compositional raw materials may be according to conventionally known methods (there is no particular restriction, for example, the process for manufacturing ceramics is performed in the steps of raw material - sintering raw material - shaping - sintering). The aluminum pipe is filled with powder or pellets of the obtained ceramic material having superconducting properties, which may be manufactured by a solid-state process or the like.

さらに超電導セラミックス材料を充填したアルミニラム
パイプの線引方法には特別な限定はな(、冷間加工また
は熱間加工のいずれにせよ普通の線引装置を使用して常
套手段で実施すればよい。
Furthermore, there are no particular limitations on the method of drawing aluminum ram pipes filled with superconducting ceramic materials (either cold working or hot working can be carried out in a conventional manner using ordinary drawing equipment. .

しかして具体的な線引は、セラミックス材料の粉末また
はペレットを、アルミニウムからなる直径4〜20鶴程
度、内径2〜15鶴程度、肉厚0.5〜21■程度の中
空パイプ内に手作業または機械で自動的に充填し、しか
る後、アルミニウムパイプを、冷間加工では25℃程度
、熱間加工では400℃程度の温度下で通常の線引装置
を用いて腺引きすることによって行われる。
However, specific wire drawing is carried out manually by placing powder or pellets of ceramic material into a hollow pipe made of aluminum with a diameter of about 4 to 20 mm, an inner diameter of about 2 to 15 mm, and a wall thickness of about 0.5 to 21 mm. Or by automatically filling the aluminum pipe with a machine and then drawing the aluminum pipe using ordinary wire drawing equipment at a temperature of about 25°C for cold working and about 400°C for hot working. .

か(してたとえば、直径0.5〜4鶴程度、アルミニウ
ムパイプ内のセラミックス材料の直径0.3〜3.5 
n程度の線材を製造することができる。
(For example, the diameter of the ceramic material in the aluminum pipe is 0.3 to 3.5 mm.
It is possible to manufacture about n wire rods.

〔実施例・実験例〕[Example/Experiment example]

以下、本発明のセラミックス系超電導材料の加工方法を
実施例及び実験例に基づいてより具体的に説明する。
Hereinafter, the method for processing a ceramic superconducting material of the present invention will be explained in more detail based on Examples and Experimental Examples.

実施例1〜4・比較例1・実験例1 超電導セラミツクス材料として、その組成がバリウム・
イツトリウム・銅・酸素で、配合比をHa:Y:Cu:
O−2: 1 : 3 : 6〜7にai製した材料を
用い、アルミニウムよりなり、かつ表に示した大きさく
直径、内径、肉厚)の中空パイプ内に上記材料を充填し
、アルミニウムパイプを線引きし、線材に加工した。
Examples 1 to 4, Comparative Example 1, Experimental Example 1 As a superconducting ceramic material, the composition is barium.
With yttrium, copper, and oxygen, the mixing ratio is Ha:Y:Cu:
O-2: 1: 3: Using the material made by AI in 6 to 7, fill the above material into a hollow pipe made of aluminum and having the diameter, inner diameter, and wall thickness shown in the table, and make an aluminum pipe. was drawn and processed into wire rod.

得られた線材の直径及び中空内の充填材料の直径は表に
示す如くである。
The diameter of the obtained wire and the diameter of the filling material in the hollow are as shown in the table.

各実施例及び比較例の線材において、線引後の臨界温度
、並びに線引後の臨界電流密度を以下の方法によって測
定し、その結果を第1表に示した。
For the wires of each example and comparative example, the critical temperature after drawing and the critical current density after drawing were measured by the following methods, and the results are shown in Table 1.

なお、比較例に用いた線材は通常行われている銅または
銀の中空パイプ内にセラミックス材料を充填し、低温(
25℃程度)で線引き(冷間加工)したものであり、パ
イプの線引前の大きさ及び線引後の線材の大きさは表に
示した如くである。
The wire used in the comparative example was made by filling a ceramic material into a copper or silver hollow pipe, which is usually done at a low temperature (
The size of the pipe before drawing and the size of the wire after drawing are as shown in the table.

(臨界温度、臨界電流密度の測定方法)l)臨界温度 サンプル(長さ2〜31)を電流密度0.IA/−とし
て液体ヘリウムで冷却しなから4端子法により電気抵抗
と温度変化をx−yレコーダーにより測定し、電気抵抗
値がゼロになる温度を求めた。
(Method for measuring critical temperature and critical current density) l) A critical temperature sample (length 2 to 31) was measured at a current density of 0. After cooling with liquid helium as IA/-, the electrical resistance and temperature change were measured using an x-y recorder using the four-terminal method, and the temperature at which the electrical resistance value became zero was determined.

2)臨界電流密度 サンプル(長さ2〜3cm)をパワーリードと共に液体
ヘリウム中に浸漬し、徐々に電流値を上げなから4端子
法によりIRドロップと電流変化をX−Yレコーダーに
より測定し、IRドロップが出現する電流値を求めた。
2) Immerse a critical current density sample (2 to 3 cm in length) together with the power lead in liquid helium, gradually increase the current value, and measure the IR drop and current change with an X-Y recorder using the four-terminal method. The current value at which an IR drop appears was determined.

(以下余白) (発明の効果〕 以上説明した如(、本発明のセラミックス系超電導材料
の加工方法によれば、アルミニウムパイプ内に、セラミ
ックス系超電導材料を充填し、このアルミニウムパイプ
を線引きすることにより、セラミックス材料のもつ超電
導特性を劣化させることなくセラミックス材料を線材、
テープ、コイルなどに容易に加工でき、セラミックス材
料の実用化に対する画期的なものである。
(Left below) (Effects of the Invention) As explained above, according to the method for processing a ceramic superconducting material of the present invention, by filling an aluminum pipe with a ceramic superconducting material and drawing this aluminum pipe, , making ceramic materials into wires without deteriorating their superconducting properties.
It can be easily processed into tapes, coils, etc., and is a breakthrough in the practical application of ceramic materials.

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウムパイプ内に、希土類元素の酸化物を
含有するセラミックス系超電導材料の粉末またはペレッ
トを充填し、当該アルミニウムパイプを線引きすること
を特徴とするセラミックス系超電導材料の加工方法。
(1) A method for processing a ceramic superconducting material, which comprises filling an aluminum pipe with powder or pellets of a ceramic superconducting material containing an oxide of a rare earth element, and drawing the aluminum pipe.
(2)前記超電導材料の成分がバリウム・イットリウム
・銅・酸素、バリウム・ランタン・銅・酸素、ストロン
チウム・ランタン・銅・酸素、バリウム・スカンジウム
・銅・酸素、またはカルシウム・ランタン・銅・酸素で
あることを特徴とする特許請求の範囲第(1)項記載の
セラミックス系超電導材料の加工方法。
(2) The components of the superconducting material are barium/yttrium/copper/oxygen, barium/lanthanum/copper/oxygen, strontium/lanthanum/copper/oxygen, barium/scandium/copper/oxygen, or calcium/lanthanum/copper/oxygen. A method for processing a ceramic superconducting material according to claim (1).
(3)前記アルミニウムパイプの線引温度がアルミニウ
ムの融点以下であることを特徴とする特許請求の範囲第
(1)項記載のセラミックス系超電導材料の加工方法。
(3) The method for processing a ceramic superconducting material according to claim (1), wherein the drawing temperature of the aluminum pipe is below the melting point of aluminum.
JP62150534A 1987-06-17 1987-06-17 Processing method for ceramic-based superconductive material Pending JPS63314721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62150534A JPS63314721A (en) 1987-06-17 1987-06-17 Processing method for ceramic-based superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62150534A JPS63314721A (en) 1987-06-17 1987-06-17 Processing method for ceramic-based superconductive material

Publications (1)

Publication Number Publication Date
JPS63314721A true JPS63314721A (en) 1988-12-22

Family

ID=15498969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150534A Pending JPS63314721A (en) 1987-06-17 1987-06-17 Processing method for ceramic-based superconductive material

Country Status (1)

Country Link
JP (1) JPS63314721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646311A (en) * 1987-06-27 1989-01-10 Fujikura Ltd Superconducting oxide wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646311A (en) * 1987-06-27 1989-01-10 Fujikura Ltd Superconducting oxide wire

Similar Documents

Publication Publication Date Title
US4975416A (en) Method of producing superconducting ceramic wire
EP0311337B1 (en) Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
JPH0987094A (en) Method for melt processing of high temperature superconductive body
JPS63314721A (en) Processing method for ceramic-based superconductive material
JPS63307619A (en) Processing method for superconductive material of ceramic type
JP2727565B2 (en) Superconductor manufacturing method
JP2563564B2 (en) Superconducting oxide wire
JP2611778B2 (en) Superconducting wire manufacturing method
JP2935794B2 (en) Hollow high-temperature superconductor and method of manufacturing the same
JP2589084B2 (en) Method for producing oxide-based superconducting wire or tape
JP2574173B2 (en) Superconducting wire manufacturing method
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JPH01128407A (en) Manufacture of ceramics system superconductor coil
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JPH01128406A (en) Manufacture of ceramics system superconductive coil
KR920003025B1 (en) Method of producing superconducting ceramic wire
JPS63313416A (en) Superconductive wire rod and its manufacture
JPH05101719A (en) Oxide superconductive wire rod and manufacture thereof
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JPH01123405A (en) Manufacture of superconducting power lead
JP2529051B2 (en) Method for manufacturing composite superconductor
JPH03285805A (en) Production of oxide superconductor
JPH01204314A (en) Manufacture of oxide superconductor
JPH0395808A (en) Manufacture of oxide superconductor wire rod
JPH03285806A (en) Production of oxide superconductor