JPH01276530A - Manufacture of electron emitting element - Google Patents
Manufacture of electron emitting elementInfo
- Publication number
- JPH01276530A JPH01276530A JP63103803A JP10380388A JPH01276530A JP H01276530 A JPH01276530 A JP H01276530A JP 63103803 A JP63103803 A JP 63103803A JP 10380388 A JP10380388 A JP 10380388A JP H01276530 A JPH01276530 A JP H01276530A
- Authority
- JP
- Japan
- Prior art keywords
- electron
- thin film
- electron emitting
- emitting
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000010409 thin film Substances 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 238000010030 laminating Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 15
- 239000000758 substrate Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- -1 In2O3 ゚pbo Chemical class 0.000 description 1
- 229910004533 TaB2 Inorganic materials 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 229910034327 TiC Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Inorganic materials O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Cold Cathode And The Manufacture (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野] ′
本発明は、表面伝導層電子放出素子の製造方法に関する
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a surface conduction layer electron-emitting device.
[開示の概要]
本明細書及び図面は、表面伝導層電子放出素子において
、導電性薄膜を少なくとも2種類の積層された薄膜を、
同時に、通電加熱によって電子放出部を形成する技術を
開示するものである。[Summary of the Disclosure] This specification and drawings describe a surface conduction layer electron-emitting device in which at least two types of conductive thin films are laminated,
At the same time, the present invention discloses a technique for forming an electron-emitting region by heating with electricity.
[従来の技術]
従来、簡単な構造で電子の放出が得られる素子として、
例えば、エム アイ エリンソン(M、 I。[Prior Art] Conventionally, as an element that can emit electrons with a simple structure,
For example, M.I. Ellingson (M, I.
Elinson)等によって発表された冷陰極素子が知
られている。[ラジオ エンジニアリング エレクトロ
ン フィシ4−/ス(Radio Eng、 Elec
tronPhys、 )第10巻、 1290〜129
6頁、 1965年]これは、基板上に形成された小面
積の薄膜に、膜面に平行に電流を流すことにより、電子
放出が生ずる現象を利用するもので、一般には表面伝導
層電子放出素子(以下、電子放出素子という)と呼ばれ
ている。A cold cathode device announced by John Elinson et al. is known. [Radio Eng, Elec
tronPhys, ) Volume 10, 1290-129
6, 1965] This utilizes the phenomenon of electron emission caused by passing a current parallel to the film surface through a small-area thin film formed on a substrate. The device is called an electron-emitting device (hereinafter referred to as an electron-emitting device).
この電子放出素子としては、前記エリンソン等により開
発されたSaO2(Sb)t’JMを用いたもの、Au
薄膜によるもの[ジー、ディトマー°“スインソリド
フィルムス″(G、 Dittmer:Th1n 5o
lidFil+ss″、9巻、317頁、 (1972
年)]、 i丁o薄膜によるもの[エム ハートウェル
アンド シージー フォンスタッド“アイ イー イ
ー イートランス”イー デイ−コン7 (M、 H
artwelland C,G、 Fonstad
: IEEE 丁rans、 ED Conf
、” )519頁、 (1975年)]、カーボン薄
膜によるもの[荒木久他:゛真空パ、第26巻、第1号
、22頁。As this electron-emitting device, one using SaO2(Sb)t'JM developed by Ellingson et al., Au
Thin film [G, Dittmer
Films'' (G, Dittmer: Th1n 5o
lidFil+ss'', vol. 9, p. 317, (1972
2000)], by i-cho thin film [M. Hartwell and C.G. Fonstad “I.E.E. Trans.”
artwelland C,G, Fonstad
: IEEE Transmission, ED Conf
, ” ) p. 519, (1975)], by carbon thin film [Hisashi Araki et al.: Vacuum Pa, Vol. 26, No. 1, p. 22.
(1983年)]などが報告されている。(1983)] have been reported.
これらの電子放出素子の典型的な素子構成を第2図に示
す、同図において、lおよび2は電気的接続を得るため
の電極、3は電子放出材料で形成される薄膜、4は基板
、5は電子放出部を示す。A typical device configuration of these electron-emitting devices is shown in FIG. 2, in which 1 and 2 are electrodes for obtaining electrical connection, 3 is a thin film formed of an electron-emitting material, 4 is a substrate, 5 indicates an electron emitting section.
従来、これらの電子放出素子においては、電子放出を行
なう前にあらかじめフォーミングと呼ばれる通電加熱処
理によって電子放出部を形成する。即ち、前記電極lと
電極2の間に電圧を印加する事により、薄IP!l!3
に通電し、これにより発生するジュール熱で薄膜3を局
所的に破壊、変形もしくは変質せしめ、電気的に高抵抗
な状態にした電子放出部5を形成することにより電子放
出機能を得ている。Conventionally, in these electron-emitting devices, an electron-emitting portion is formed in advance by an electrical heating process called forming before electron emission. That is, by applying a voltage between the electrodes 1 and 2, thin IP! l! 3
The electron emitting function is obtained by energizing the thin film 3 and causing the Joule heat generated thereby to locally destroy, deform, or alter the thin film 3 to form an electron emitting portion 5 in an electrically high resistance state.
従来、電子放出素子は上述の高抵抗な状態にした電子放
出部5に、電極1.2により電圧を印加し、素子表面に
電流を流すことにより、電子放出部5より電子放出せし
めるものである。Conventionally, in an electron-emitting device, electrons are emitted from the electron-emitting portion 5 by applying a voltage through an electrode 1.2 to the electron-emitting portion 5 in the above-mentioned high-resistance state and causing a current to flow across the surface of the device. .
[発明が解決しようとする課題]
しかしながら、上記の様なフォーミング処理によって製
造された電子放出素子には、次のような問題点があった
。[Problems to be Solved by the Invention] However, the electron-emitting device manufactured by the above-described forming process has the following problems.
(1)作製された素子の電子放出電流のゆらぎが非常に
大きい。(1) The fluctuation of the electron emission current of the fabricated device is very large.
(2)電子放出部の寿命が短かく、耐久性がない。(2) The life of the electron emitting section is short and lacks durability.
(3)作製された素子毎に電子放出特性にばらつきが生
じるため、素子の特性を制御することが難しい。(3) It is difficult to control the characteristics of the devices because the electron emission characteristics vary from device to device.
以りのような問題点があるため、従来の電子放出素子は
素子構造が簡単であるという利点があるにもかかわらず
、産業上積極的に応用されるには至っていなかった。Due to the above-mentioned problems, conventional electron-emitting devices have not been actively applied in industry, although they have the advantage of having a simple device structure.
本発明は、上記の様な従来例の欠点を除去した新規な電
子放出素子を提供することを目的とする。An object of the present invention is to provide a novel electron-emitting device that eliminates the drawbacks of the conventional examples as described above.
[課題を解決するための手段]
本発明者らは、上記課題を解決するため鋭意研究を行っ
た結果、 ’i(を子放出部の少なくとも電子が放出さ
れる領域の表面に種々の薄1模を積層すると、素子特性
が改善されることを見出し本発明を完成させるに到った
。[Means for Solving the Problems] As a result of intensive research in order to solve the above problems, the inventors of the present invention found that 'i The present invention was completed based on the discovery that device characteristics can be improved by stacking patterns.
すなわち本発明は、フォーミングと呼ばれる通電加熱処
理を施すべき電子放出材料からなるQ膜と、前記、素子
特性を改善する材料の薄膜を予め積層された薄膜として
形成し、同時にフォーミング処理を施し、電子放出部を
形成することを特徴とする電子放出素子であって、素子
特性を改善する材料の薄膜として、炭素からなる薄膜、
あるいは仕事関数5.OeV以下の薄膜を、積層された
薄膜の最上位層とすることを好適とするものである。That is, in the present invention, a Q film made of an electron-emitting material to be subjected to an electrical heat treatment called forming and a thin film of the material for improving device characteristics are formed in advance as a laminated thin film. An electron-emitting device characterized in that it forms an emission region, and the thin film of a material that improves the device characteristics includes a thin film made of carbon,
Or work function 5. It is preferable to use a thin film of OeV or less as the uppermost layer of the stacked thin films.
[作 用]
、本発明によれば、積層された薄膜を同時にフォーミン
グ処理することにより。[Function] According to the present invention, the laminated thin films are simultaneously formed.
(1)電子放出材料と素子特性を改善する材料が積層さ
れており、同時に電子放出部(島状構造)を形成される
ことにより、放出電流量及び放出電流の安定性が改善さ
れる。(1) An electron-emitting material and a material that improves device characteristics are laminated, and an electron-emitting region (island-like structure) is formed at the same time, thereby improving the amount of emission current and the stability of the emission current.
(2)下層の薄膜へのガス吸着が防止されるため、電子
放出材料からなる薄膜の構造変化や特性劣化が防1ヒさ
れることになり、フォーミングにより形成される電子放
出部の特性が、素子毎にバラツキの発生することなく、
再現性よく、安定する。(2) Since gas adsorption to the underlying thin film is prevented, structural changes and characteristic deterioration of the thin film made of the electron-emitting material are prevented, and the characteristics of the electron-emitting region formed by forming are Without any variation from element to element,
Good reproducibility and stability.
[実施例]
第1図(a)、(b)は、本発明の電子放出素子の一実
施例を示す説明図である。同図(a)、(b)において
、4は絶縁性を有する基板、3aは電子放出材料で形成
される下層の薄膜、3bは前記電子放出材料3bと異な
る電子放出材料で形成される上層の薄膜、lおよび2は
電気的接続を得るための電極である0本発明の電子放出
素子は、絶縁性を有する基板4上に対向して設けられた
一対の電極1,2の間に電子放出材料で形成された6N
膜3a、 3bを設け、この薄膜3a、 3bを通電加
熱処理することにより電子放出部5を形成してなるもの
である。[Example] FIGS. 1(a) and 1(b) are explanatory diagrams showing an example of the electron-emitting device of the present invention. In the figures (a) and (b), 4 is an insulating substrate, 3a is a lower layer thin film made of an electron-emitting material, and 3b is an upper layer made of an electron-emitting material different from the electron-emitting material 3b. The thin film 1 and 2 are electrodes for obtaining electrical connection. The electron-emitting device of the present invention emits electrons between a pair of electrodes 1 and 2 provided oppositely on an insulating substrate 4. Made of 6N material
Films 3a and 3b are provided, and electron emitting portions 5 are formed by subjecting these thin films 3a and 3b to electrical heating treatment.
次に、上記電子放出素子の製造方法について説明する。Next, a method for manufacturing the above electron-emitting device will be explained.
211図(a)、(b)において、先ず、洗浄されたガ
ラス板からなる基板4」二に蒸着もしくはスパッタによ
り、 5n02. l11203. PbO′3の金属
酸化物、^U。211 (a) and (b), first, 5n02. l11203. Metal oxide of PbO'3, ^U.
Ag、 Pt等の金属、カーボンその他の各種半導体な
どの電子放出材料からなる薄11々を成I模する。A thin film 11 made of an electron-emitting material such as a metal such as Ag or Pt, or various semiconductors such as carbon is formed.
次いで、前記薄膜上にアーク放電蒸着、EBB11スパ
ッタなどの真空蒸着により、カーボンもしくはTiC,
TaC,Sin、 WC,ZrCなど炭化物のカーバイ
ド材料などからなる炭素被1模、もしくはEBB11抵
抗加熱蒸着、スパッタなどの真空蒸着により、仕!IS
関数5.OeV 以FのCub、 MgO,MOO3
゜Ta205. TiB2. TaB2. Mn82な
どの被膜材料、もしくは蒸着またはスパッタにより、S
n0?、 In2O3゜pbo等の金属酸化物、 Au
、 Ag、 Pt等の金属、カーボンその他の各種半導
体などの電子放出材料からなる薄膜を成膜する。Next, carbon or TiC,
Carbon coating made of carbide materials such as TaC, Sin, WC, ZrC, etc., or EBB11 can be finished by vacuum deposition such as resistance heating deposition or sputtering. IS
Function 5. Cub, MgO, MOO3 below OeV
゜Ta205. TiB2. TaB2. S is coated with a coating material such as Mn82, or by vapor deposition or sputtering.
n0? , metal oxides such as In2O3゜pbo, Au
A thin film made of an electron-emitting material such as a metal such as , Ag or Pt, or various semiconductors such as carbon is formed.
次いで、フォトリソグラフィー技術により電子放出部と
なるネック部を有する上記電子放出材料のt1ルII!
23a、3bを所定の形状に形成する。Next, the above electron-emitting material having a neck portion serving as an electron-emitting portion is prepared by photolithography.
23a and 3b are formed into a predetermined shape.
次いで、前記薄j模3a、 3bに形成される電子放出
部と電気的接続を得る電極1.2をマスク蒸着により旧
、 Pt、 A 、 Cu、 Auなどの通常の導電性
材料により形成する。Next, an electrode 1.2 for electrical connection with the electron emitting portion formed in the thin J-shaped patterns 3a and 3b is formed by mask vapor deposition using a conventional conductive material such as Pt, A, Cu, or Au.
I■J記゛心極lと電極2の間に電圧を印加することに
より、j:’in’J3a、 3bに通電し、これによ
り発生するジュール熱で薄膜3a、 3bを局所的に破
壊、変形もしくは変質せしめ、電気的に高抵抗な状態に
した電子放出部5を形成する。By applying a voltage between the core pole l and the electrode 2, J:'in' J3a, 3b is energized, and the Joule heat generated thereby locally destroys the thin films 3a, 3b. The electron emitting portion 5 is deformed or altered to have an electrically high resistance state.
以下、第1図で示した電子放出素子の具体的な実施例を
述べる。A specific example of the electron-emitting device shown in FIG. 1 will be described below.
実施例1
石英ガラス基板からなる絶縁性の基板4上に、膜厚15
00Aの5n02からなる下層の薄膜3aと、膜厚50
Aのカーボンからなる上層の薄膜3bと、その両端に膜
厚1000AのNiからなる電極1.2を形成した。Example 1 A film with a thickness of 15
The lower thin film 3a made of 5n02 of 00A and the film thickness of 50
An upper thin film 3b made of carbon (A) and electrodes 1.2 made of Ni with a film thickness of 1000 Å were formed on both ends thereof.
次いで、電極lと電極2の間に約30Vの電圧を印加し
、薄膜3a、 3bに通電し、これにより発生するジュ
ール熱で薄11Q3a、3bを局所的に高抵抗な状態と
し、電子放出部5を形成し、電子放出素子を得た。Next, a voltage of about 30 V is applied between the electrode 1 and the electrode 2, and the thin films 3a and 3b are energized, and the Joule heat generated thereby makes the thin films 11Q3a and 3b locally in a high resistance state, and the electron emitting part 5 was formed to obtain an electron-emitting device.
この様にして、得られた電子放出素子の電子放出特性を
測定した結果、 16Vの印加電圧で平均放出電流0.
4 、A、放出電流の安定性±8%程度の安定した電子
放出が得られ、電子放出時の放出効率(放出電流/電極
間電流)がI X 10−4と非常に高い放出効率が7
4)られた、また、電子放出素子の寿命が向−ヒし、真
空度I X 101torr程度の低真空度から安定し
た放出電流が得られた。As a result of measuring the electron emission characteristics of the electron-emitting device obtained in this manner, the average emission current was 0.00000 at an applied voltage of 16V.
4. A. Stability of emission current Stable electron emission of approximately ±8% is obtained, and the emission efficiency during electron emission (emission current/interelectrode current) is extremely high at IX 10-4.
4) Furthermore, the life of the electron-emitting device was extended, and a stable emission current was obtained from a low vacuum degree of about I.times.101 torr.
上記のごとく上層、下層とも導電性を有する場合、上層
の薄膜に融点の低い、下層の薄膜に融点の高い材料を用
いるか、もしくは上層のf;Ji膜に下層の薄膜の融点
より高い材料を用いる場合には、実施例1のごとく上層
の薄膜を不連続膜にすることにより、同時にフォーミン
グが可能となり、再現性よく、フォーミングすることが
出来る。If both the upper and lower layers are conductive as described above, use a material with a low melting point for the upper thin film and a material with a high melting point for the lower thin film, or use a material with a higher melting point than the lower thin film for the upper layer. When used, by making the upper thin film a discontinuous film as in Example 1, forming can be performed at the same time, and forming can be performed with good reproducibility.
実施例2
井7059ガラス基板(コーニング社製)からなる絶縁
性の基板4上に、膜厚1500A (7) ITO(1
11203:5n02= 95 : 5 )からなる下
層の薄膜3aと、膜厚3゜Aの仕!IG 15jl数4
.95eVのWO2からなる上層の薄膜3bと、その両
端に膜厚1000AのNiからなる電極1.2を形成し
た。Example 2 A film of 1500A (7) ITO (1
11203:5n02=95:5) and a film thickness of 3°A! IG 15jl number 4
.. An upper thin film 3b made of WO2 of 95 eV and electrodes 1.2 made of Ni with a thickness of 1000 Å were formed on both ends thereof.
次いで、電極lと電極2の間に約24Vの電圧を印加し
、薄11Ha、3bに通電し、これにより発生するジュ
ール熱で薄膜3a、 3bを局所的に高抵抗な状態とし
、電子放出部5を形成し、電子放出素子を得た。Next, a voltage of about 24 V is applied between the electrodes 1 and 2, and the thin films 11Ha and 3b are energized, and the Joule heat generated thereby brings the thin films 3a and 3b into a locally high-resistance state, and the electron-emitting portion 5 was formed to obtain an electron-emitting device.
この様にして得られた電子放出素子の電子放出特性を測
定した結果、14Vの印加電圧で平均放出電yi、0.
35pA、放出電流の安定性±11%程度の安定した電
子放出が得られ、電子放出時の放出効率も2 X 10
−4と非常に高い放出効率が得られた。As a result of measuring the electron emission characteristics of the electron-emitting device obtained in this way, it was found that at an applied voltage of 14V, the average emission charge yi was 0.
35 pA, stable electron emission with emission current stability of about ±11% was obtained, and the emission efficiency during electron emission was 2 x 10
A very high release efficiency of -4 was obtained.
このように、素子特性を改善するため上層に積層された
FJiy!23bが、基板温度を高温にして成膜する必
要のある材料(例えば上記材料)の場合であっても、積
層の後フォーミング処理により電子放出部5を形成する
ため、電子放出部5に何ら熱的影響を得えず電子放出部
5を形成することができる。In this way, FJiy! is stacked on top to improve device characteristics. Even if the material 23b is a material that needs to be formed at a high substrate temperature (for example, the above-mentioned material), the electron emitting part 5 is formed by a forming process after lamination, so no heat is applied to the electron emitting part 5. The electron emitting portion 5 can be formed without any negative influence.
この実施例では、仕・11関fi4.95eVの材料を
用いた場合について述べたが、本発明者らの実験によれ
ば、仕事関数4.0〜5.OeVの材料を使用した場合
は、安定性はより向上させることができる。したがって
、使用目的により放出′1[流の安定性を重視する場合
は、仕事関数4.0〜5.OeVの範囲において選択す
ることが好ましい。In this example, a case was described in which a material with a work function of 4.95 eV was used, but according to experiments by the present inventors, the work function was 4.0 to 5. If OeV material is used, stability can be further improved. Therefore, depending on the purpose of use, the work function is 4.0 to 5. It is preferable to select within the OeV range.
上記のごとく上層に絶縁体の材料を用いる場合には、実
施例2のごとく、上層の薄膜を不連続膜にすることによ
り、同時にフォーミングが可能となる。When an insulating material is used for the upper layer as described above, forming the upper layer thin film as a discontinuous film as in Example 2 enables simultaneous forming.
さらに、上層に半導体の材料を用いる場合、圧波抵抗に
応じて膜厚を変えることにより、同時にフォーミングが
可能となる。Furthermore, when a semiconductor material is used for the upper layer, forming can be performed at the same time by changing the film thickness depending on the pressure wave resistance.
実施例3
石英ガラス基板からなる絶縁性の基板4上に、膜厚10
00AのITO(111703: 5n02= 97
: 3 )からなる下層の薄膜3aと、膜厚50Aの仕
事関数2.68eVのLaB 6からなる一L層の薄膜
6と、その両端に膜厚100OAのN1からなる電極1
.2を形成した。Example 3 A film with a thickness of 10
00A ITO (111703: 5n02=97
: 3), a 1L thin film 6 made of LaB 6 with a work function of 2.68 eV with a film thickness of 50A, and electrodes 1 made of N1 with a film thickness of 100OA on both ends thereof.
.. 2 was formed.
次いで、電極11!−電極2の間に約25Vの電圧を印
加し、 till!:J3a、 3bに通電し、これに
より発生するジュール熱で薄11Q3a、 3bを局所
的に高抵抗な状態とし、電子放出部5を形成し、電子放
出素子を得た。Next, electrode 11! - Apply a voltage of about 25 V between electrodes 2 and press till! : Electricity was applied to J3a and 3b, and the Joule heat generated thereby brought the thin 11Q3a and 3b into a locally high resistance state, forming an electron emitting region 5 and obtaining an electron emitting device.
この様にして得られた電子放出素子の電子放出特性を真
空度I X 1O−9torr以上の高真空中で測定し
た結果、14Vの印加電圧で平均放出電流0.55IL
A、放出電流の安定性±9%程度の安定した電子放出が
得られ、電子放出時の放出効率も2 X 10−4と非
常に高い放出効率が得られた。The electron emission characteristics of the electron-emitting device thus obtained were measured in a high vacuum with a degree of vacuum of I x 10-9 torr or higher. As a result, the average emission current was 0.55IL at an applied voltage of 14V.
A. Stability of emission current Stable electron emission of about ±9% was obtained, and very high emission efficiency of 2×10 −4 during electron emission was obtained.
この実施例では、什、IJG関数2.68eVの材料を
用いた場合について述べたが、本発明者らの実験によれ
ば、仕・1を関la3.OsV以下の材料を使用した場
合は、放出電流値はより大きなものとすることができる
。したがって、使用目的により放出電流値の大きさを重
視する場合は、仕事関数3.OeV以下の範囲において
選択することが好ましい。In this example, a case was described in which a material with an IJG function of 2.68 eV was used, but according to the experiments of the present inventors, the ratio of 1 to 1 was 3. If a material with OsV or less is used, the emission current value can be made larger. Therefore, if the magnitude of the emission current value is important depending on the purpose of use, work function 3. It is preferable to select it in the range of OeV or less.
上記実施例2及び3については仕事関数5.OeV以下
の例として、二つの具体例を挙げたが、仕事関数5.O
eV以上の範囲についても、使用条件によっては十分に
本発明の効果を発揮し得る。For Examples 2 and 3 above, work function 5. Two specific examples were given as examples below OeV, but work function 5. O
Even in the range of eV or more, the effects of the present invention can be sufficiently exhibited depending on the usage conditions.
さらに、上記実施例1.2及び3のごとく、積層された
薄膜を同時にフォーミング処理することにより、下層の
薄膜へのガス吸着が防止されるため、電子放出材料から
なる薄膜の構造変化や特性劣化が防止されることにより
、素子毎にバラツキの発生することなく再現性よく安定
した電子放出部をフォーミングにより形成することが出
来る。Furthermore, as in Examples 1.2 and 3 above, by simultaneously forming the laminated thin films, gas adsorption to the underlying thin film is prevented, resulting in structural changes and property deterioration of the thin film made of the electron-emitting material. By preventing this, a stable electron-emitting region can be formed by forming with good reproducibility without causing variations from device to device.
[発明の効果]
以上説明したように、本発明の電子放出素子の製造方法
は、電子放出部を形成する導電性薄膜が少なくとも2種
類の積層された薄膜から構成された電子放出素子の製造
方法であるため、次のような特有の効果がある。[Effects of the Invention] As explained above, the method for manufacturing an electron-emitting device of the present invention is a method for manufacturing an electron-emitting device in which the conductive thin film forming the electron-emitting portion is composed of at least two types of laminated thin films. Therefore, it has the following unique effects.
(+)放出電流の向上した素子が得られる(2)ゆらぎ
のない安定した放出電流が得られる(3)作製の再現性
が向上する。(+) A device with improved emission current can be obtained. (2) A stable emission current without fluctuation can be obtained. (3) The reproducibility of manufacturing can be improved.
(4)特性上の素子毎によるバラツキが減少する。(4) Variations in characteristics from element to element are reduced.
第1図は本発明の電子放出素子の説明図、第2図は電子
放出素子の典型的な構成図である。 1.2・
・・電極、 3a、 3b・・・薄膜、4・・
・基板、 5・・・電子放出部。FIG. 1 is an explanatory diagram of the electron-emitting device of the present invention, and FIG. 2 is a typical configuration diagram of the electron-emitting device. 1.2・
...Electrode, 3a, 3b...Thin film, 4...
-Substrate, 5...electron emission section.
Claims (1)
薄膜に通電加熱を施し、電子放出部を形成する電子放出
素子の製造方法において、前記導電性薄膜が少なくとも
2種類の積層された薄膜からなり、該積層された薄膜を
同時に通電加熱によって電子放出部を形成することを特
徴とする電子放出素子の製造方法。(1) A method for manufacturing an electron-emitting device in which a conductive thin film is provided between opposing electrodes, and the conductive thin film is heated with electricity to form an electron-emitting region, in which at least two types of conductive thin films are laminated. 1. A method for manufacturing an electron-emitting device, characterized in that an electron-emitting region is formed by simultaneously heating the laminated thin films with electricity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10380388A JP2727193B2 (en) | 1988-04-28 | 1988-04-28 | Method for manufacturing electron-emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10380388A JP2727193B2 (en) | 1988-04-28 | 1988-04-28 | Method for manufacturing electron-emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01276530A true JPH01276530A (en) | 1989-11-07 |
JP2727193B2 JP2727193B2 (en) | 1998-03-11 |
Family
ID=14363560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10380388A Expired - Fee Related JP2727193B2 (en) | 1988-04-28 | 1988-04-28 | Method for manufacturing electron-emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2727193B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5591061A (en) * | 1994-07-12 | 1997-01-07 | Canon Kabushiki Kaisha | Apparatus for manufacturing electron source and image forming apparatus |
US5593335A (en) * | 1993-04-05 | 1997-01-14 | Canon Kabushiki Kaisha | Method of manufacturing an electron source |
CN1306540C (en) * | 1993-12-27 | 2007-03-21 | 佳能株式会社 | Method for producing electronic transmitting device |
-
1988
- 1988-04-28 JP JP10380388A patent/JP2727193B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593335A (en) * | 1993-04-05 | 1997-01-14 | Canon Kabushiki Kaisha | Method of manufacturing an electron source |
CN1306540C (en) * | 1993-12-27 | 2007-03-21 | 佳能株式会社 | Method for producing electronic transmitting device |
US5591061A (en) * | 1994-07-12 | 1997-01-07 | Canon Kabushiki Kaisha | Apparatus for manufacturing electron source and image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2727193B2 (en) | 1998-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5066883A (en) | Electron-emitting device with electron-emitting region insulated from electrodes | |
US5023110A (en) | Process for producing electron emission device | |
US4954744A (en) | Electron-emitting device and electron-beam generator making use | |
JPH01279557A (en) | Electron emitting element | |
JPH01276530A (en) | Manufacture of electron emitting element | |
JP2632883B2 (en) | Electron-emitting device | |
JP2678757B2 (en) | Electron emitting device and method of manufacturing the same | |
JPH01200532A (en) | Electron emission element and manufacture thereof | |
JPH03101033A (en) | Manufacture of thin film | |
JP2622838B2 (en) | Method for manufacturing electron-emitting device | |
JPH01112631A (en) | Electron emitting element and its manufacture | |
JP2617317B2 (en) | Electron beam generator | |
JPH01281646A (en) | Surface conductive emission element | |
JP2748128B2 (en) | Electron beam generator | |
JPH01279542A (en) | Surface conductive emission element | |
Kaneko et al. | Emission property and current fluctuation of starlike thin‐film field emitter array with self‐feedback function | |
JPH01112632A (en) | Electron emitting element and its manufacture | |
JP2646235B2 (en) | Electron emitting device and method of manufacturing the same | |
JPH0494032A (en) | Electron emission element and image forming device using electron emission element | |
JPH02247937A (en) | Image formation apparatus employing surface conductive electron emission element line and surface electron sources provided with same elements arranged in parallel thereon and electron source | |
JPH01112633A (en) | Electron emitting element | |
JPH01311534A (en) | Surface conductive emitting element | |
KR920010362B1 (en) | Cold cathode | |
JPH02139841A (en) | Electron emitting element | |
JPH01276528A (en) | Electron emitting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |