JPH02139841A - Electron emitting element - Google Patents

Electron emitting element

Info

Publication number
JPH02139841A
JPH02139841A JP63290041A JP29004188A JPH02139841A JP H02139841 A JPH02139841 A JP H02139841A JP 63290041 A JP63290041 A JP 63290041A JP 29004188 A JP29004188 A JP 29004188A JP H02139841 A JPH02139841 A JP H02139841A
Authority
JP
Japan
Prior art keywords
electrode
electron
electrodes
electron emitting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63290041A
Other languages
Japanese (ja)
Other versions
JP2748133B2 (en
Inventor
Tetsuya Kaneko
哲也 金子
Ichiro Nomura
一郎 野村
Toshihiko Takeda
俊彦 武田
Yoshikazu Sakano
坂野 嘉和
Seishiro Yoshioka
吉岡 征四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29004188A priority Critical patent/JP2748133B2/en
Publication of JPH02139841A publication Critical patent/JPH02139841A/en
Application granted granted Critical
Publication of JP2748133B2 publication Critical patent/JP2748133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To eliminate deterioration of film quality and decrease destruction of an electrode by constructing a film electrode part adjoining to the electron emitting part in the form of a pair of mating electrodes. CONSTITUTION:Independent No.1 electrodes 1, 2 are subjected to patterning by photo-litho etching method or liftoff method situated on a base board 6, and at the same time, an interelectrode gap 15 is provided. Then an electrode member is provided over the electrodes 1, 2 by film forming method, and No.2 electrodes 3, 4 are formed by means of photo-litho etching method or liftoff method. This may be embodied in the form of an electron emitting element by arranging an electron emitting substance 5 in the gap 15. As electron emitting part is formed by subjecting the film-formed electrode material to photo-litho etching, etc., the shape and location are controlled precisely, and thereby an element is obtained, in which deterioration of film quality is eliminated and destruction of electrode is hard to be generated, which allows accomplishment of an enlarged amount of electron emission. Also the characteristic variation element by element can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子放出素子、詳しくは1表面伝導形電子放出
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electron-emitting device, and more particularly to a single surface conduction type electron-emitting device.

[従来の技術] 従来、簡単な構造で電子の放出が得られる素子として、
例えば、エム アイ エリンソン(M、i。
[Prior Art] Conventionally, as an element that can emit electrons with a simple structure,
For example, M.I.

Elinson)等によって発表された冷陰極素子が知
られている。[ラジオ エンジニアリング エレクトロ
ン フィシ4−/ス(Radio Eng、 Elec
tron。
A cold cathode device announced by John Elinson et al. is known. [Radio Eng, Elec
tron.

Pbys、)第10巻、 1290〜129B頁、 1
9E15年]これは、基板上に形成された小面積の薄膜
に、膜面に平行に電流を流すことにより、電子放出が生
ずる現象を利用するもので、一般には表面伝導形放出素
子と呼ばれている。
Pbys, ) Volume 10, pp. 1290-129B, 1
9E15] This utilizes the phenomenon of electron emission caused by passing a current parallel to the film surface through a small-area thin film formed on a substrate, and is generally called a surface conduction type emitter. ing.

この表面伝導形放出素子としては、前記エリンソン等に
より開発された5nOz (Sb)FM膜を用いたもの
、Au薄膜によるもの[ジー・ディトマー“スイン ソ
リド フィルムス”(G、 Ditt+ser:“Th
1nSolid Films”)、9巻、317頁、 
(1972年)1、ITOiiMによるものしエム ハ
ートウェル アンド シー ジー フォンスタッド゛°
アイ イーイー イー トランス” イー デイ−コン
ファレンス”(M、 Hartwell and C,
G、 Fonstad:“IEEE Trans、 E
D Conf、” ) 511頁、 (1975年)]
、カーボン薄膜によるもの[荒木久他:゛真空”、第2
B巻、第1号、22頁、  (1983年)]などが報
告されている。
This surface conduction type emission device includes one using the 5nOz (Sb) FM film developed by Ellingson et al., and one using an Au thin film [G.
1nSolid Films”), volume 9, page 317,
(1972) 1. M. Hartwell and C.G. Fonstad゛° by ITOiiM
IEEEE Trans”EEEEEE Conference” (M, Hartwell and C,
G., Fonstad: “IEEE Trans.
D Conf,” ) p. 511, (1975)]
, by carbon thin film [Hisashi Araki et al.: “Vacuum”, No. 2
Volume B, No. 1, p. 22, (1983)] have been reported.

これらの表面伝導形放出素子の典型的な素子構成を第6
図に示す。同図において、31および32は電気的接続
を得る為の電極、33は電子放出材料で形成される薄膜
、34は基板、35は電子放出部を示す。
Typical device configurations of these surface conduction type emitters are shown in the sixth section.
As shown in the figure. In the figure, 31 and 32 are electrodes for obtaining electrical connection, 33 is a thin film formed of an electron-emitting material, 34 is a substrate, and 35 is an electron-emitting portion.

従来、これらの表面伝導形放出素子に於ては、電子放出
を行なう前にあらかじめフォーミングと呼ばれる通電加
熱処理によって電子放出部を形成する。即ち、前記電極
31と電極32の間に電圧を印加する事により、薄膜3
3に通電し、これにより発生するジュール熱で薄膜33
を局所的に破壊、変形もしくは変質せし、め、電気的に
高抵抗な状態にした電子放出部35を形成することによ
り電子放出機能を得ている。
Conventionally, in these surface conduction type emitting devices, an electron emitting portion is formed in advance by an electrical heating process called forming before electron emission. That is, by applying a voltage between the electrodes 31 and 32, the thin film 3
3 is energized, and the Joule heat generated thereby causes the thin film 33 to
The electron emitting function is obtained by locally destroying, deforming, or altering the structure to form an electron emitting part 35 that is in an electrically high resistance state.

すなわち薄膜33をフォーミングにより、一部。That is, a portion of the thin film 33 is formed by forming.

電気的な高抵抗膜として、電子放出部35を形成する。The electron emitting portion 35 is formed as an electrically high resistance film.

この電子放出部ヘフォーミングで電子放出部とならなか
った薄膜部、すなわち薄膜電極部から高電界を与え、電
子放出を行なっている。
A high electric field is applied from the thin film portion that did not become the electron emitting portion during the forming into the electron emitting portion, that is, the thin film electrode portion, and electron emission is performed.

しかし、上記従来例では、電子放出部近傍の薄膜電極部
は電子放出時に発生した高熱、電子放出によるイオン衝
撃やスパッタ、印加した電圧の高電界にさらされ、しば
しば破壊し、電子放出素子としての能力を失う原因とな
っていた。破壊の度合いは、電極31.32間に印加す
る電圧Vrに依存しており、Vfが小さい場合は破壊は
少ないが電子放出量が著しく小さいという欠点があった
However, in the above conventional example, the thin film electrode near the electron emitting part is exposed to the high heat generated during electron emission, ion bombardment and sputtering due to electron emission, and the high electric field of the applied voltage, and is often destroyed, making it difficult to use as an electron emitting device. This caused a loss of ability. The degree of destruction depends on the voltage Vr applied between the electrodes 31 and 32, and when Vf is small, there is little destruction, but there is a drawback that the amount of electron emission is extremely small.

これら電子放出部近傍の薄膜電極部はフォーミングによ
って加熱過程を経ており、通常膜質の不均一な劣化膜で
ある。またフォーミングを施す薄膜は通電加熱処理の消
費電力の低減のため高抵抗膜とすることが一般で、通常
500〜100OAの薄い薄膜である。これら、薄い不
均一な不良膜である薄膜電極部は、電子放出時における
高電界状態にさらされることによって破壊されやすい膜
となっている。
These thin film electrode portions near the electron emitting portions have undergone a heating process by forming, and are usually deteriorated films with non-uniform film quality. Further, the thin film to be formed is generally a high resistance film in order to reduce the power consumption of the current heating treatment, and is usually a thin film of 500 to 100 OA. These thin film electrode portions, which are thin, non-uniform and defective films, are easily destroyed by exposure to a high electric field state during electron emission.

さらに、電子放出部はフォーミングという通電過熱処理
により、ジュール熱が多く発生、蓄積された薄膜部分を
変質させるという製法による。このため、電子放出部の
形状や位青は精密、制御することはできないという欠点
をも有していた。
Furthermore, the electron-emitting part is manufactured using a heating process called forming, which generates a lot of Joule heat and alters the quality of the thin film part where it has accumulated. For this reason, it also has the disadvantage that the shape and position of the electron-emitting portion cannot be precisely controlled.

以上のような問題点があるため、表面伝導形電子放出素
子は、末子構造が筒中であるという利点があるにもかか
わらず、産業上積極的に応用されるには至っていなかっ
た。
Due to the above-mentioned problems, surface conduction electron-emitting devices have not been actively applied industrially, despite having the advantage that the terminal structure is in a cylinder.

[発明が解決しようとする課題] 本発明は、上記の様な従来例の欠点を除去するためにな
されたものであり、前記の如き従来のフォーミングと呼
ばれる処理を施すことなく、フォーミング処理により得
られる電子放出素子と同等以上の品質を有し、特性のバ
ラツキの少ない新規な構造を有し、かつ電子放出部へ印
加する電圧Vfを大きくしても電極破壊が発生しにくく
なり、電子放出量を大きくすることができる電子放出素
子を提供することを目的とするものである。
[Problems to be Solved by the Invention] The present invention has been made in order to eliminate the drawbacks of the conventional examples as described above, and it is possible to obtain the benefits obtained by forming processing without performing the conventional processing called forming as described above. It has a quality equal to or higher than that of the electron-emitting device, has a new structure with less variation in characteristics, and is less likely to cause electrode breakdown even if the voltage Vf applied to the electron-emitting part is increased, reducing the amount of electron emission. The object of the present invention is to provide an electron-emitting device that can increase the size of the electron-emitting device.

[課題を解決するための手段及び作用]本発明は、間隔
を有して対向する一対の電極の間隔部内に電子放出体を
有し、該電極間隔部の電極端から電極側近傍までが高融
点材料である第1の電極から成り、該′上極間隔部近傍
よりも該電極間隔に対して遠方が少なくとも第2の電極
であることを特徴とする表面伝導形電子放出素子である
[Means and effects for solving the problem] The present invention has an electron emitter in a gap between a pair of electrodes that face each other with a gap, and the distance between the electrode end and the vicinity of the electrode side of the electrode gap is high. A surface conduction electron-emitting device comprising a first electrode made of a melting point material, and at least a second electrode located further away from the electrode spacing than near the upper electrode spacing.

即ち、本発明によれば、先ず、従来フォーミングによっ
て変質せしめた高抵抗部から成る電子放出部と隣接する
薄膜電極部を、間隔を有して対向する一対の電極として
、一定に制御、形成する。
That is, according to the present invention, first, the thin film electrode portion adjacent to the electron emitting portion consisting of the high resistance portion that has been conventionally altered by forming is controlled and formed as a pair of electrodes facing each other with a gap between them. .

これにより従来の薄膜電極部がフォーミングで受ける高
熱時に発生する膜質劣化をなくす。また薄膜の膜厚、材
料の選択が可能となり、電子放出時における電極破壊を
減少させたものである。
This eliminates the deterioration in film quality that occurs when conventional thin film electrode parts are exposed to high heat during forming. Furthermore, it is possible to select the thickness and material of the thin film, thereby reducing electrode breakdown during electron emission.

さらには薄膜電極の電極間隔部端及び間隔部の近傍電極
材として電極破壊に対し強い材料を用い、また、電子放
出のための電圧印加の配線電極材は別途適した材料を電
子放出による電極破壊の発生しにくい場所に使用するこ
とによって素子駆動等の特性をおとすことなく電極破壊
の少ない電子放出素子を提供することができる。
Furthermore, we use a material that is resistant to electrode breakage as the electrode material at the end of the electrode gap of the thin film electrode and in the vicinity of the gap, and we also use a separately suitable material for the wiring electrode material for voltage application for electron emission, which causes electrode breakage due to electron emission. By using the electron-emitting device in a place where it is difficult for the electrodes to break down, it is possible to provide an electron-emitting device with less electrode breakdown without compromising device drive characteristics.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明の電子放出素子の一実施態様を示す模式
図である。同図において、lおよび2は電子放出に係わ
る電極ギャップを形成するところの第1の電極、3およ
び4は電気的配線であるところの第2の電極、5は第1
の電極1.2によって形成される電極間隔部15に配置
された電子放出体、6は基板である。本素子を真空中内
において第2の電極3.4間に電圧を印加すると電子放
出体5付近より電子が放出されるものである。
FIG. 1 is a schematic diagram showing one embodiment of the electron-emitting device of the present invention. In the figure, l and 2 are first electrodes that form an electrode gap related to electron emission, 3 and 4 are second electrodes that are electrical wiring, and 5 is a first electrode.
An electron emitter 6 is a substrate arranged in an electrode gap 15 formed by the electrodes 1.2. When this device is placed in a vacuum and a voltage is applied between the second electrodes 3 and 4, electrons are emitted from the vicinity of the electron emitter 5.

次に本発明による素子の動作について説明する。Next, the operation of the device according to the present invention will be explained.

第1図において、電極間隔部15の寸法が数10A〜数
10μl、例えば50A〜20μ腸であり、且つ電子放
出体5がAu、 Ag、 Cu、 Pt、 Pd等の金
属材料もしくはそれらの合金、もしくは5na2. I
n2O3*PbO等の酸化物もしくは前記金属材料、合
金、酸化物の混合物等である場合、第2の電極3.4の
間に数V〜数too vの電圧を印加すると、第1の電
極1.2間の電極間隔部15に高電界が生じ、電子放出
体5の付近から電子が放出される。
In FIG. 1, the electrode spacing portion 15 has a size of several tens of amps to several tens of μl, for example, 50 amps to 20 μl, and the electron emitter 5 is made of a metal material such as Au, Ag, Cu, Pt, or Pd, or an alloy thereof. Or 5na2. I
In the case of an oxide such as n2O3*PbO or a mixture of the metal materials, alloys, oxides, etc., when a voltage of several volts to several too many volts is applied between the second electrode 3.4, the first electrode 1 A high electric field is generated in the electrode gap 15 between the two electrodes, and electrons are emitted from the vicinity of the electron emitter 5.

電子が放出される印加電圧には閾値があり、この閾値は
電極間隔15の距離や電子放出体5及び第1の電極1.
2の材料等に依存する。
There is a threshold value for the applied voltage at which electrons are emitted, and this threshold value is determined by the distance between the electrodes 15, the electron emitter 5, and the first electrode 1.
It depends on the material etc. of 2.

次に本実施態様の電子放出素子の製造方法の概略を第1
図に基づいて説明する。
Next, the outline of the manufacturing method of the electron-emitting device of this embodiment will be explained in the first part.
This will be explained based on the diagram.

即ち第1図において、基板6上にまず第1の電極となる
電極材を成膜し、フォトリソエツチング法あるいはりフ
トオフ法等により各々独立した第1の電極1,2をパタ
ーニングし同時に電極間隔15を形成する0次に第2の
電極となる電極材を第1の電極と接続するように第1の
電極1.2の上部に成膜し、フォトリソエツチングある
いはリフトオフ法等により各々独立した第2電極3,4
を形成する。電極間隔15を狭く形成したい場合は、リ
フトオフ法以外に、フォーカストイオンビームの直接エ
ツチングにより第1の電極をパターニングして得ること
もできる。その後、電極間隔15に電子放出体5を配設
して電子放出素子とすることができる。電子放出体5の
形成、配設方法は、後の実施例中で述べる。以上の様に
電子放出部は成膜した電極材をフォトリソエツチング等
の方法によって形成される。従って電子放出部の形状や
位置は精密に制御される。
That is, in FIG. 1, an electrode material that will become a first electrode is first formed on a substrate 6, and independent first electrodes 1 and 2 are patterned by photolithography or a lift-off method, and at the same time the electrode spacing 15 is The electrode material that will become the second electrode is formed on the top of the first electrode 1.2 so as to be connected to the first electrode, and each independent second electrode is formed by photolithography or lift-off method. Electrodes 3, 4
form. If it is desired to form the electrode spacing 15 narrowly, the first electrode can be patterned by direct etching using a focused ion beam instead of the lift-off method. Thereafter, an electron emitter 5 can be arranged between the electrodes 15 to form an electron emitting device. A method for forming and arranging the electron emitter 5 will be described later in Examples. As described above, the electron emitting portion is formed by photolithography or the like on the electrode material formed into a film. Therefore, the shape and position of the electron emitting section can be precisely controlled.

第2図は本発明、電子放出素子の別の一実施態様を示す
模式図である。同図において8および9は第1の電極、
3および4は第2の電極、6は基板、7は基゛板6上に
形成されかつ、第1の電極9および第2の電極4を支持
し、かつ第1の電極8との間に段差を有する絶縁材から
成る段差形成材、10は、段差形成材の段差部に位置し
、かつ第1の電極8.9の間、すなわち電極間隔16に
配置された電子放出体である。
FIG. 2 is a schematic diagram showing another embodiment of the electron-emitting device of the present invention. In the figure, 8 and 9 are first electrodes,
3 and 4 are second electrodes, 6 is a substrate, 7 is formed on the substrate 6, supports the first electrode 9 and the second electrode 4, and has a space between it and the first electrode 8. The step forming member 10 made of an insulating material having a step is an electron emitter located at the step portion of the step forming member and disposed between the first electrodes 8.9, that is, at the electrode interval 16.

本素子においても前記実施態様と同様に電極間隔部16
の寸法が数10A〜数1昨腸でありかつ電子放出体が前
記述材と同様であれば真空中において第2の電極3,4
へ電圧を印加することにより電子放出体10付近より電
子が放出される。
In this device as well, the electrode spacing portion 16 is similar to the embodiment described above.
If the size of the second electrode 3, 4 is several 10 A to several 1 mm and the electron emitter is similar to the above-mentioned material, the second electrode 3, 4
By applying a voltage to the electron emitter 10, electrons are emitted from the vicinity of the electron emitter 10.

次に本実施態様の電子放出素子の製造方法の概略を第2
図に基づいて説明する。
Next, the outline of the method for manufacturing the electron-emitting device of this embodiment will be explained in the second section.
This will be explained based on the diagram.

即ち、第2図において基板6上にまず、段差形成材7と
なる絶縁材を堆積し、フォトリソエツチング法等により
、部分的に取りのぞき、段差部を形成する0次に、第2
の電極となる電極材を成膜し、フォトリソエツチング法
等により、各々独立した第2の電極3,4を段差形成材
7上と基板6上に形成する。続いて、第1の電極8,9
となる電極材を成膜し、段差部での電極材のステップカ
バーがされないように制御し電極間隔1Bを形成する。
That is, in FIG. 2, an insulating material that will become the step forming material 7 is first deposited on the substrate 6, and is partially removed by photolithography or the like to form the step portion.
A film of electrode material that will become the electrode is formed, and independent second electrodes 3 and 4 are formed on the step forming material 7 and the substrate 6 by photolithography or the like. Subsequently, the first electrodes 8, 9
An electrode material is formed into a film, and an electrode spacing 1B is formed by controlling the step so that the electrode material does not cover the step at the stepped portion.

その後電極間隔1Bに電子放出体10を配設して電子放
出素子とすることができる。
Thereafter, an electron emitter 10 can be arranged in the electrode interval 1B to form an electron emitting device.

電子放出体10の形成、配設方法は後の実施例中で述べ
る1以上の様に電子放出部は、堆積した段差形成材の段
差部によって形成される。従って電子放出部の形状や位
置は精密に制御される。
The method for forming and arranging the electron emitting body 10 will be described in one or more embodiments below, and the electron emitting portion is formed by a stepped portion of the deposited step forming material. Therefore, the shape and position of the electron emitting section can be precisely controlled.

以上の実施態様において示した通り、本発明において第
2の電極は第1の電極よりも電子放出部となる電極間隔
より後退した構成となっている。
As shown in the above embodiments, in the present invention, the second electrode is configured to be set back from the first electrode with respect to the distance between the electrodes forming the electron emitting portion.

なぜならば、電子放出時に際して電極間隔近傍の電極は
電子放出体5.lO付近からの発熱や電子放出によって
発生するイオン衝撃やスパッタ及び印加電圧による高電
界にさらされるためである。
This is because when electrons are emitted, the electrodes near the electrode spacing are the electron emitters 5. This is because it is exposed to ion bombardment and sputtering generated by heat generation and electron emission from the vicinity of 1O, and a high electric field due to applied voltage.

例えば、フォーミング型表面伝導形電子放出素子の実験
によれば、厚み5HA、 R膜@3ooμmのAuをフ
ォーミングしだ素子は、1(16Torr台の真空中に
おいて電極間への印加電圧が18V程度以上で著しい薄
膜電極の破壊が発生した。
For example, according to an experiment on a forming-type surface conduction electron-emitting device, a device formed with Au having a thickness of 5 HA and an R film @ 3 ooμm was found to be 1 (in a vacuum on the order of 16 Torr, the voltage applied between the electrodes was about 18 V or more). Significant destruction of the thin film electrode occurred.

本発明において、第1の電極の材料は、これら電極破壊
の受は難い材料として高融点電極材を用いた。例えば、
Mo、 Ta、 W等の金属やこれらの合金、また、T
iC,TaC等の炭化物、さらにはカーボン等を用いる
ことができる。これらの材料は発熱に対する変質が少な
い。又、スパッタ率が低く、耐イオン衝撃性も大きい。
In the present invention, as the material of the first electrode, a high melting point electrode material is used as a material that is not susceptible to electrode breakage. for example,
Metals such as Mo, Ta, W, alloys thereof, and T
Carbides such as iC and TaC, carbon, etc. can be used. These materials are less susceptible to deterioration due to heat generation. In addition, the sputtering rate is low and the ion impact resistance is high.

第1の電極の膜厚は特に限定されることはないが、通常
数1OAからfilOpm程度が良い。
Although the film thickness of the first electrode is not particularly limited, it is usually about several 1 OA to filOpm.

これらの材料を用いる場合、配線電極材としては、配線
抵抗が通常の材料に比べ高抵抗となってしまう。従って
これらの材料を表面伝導形電子放出素子の第1電極材と
する場合、極力使用する領域を小さくし、不要に素子抵
抗を上げることなく、素子の消費電力を小さくすること
が素子駆動上刃効である。そのために電極配線として右
動な低抵抗材から成る第2の電極を極力、電子放出部、
すなわち電極間隔部の近くまで形成しておくことが必要
である。
When these materials are used as wiring electrode materials, the wiring resistance becomes higher than that of ordinary materials. Therefore, when using these materials as the first electrode material of a surface conduction electron-emitting device, it is important to minimize the area used and reduce the power consumption of the device without unnecessarily increasing the device resistance. It is effective. For this purpose, as much as possible, the second electrode made of a right-handed low-resistance material is used as the electrode wiring for the electron-emitting part,
That is, it is necessary to form it close to the electrode spacing.

第2の電極材料としては通常使用される電極材であれば
良く、Ag、 Cu、 Au、 Aj’、旧等で第1の
電極よりも低抵抗であるか、または基板密着性、耐表面
酸化性等電極材としての取扱いが良ければ良い、その膜
厚は特に限定されることはないが、通常数10OAから
数100ILi程度が良い。
The second electrode material may be any commonly used electrode material, such as Ag, Cu, Au, Aj', old, etc., which has lower resistance than the first electrode, or has good substrate adhesion and surface oxidation resistance. The film thickness is not particularly limited as long as it can be easily handled as an electrode material, but it is usually about several 10 OA to several 100 ILi.

しかし、第2の電極が極端に電子放出部に近接している
と電子放出時のダメージにより電極が破壊されやすくな
る。従って、第2の電極を第1の電極よりも電極間隔す
なわち電子放出部に対して後方へ形成することによって
電子放出時の破壊から第2の電極を保護することができ
る。
However, if the second electrode is extremely close to the electron emitting section, the electrode is likely to be destroyed due to damage during electron emission. Therefore, by forming the second electrode further back than the first electrode with respect to the electrode interval, that is, with respect to the electron emitting portion, it is possible to protect the second electrode from destruction during electron emission.

以上説明してきたように、本発明の電子放出素子の動作
としては、第2の電極間3.4に電圧を印加すると、第
1の電極1.2又は8.9で形成される電極間隔15又
は1Gに高電界が発生し、電子放出体5又は10付近よ
り電子放出される。そのときの電圧印加による電極間隔
で発生する高電界、イオン衝撃、スパッタ、発熱に対し
、第1の電極は高融点材料あるいは、カーボンであるた
め、電極破壊を発生することが少なく電子放出される。
As explained above, the operation of the electron-emitting device of the present invention is such that when a voltage is applied between the second electrodes 3.4, the electrode interval 15 formed by the first electrodes 1.2 or 8.9 Alternatively, a high electric field of 1G is generated, and electrons are emitted from the vicinity of the electron emitter 5 or 10. Due to the high electric field, ion bombardment, sputtering, and heat generated between the electrodes due to voltage application at that time, the first electrode is made of a high melting point material or carbon, so electrode breakdown does not occur and electrons are emitted. .

本発明に基づいて、第1の電極を厚み100OAのTa
、第2の電極をNiとし、第1の電極幅を3001とし
電極間隔部に電子放出体としてPd微粒子を配設した表
面伝導形電子放出素子において、第2の電極へ30Vの
電圧印加を行ない電子放出をさせても、第1の電極の破
壊は非常にわずかであった。
Based on the present invention, the first electrode is made of Ta having a thickness of 100 OA.
In a surface conduction electron-emitting device in which the second electrode is made of Ni, the first electrode width is 3001 mm, and Pd fine particles are arranged as an electron emitter in the electrode gap, a voltage of 30 V is applied to the second electrode. Even when electrons were emitted, there was very little damage to the first electrode.

また14Vの電圧印加時において電子放出量は、前述の
Auのフォーミング型表面伝導形電子放出素子と比べ、
同程度以上であった。更に本素子に20V電圧印加する
と、14V印加時の約倍以上の電子放出量を得た。
Furthermore, when a voltage of 14 V is applied, the amount of electron emission is as follows compared to the above-mentioned Au forming type surface conduction type electron-emitting device.
It was about the same level or higher. Furthermore, when a voltage of 20V was applied to this device, the amount of electron emission was approximately twice as much as when a voltage of 14V was applied.

さらに本発明では電子放出部分をフォトリソエツチング
法等の微細加工法や、堆積薄膜端の段差部等によって形
成するため、フォーミングという通電処理によって電子
放出部を形成する方法に比べ電子放出部の形状や位置を
精密に制御できることは前述の通りである。さらには、
通電処理を行なわないために電極の膜厚を高抵抗、すな
わち薄膜化する必要がないため、第1の電極の膜厚を広
範囲の中から選べ、電子放出時の電極−壊の少ない膜厚
を選択できる。
Furthermore, in the present invention, the electron-emitting portion is formed using a microfabrication method such as photolithography or a stepped portion at the edge of the deposited thin film, so the shape of the electron-emitting portion is smaller than that of a method in which the electron-emitting portion is formed by an energization process called forming. As mentioned above, the position can be precisely controlled. Furthermore,
Since there is no need to make the film thickness of the electrode high-resistance, that is, thin film, since no current treatment is performed, the film thickness of the first electrode can be selected from a wide range, and the film thickness that causes less damage to the electrode during electron emission can be selected. You can choose.

[実施例] 実施例1 第3図(a)〜(f)は本発明の電子放出素子の第1の
実施例を示す素子製造工程断面図である。第3図(a)
 〜(f)において、3,4は第2の電極、1.2は第
1の電極、5は電子放出体、6は基板、11.12は電
極をパターニングするためのレジスト、14は外部電源
より電圧を印加する際の電気接続を良好とするための電
極である。
[Example] Example 1 FIGS. 3(a) to 3(f) are sectional views showing the device manufacturing process of a first example of the electron-emitting device of the present invention. Figure 3(a)
In ~(f), 3 and 4 are second electrodes, 1.2 is a first electrode, 5 is an electron emitter, 6 is a substrate, 11.12 is a resist for patterning the electrodes, and 14 is an external power source. This electrode is used to improve electrical connection when applying voltage.

まず、厚みl+smの石英基板6上に幅11pmのフォ
トレジスト11を形成した[第3図(a) ’] 。
First, a photoresist 11 having a width of 11 pm was formed on a quartz substrate 6 having a thickness of l+sm [FIG. 3(a)'].

次に、Cr厚み50Aを下敷きとしたAj>厚み400
0Aを基板6及びレジメ)11上に外形パターンを形成
する様にマスク真空蒸着を行なった[第3図(b) ]
 。
Next, Aj > thickness 400 with Cr thickness 50A as the underlay
0A was vacuum-deposited using a mask to form an external pattern on the substrate 6 and regimen 11 [Figure 3(b)]
.

続いて、フォトレジスト11を剥離するリフトオフ工程
により、堆積したOr、 ARを部分的に除去してパタ
ーニングし、第2の電極3.4とした。この時、第2の
電極3.4の電極間隔は、フォトレジス)11の幅、1
1Bmとなった[第3図(C)]。
Subsequently, by a lift-off process in which the photoresist 11 is peeled off, the deposited Or and AR are partially removed and patterned to form a second electrode 3.4. At this time, the electrode spacing of the second electrode 3.4 is the width of the photoresist) 11, 1
1 Bm [Figure 3 (C)].

次に、第2の電極3.4のパターン間隔部中央に幅1 
p、mのフォトレジスト12を形成した。更にTa厚み
200OAを外形パターンを形成する様にマスク真空蒸
着を行なった[第3図(d) ] 。
Next, a width 1 is placed at the center of the pattern interval part of the second electrode 3.4.
P and m photoresists 12 were formed. Furthermore, Ta was deposited to a thickness of 200 OA using a mask to form an external pattern [FIG. 3(d)].

続いてフォトレジスト12を剥離するリフトオフ工程に
より、堆積したTaを部分的に除去し、パターニングし
、第1の電極1.2とした。この時第1の電極3.4の
電極間隔15はレジスト12の幅1μ膳となった[第3
図(e)]。
Subsequently, the deposited Ta was partially removed by a lift-off process in which the photoresist 12 was peeled off, and patterned to form the first electrode 1.2. At this time, the electrode interval 15 of the first electrode 3.4 was 1 μm width of the resist 12 [3rd
Figure (e)].

その後、第2電極の端部にマスク蒸着により外部電源か
らの電気的接続を良好とするための電極14をAu厚み
100OAによって形成し、最後に電極間隔15部上に
有機金属Pd溶液(奥野製薬製CCP4230)をスピ
ンナーにより塗布し、250℃、10分焼成して電子放
出体5を配設し1本実施例の電子放出素子とした[第3
図(f) ] 。
Thereafter, the electrode 14 was formed using Au with a thickness of 100 OA to improve the electrical connection from an external power source by mask vapor deposition at the end of the second electrode, and finally, an organometallic Pd solution (Okuno Pharmaceutical Co., Ltd. CCP4230) manufactured by CCP4230) was coated using a spinner and baked at 250°C for 10 minutes to provide an electron emitting body 5 to form the electron emitting device of this example.
Figure (f) ].

以上の製法で得られた素子を、1(16Torr台の真
空容器内で、第1電極3,4間に電圧Vfを14V印加
し、素子上面垂直方向空間に素子表面に対して平行な平
板電極を設け、電圧vaをIKVを印加した時、電子放
出体5の付近より電子放出された。
The device obtained by the above manufacturing method was prepared by applying a voltage Vf of 14 V between the first electrodes 3 and 4 in a vacuum chamber of 1 (16 Torr level), and applying a flat plate parallel to the device surface in a space perpendicular to the top surface of the device. When a voltage va of IKV was applied, electrons were emitted from the vicinity of the electron emitter 5.

その時の電子放出量1eは0.5pA程度であった。The amount of electron emission 1e at that time was about 0.5 pA.

更にVrを20Vまで上昇させるとIeは2.OA程度
まで上昇した。この後電子放出素子辺の第1の電極を観
察したところ、電極破壊はほとんど発生していなかった
。更にVfを30Vまで上昇させても電極破壊の発生は
少なかった。
When Vr is further increased to 20V, Ie becomes 2. It rose to the level of OA. After this, when the first electrode on the side of the electron-emitting device was observed, almost no electrode breakdown had occurred. Furthermore, even when Vf was increased to 30V, the occurrence of electrode breakdown was small.

実施例2 第4図(a)〜(e)は本発明の電子放出素子の第2の
実施例を示す素子製造工程断面図である。第4図(a)
〜(e)において、3,4は第2の電極、8.9は第1
の電極、14は電極、6は基板、13はレジスト、7は
電子放出部の電極間隔を形成するための段差形成材であ
り、10は段差形成材に分散含有された電子放出体であ
る。
Embodiment 2 FIGS. 4(a) to 4(e) are sectional views showing the device manufacturing process of a second embodiment of the electron-emitting device of the present invention. Figure 4(a)
In ~(e), 3 and 4 are the second electrodes, and 8.9 is the first electrode.
, 14 is an electrode, 6 is a substrate, 13 is a resist, 7 is a step forming material for forming the electrode interval of the electron emitting section, and 10 is an electron emitter dispersed in the step forming material.

まず、厚みlamの石英基板6上に、S i02液体コ
ーティング材(東京応化工業型OCD )に有機金属P
d溶液(奥野製薬製CC94230)を混合したものを
、スピンナーにより塗布後、400℃30分焼成して、
Pd微粒子を含むS i02膜を成膜した。これをフォ
トリソエツチング法により部分的に除去し、段差部を有
し、かつ電子放出体lOが段差部表面に配設してなる段
差形成材7を形成した[第4図(a) ] 。
First, on a quartz substrate 6 with a thickness of lam, an organic metal P was coated on a Si02 liquid coating material (Tokyo Ohka Kogyo type OCD).
A mixture of d solution (CC94230 manufactured by Okuno Pharmaceutical Co., Ltd.) was applied using a spinner, and then baked at 400°C for 30 minutes.
A Si02 film containing Pd fine particles was formed. This was partially removed by photolithography to form a step-forming material 7 having a step portion and having an electron emitter IO disposed on the surface of the step portion [FIG. 4(a)].

次に、フォトレジス)13を段差部の上下をおおうよう
にして@4μmで形成した[第4図(b) ] 。
Next, a photoresist 13 was formed with a thickness of 4 μm to cover the top and bottom of the stepped portion [FIG. 4(b)].

さらにCr厚み50Aを下敷き層としたNi厚み400
0Aをマスク蒸着した[第4図(C) ] 。
In addition, Ni thickness is 400 mm with Cr thickness of 50 mm as an underlay layer.
0A was deposited using a mask [FIG. 4(C)].

レジスト13を剥離するリフトオフ工程により、堆積し
たOr、旧を部分的に除去し、パターニングし、第2の
電極3,4とした[第4図(d) ] 。
By a lift-off process for peeling off the resist 13, the deposited Or and old materials were partially removed and patterned to form second electrodes 3 and 4 [FIG. 4(d)].

その後、電極14をAu厚み100OAによって形成し
、最後に段差部周辺にカーボン厚み100OAをマスク
蒸着する。この時、基板6の基板面をカーボンの蒸着源
に対して斜めとすることによって、段差部での蒸着ステ
ップカバレージを悪くして段差部にカーボンの電極間隔
を有する第1の電極8゜9を形成し、本実施例の電子放
出素子とした[第4図(e) ] 。
Thereafter, the electrode 14 is formed of Au with a thickness of 100 OA, and finally carbon with a thickness of 100 OA is deposited around the stepped portion using a mask. At this time, by making the substrate surface of the substrate 6 oblique with respect to the carbon evaporation source, the vapor deposition step coverage at the stepped portion is deteriorated, and the first electrode 8°9 having a carbon electrode spacing is formed at the stepped portion. The electron-emitting device of this example was prepared [FIG. 4(e)].

以上の製法で得られた素子を、実施例1と同様にして電
子放出をさせたところ、はぼ同等の電子放出を得、かつ
電子放出後の第1の電極の破壊は、はとんど発生してい
なかった。
When the device obtained by the above manufacturing method was subjected to electron emission in the same manner as in Example 1, almost the same level of electron emission was obtained, and the first electrode was hardly destroyed after electron emission. It had not occurred.

実施例3 第5図(a)〜(e)は本発明の電子放出素子の実施例
を示す素子製造工程断面図である。第5図(a)〜(e
)において、19.20は第2の電極、17゜18は第
1の電極、lOは電子放出体、7は段差形成材、21は
電極及び段差形成材をパターニングするためのレジスト
である0本実施例は、構成的に実施例1と良く似ている
が、電極間隔端の極近傍にまで第2の電極が位置するこ
とのできる製造方法によるものである。
Embodiment 3 FIGS. 5(a) to 5(e) are sectional views showing the device manufacturing process of an embodiment of the electron-emitting device of the present invention. Figures 5(a) to (e)
), 19.20 is the second electrode, 17° 18 is the first electrode, 1O is the electron emitter, 7 is the step forming material, and 21 is the resist for patterning the electrode and the step forming material. This embodiment is structurally very similar to the first embodiment, but is based on a manufacturing method that allows the second electrode to be located very close to the edge of the electrode spacing.

本製造方法では、電子放出体lOを含む段差形成材7及
び、第2の電極19の材料すなわち、C「厚み50Aを
下敷き層とした旧厚み3000Aの両者を、フォトリソ
エツチング法によってパターニングした後、再び、第2
の電極19をウェットエッチによりサイドエツチングさ
せて、段差形成材7の段差部端より約2500A程度後
退させた[第5図(a)。
In this manufacturing method, after patterning both the step forming material 7 containing the electron emitter 1O and the material of the second electrode 19, that is, the original thickness of 3000 A with an underlying layer of 50 A, using a photolithographic etching method, Again, the second
The electrode 19 was side-etched by wet etching, and was moved back about 2500 A from the edge of the step portion of the step forming material 7 [FIG. 5(a)].

(b) ] 。(b) ].

その後、基板6上の第2の電極20の旧/Cr厚み30
QOA / 50Aをマスク蒸着とリフトオフ法により
形成した[第5図(C)、(d) ] 。
After that, the old/Cr thickness 30 of the second electrode 20 on the substrate 6 is
QOA/50A was formed by mask evaporation and lift-off method [FIGS. 5(C) and 5(d)].

最後にAuから成る電極14をマスク蒸着で形成した後
、段差形成材7の段着部周辺にカーボンを厚み250O
Aの斜め蒸着して、第1の電極17.18を形成し、同
時に電子放出部となる電極間隔部も形成した[第5図(
e) ] 。
Finally, after forming an electrode 14 made of Au by mask evaporation, carbon is deposited to a thickness of 250 mm around the stepped portion of the step forming material 7.
The first electrodes 17 and 18 were formed by diagonal evaporation of A, and at the same time, the electrode spacing part that would become the electron emitting part was also formed [Figure 5 (
e) ].

以上の製法で得られた素子は、電極間隔部の第1の電極
、17.18端部より、第2の電極19.20が実質上
約2500A後退した構造となる。すなわち、段差形成
材7の段差上端部では、第2の電極19はサイドエツチ
ングにより250OA後退させられており、また段差部
下端部では第2の電極20は、第1の電極18が250
OA積層されているために、厚み方向で実質250OA
第2の電極が第1の電極よりも後退している。
The device obtained by the above manufacturing method has a structure in which the second electrode 19.20 is substantially set back by about 2500 A from the end of the first electrode 17.18 in the electrode gap. That is, at the upper end of the step forming material 7, the second electrode 19 is set back by 250 OA by side etching, and at the lower end of the step, the second electrode 20 is set back by 250 OA than the first electrode 18.
Because it is laminated with OA, it is actually 250 OA in the thickness direction.
The second electrode is set back from the first electrode.

このような方法を用いれば、第2の電極の後退量を非常
に小さく制御することが可能となる。
If such a method is used, it becomes possible to control the amount of retraction of the second electrode to be extremely small.

本素子においても、実施例1,2と同等の電子放出特性
を得ることができた。
In this device as well, it was possible to obtain electron emission characteristics equivalent to those in Examples 1 and 2.

また本実施例において第1の′電極に対する第2の電極
の後退量を2000A以下にすると上記実施例に比べ、
第2の電極の破壊印加電圧が低くなり、大量の電子放出
量を得られなくなった。
Furthermore, in this embodiment, if the amount of retraction of the second electrode with respect to the first electrode is set to 2000A or less, compared to the above embodiment,
The applied breakdown voltage of the second electrode became low, making it impossible to obtain a large amount of electron emission.

[発明の効果] 以上説明したように1本発明では、電子放出に係わる電
極間隔部の近傍電極すなわち第1の電極の材料として高
融点材料あるいは、カーボンを用い、また電子放出のた
めの電圧印加の配線電極、すなわち第2電極は、別途適
した材料を電子放出による電極破壊の発生しにくい場所
に使用することによって素子駆動等の特性をおとすこと
なく、素子駆動電圧を上げても電極破壊の発生しにくい
素子を得ることができ、電子放出量を大きくすることが
できるという効果を有している。
[Effects of the Invention] As explained above, in the present invention, a high melting point material or carbon is used as the material of the electrode near the electrode gap involved in electron emission, that is, the first electrode, and a voltage is applied for electron emission. For the wiring electrode, that is, the second electrode, by using a separately suitable material in a place where electrode breakdown due to electron emission is unlikely to occur, the device drive characteristics can be maintained, and even if the device drive voltage is increased, electrode breakdown will not occur. This has the effect that it is possible to obtain an element that is less likely to generate electrons, and that it is possible to increase the amount of electron emission.

さらには、表面伝導形電子放出素子の電子放出部を電極
間隔部と、該電極間隔部内に配設した電子放出体とし、
これを一定に制御して形成することによって、電子放出
部の形状1位置を精密に制御することが可能となる。従
って素子毎の特性バラツキが小さくできるという効果が
ある。
Furthermore, the electron emitting part of the surface conduction type electron emitting device is an electrode spacing part and an electron emitter disposed within the electrode spacing part,
By controlling and forming this constant, it becomes possible to precisely control the shape 1 position of the electron emitting part. Therefore, there is an effect that variations in characteristics from element to element can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施態様を示す素子断面図、第
2図は本発明の第2の実施態様を示す素子断面図、第3
図(a)〜(Dは本発明の第1の実施例を示す素子断面
図、第4図(a)〜(e)は本発明の第2の実施例を示
す素子断面図、第5図(a)〜(e)は本発明の第3の
実施例を示す素子断面図、第6図は従来の表面伝導形電
子放出素子を示す概略図である。 1.2,8,9.17.18・・・第1の電極3.4,
19.20・・・第2の電極 5.10・・・電子放出体 7・・・段差形成材 15.16・・・電極間隔
FIG. 1 is a cross-sectional view of an element showing a first embodiment of the present invention, FIG. 2 is a cross-sectional view of an element showing a second embodiment of the present invention, and FIG.
Figures (a) to (D) are cross-sectional views of an element showing a first embodiment of the present invention, Figures 4 (a) to (e) are cross-sectional views of an element showing a second embodiment of the present invention, and Figure 5. (a) to (e) are device cross-sectional views showing a third embodiment of the present invention, and FIG. 6 is a schematic diagram showing a conventional surface conduction type electron-emitting device. 1.2, 8, 9.17 .18...first electrode 3.4,
19.20... Second electrode 5.10... Electron emitter 7... Step forming material 15.16... Electrode spacing

Claims (2)

【特許請求の範囲】[Claims] (1)間隔を有して対向する一対の電極の間隔部内に電
子放出体を有し、該電極間隔部の電極端から電極側近傍
までが高融点材料である第1の電極から成り、該電極間
隔部近傍よりも該電極間隔に対して遠方が少なくとも第
2の電極であることを特徴とする表面伝導形電子放出素
子。
(1) A pair of electrodes that face each other with a space therebetween, each having an electron emitting body within the space between the electrodes, and the space from the electrode end to the vicinity of the electrode side of the electrode space consists of a first electrode made of a high melting point material; A surface conduction electron-emitting device characterized in that at least a second electrode is located further away from the electrode spacing than near the electrode spacing.
(2)第1の電極がカーボン材から成ることを特徴とす
る請求項(1)記載の電子放出素子。
(2) The electron-emitting device according to claim (1), wherein the first electrode is made of a carbon material.
JP29004188A 1988-11-18 1988-11-18 Electron-emitting device Expired - Fee Related JP2748133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29004188A JP2748133B2 (en) 1988-11-18 1988-11-18 Electron-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29004188A JP2748133B2 (en) 1988-11-18 1988-11-18 Electron-emitting device

Publications (2)

Publication Number Publication Date
JPH02139841A true JPH02139841A (en) 1990-05-29
JP2748133B2 JP2748133B2 (en) 1998-05-06

Family

ID=17751018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29004188A Expired - Fee Related JP2748133B2 (en) 1988-11-18 1988-11-18 Electron-emitting device

Country Status (1)

Country Link
JP (1) JP2748133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306540C (en) * 1993-12-27 2007-03-21 佳能株式会社 Method for producing electronic transmitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306540C (en) * 1993-12-27 2007-03-21 佳能株式会社 Method for producing electronic transmitting device

Also Published As

Publication number Publication date
JP2748133B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP2630988B2 (en) Electron beam generator
JP2654571B2 (en) Electron-emitting device, electron-emitting device and light-emitting device using the same
JP2008257913A (en) Electron beam device
JP2610188B2 (en) Image forming device
JP2627620B2 (en) Electron emitting device and method of manufacturing the same
JP2630983B2 (en) Electron-emitting device
JP2678757B2 (en) Electron emitting device and method of manufacturing the same
JPH02139841A (en) Electron emitting element
JP2631007B2 (en) Electron emitting element, method of manufacturing the same, and image forming apparatus using the element
JP2727193B2 (en) Method for manufacturing electron-emitting device
JP2630990B2 (en) Electron emitting device and light emitting device using the same
JP2614047B2 (en) Method for manufacturing electron-emitting device
JP2617317B2 (en) Electron beam generator
JP2981503B2 (en) Electron emitting element, electron source and image display device
JP2748128B2 (en) Electron beam generator
JP2748143B2 (en) Electron beam light emitting device
JP2646236B2 (en) Electron emitting device and method of manufacturing the same
JP2992902B2 (en) Electron beam generator
JP2632365B2 (en) Electron emitting device and method of manufacturing the same
JP2622838B2 (en) Method for manufacturing electron-emitting device
JP2646235B2 (en) Electron emitting device and method of manufacturing the same
JP3486131B2 (en) Electron emitting device and method of manufacturing the same
JP3332891B2 (en) Electron source and image forming apparatus using the same
JP2630984B2 (en) Method for manufacturing electron-emitting device
JP2961523B2 (en) Electron emitting element, electron source and image forming apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees