JP2654571B2 - Electron-emitting device, electron-emitting device and light-emitting device using the same - Google Patents

Electron-emitting device, electron-emitting device and light-emitting device using the same

Info

Publication number
JP2654571B2
JP2654571B2 JP14156588A JP14156588A JP2654571B2 JP 2654571 B2 JP2654571 B2 JP 2654571B2 JP 14156588 A JP14156588 A JP 14156588A JP 14156588 A JP14156588 A JP 14156588A JP 2654571 B2 JP2654571 B2 JP 2654571B2
Authority
JP
Japan
Prior art keywords
electron
emitting device
electrode
emitting
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14156588A
Other languages
Japanese (ja)
Other versions
JPH01311533A (en
Inventor
嘉和 坂野
治人 小野
一郎 野村
俊彦 武田
哲也 金子
征四郎 吉岡
英俊 鱸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14156588A priority Critical patent/JP2654571B2/en
Publication of JPH01311533A publication Critical patent/JPH01311533A/en
Application granted granted Critical
Publication of JP2654571B2 publication Critical patent/JP2654571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子放出素子及びそれを用いた電子放出装
置ならびに発光装置に関するもので、特に電子放出素子
から放出される電子ビームの形状制御並びに一次元
(線)又は二次元(面)状の電子放出を行う電子放出装
置並びに発光装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting device, an electron-emitting device and a light-emitting device using the same, and more particularly to controlling the shape of an electron beam emitted from the electron-emitting device, The present invention relates to an electron-emitting device and a light-emitting device that emit one-dimensional (line) or two-dimensional (plane) electrons.

[従来の技術] 従来、簡単な構造で電子の放出が得られる素子とし
て、例えば、エム・アイ・エリンソン(M.I.Elinson)
等によって発表された冷陰極素子が知られている。[ラ
ジオ・エンジニアリング・エレクトロン・フィジィック
ス(Radio Eng.Electron.Phys.)第10巻,1290〜1296頁,
1965年] これは、基板上に形成された小面積の薄膜に、膜面に
平行に電流を流すことにより、電子放出が生ずる現象を
利用するもので、一般には表面伝導形放出素子と呼ばれ
ている。
[Prior art] Conventionally, as a device capable of emitting electrons with a simple structure, for example, MIElinson
And the like are known. [Radio Engineering Electron Physics, Vol. 10, 1290-1296,
1965] This utilizes the phenomenon that electron emission occurs when a current flows through a small-area thin film formed on a substrate in parallel with the film surface, and is generally called a surface conduction electron-emitting device. ing.

この表面伝導形放出素子としては、前記エリンソン等
により開発されたSnO2(Sb)薄膜を用いたものの他、Au
薄膜によるもの[ジー・ディットマー“スイン ソリッ
ド フィルムス”(G.Dittmer:“Thin Solid Films"),
9巻,317頁,(1972年)]、ITO薄膜によるもの[エム・
ハートウェル・アンド・シー・ジー・フォンスタッド
“アイ・イー・イー・イー・トランス・イー・ディー・
コンフ”(M.Hartwell and C.G.Fonstad:“IEEE Trans.
ED Conf.")519頁,(1975年)]、カーボン薄膜による
もの[荒木久他:“真空",第26巻,第1号,22頁,(198
3年)]などが報告されている。
As the surface conduction electron-emitting device, a device using a SnO 2 (Sb) thin film developed by Elinson et al.
By thin film [G. Dittmer: “Thin Solid Films”),
9, 317, (1972)], using ITO thin film [M.
Hartwell and C.G.Fonstad “I.E.E.E.Trans.E.D.D.
Conf. ”(M. Hartwell and CGFonstad:“ IEEE Trans.
ED Conf. ") P. 519, (1975)], using a carbon thin film [Hisashi Araki et al .:" Vacuum ", Vol. 26, No. 1, p. 22, (198)
3 years)].

これらの表面伝導形放出素子の典型的な素子構成を第
11図に示す。同第11図において、1および2は電気的接
続を得る為の電極、3は電子放出材料で形成される薄
膜、4は基板、5は電子放出部を示す。
Typical device configurations of these surface conduction electron-emitting devices are as follows.
Figure 11 shows. In FIG. 11, reference numerals 1 and 2 denote electrodes for obtaining electrical connection, 3 a thin film formed of an electron-emitting material, 4 a substrate, and 5 an electron-emitting portion.

従来、これらの表面伝導形放出素子に於ては、電子放
出を行なう前にあらかじめフォーミングと呼ばれる通電
処理によって電子放出部5を形成する。即ち、前記電極
1と電極2の間に電圧を印加する事により、薄膜3に通
電し、これにより発生するジュール熱で薄膜3を局所的
に破壊,変形もしくは変質せしめ、電気的に高抵抗な状
態にした電子放出部5を形成することにより電子放出機
能を得ている。
Conventionally, in these surface conduction electron-emitting devices, the electron-emitting portion 5 is formed by an energization process called forming before electron emission. That is, by applying a voltage between the electrode 1 and the electrode 2, the thin film 3 is energized, and the thin film 3 is locally broken, deformed or deteriorated by the Joule heat generated by the application of the voltage, and has a high electrical resistance. An electron emission function is obtained by forming the electron emission portion 5 in the state.

第11図において6は、上記表面伝導形放出素子から放
出される電子ビームの広がる面積を目視で測定できるよ
うに、透明基板の電子ビームの照射面に蛍光体を塗布し
た蛍光体基板、7は放出された電子ビームにより発光し
た発光部である。
In FIG. 11, reference numeral 6 denotes a phosphor substrate in which a phosphor is applied to the electron beam irradiation surface of a transparent substrate so that the spread area of the electron beam emitted from the surface conduction electron-emitting device can be visually measured. This is a light emitting unit that emits light by the emitted electron beam.

従来の表面伝導形放出素子の放射特性は、表面伝導形
放出素子から数mm程度離れた空間上に蛍光体基板6を配
置して数百Vから数千Vの電圧を印加し、前記電極1と
電極2の間に駆動電圧を印加した場合、蛍光体基板6上
に発光する発光部7が第11図のごとく、三ヶ月形をなす
ものとなっている。この放射特性は、従来の表面伝導形
電子放出素子の固有の特性である。
The emission characteristics of the conventional surface conduction electron-emitting device are as follows. A phosphor substrate 6 is placed in a space about several mm away from the surface conduction electron-emitting device, and a voltage of several hundred V to several thousand V is applied. When a driving voltage is applied between the electrode and the electrode 2, the light emitting portion 7 emitting light on the phosphor substrate 6 has a three-month shape as shown in FIG. This radiation characteristic is a characteristic inherent to the conventional surface conduction electron-emitting device.

さらに、表面伝導形電子放出素子をライン状にマルチ
に配置した場合、第12図のごとく、三ヶ月形の発光部7
がライン状にならんだ、非常に変形されたライン電子源
を構成することになる。
Further, when the surface conduction electron-emitting devices are arranged in a multi-line in a line, as shown in FIG.
Constitutes a highly deformed line electron source that is lined up.

[発明が解決しようとする課題] 上述のように、従来の表面伝導形放出素子は、放出さ
れた電子ビームが三ヶ月状に広がりながら飛翔するた
め、次のような欠点がある。
[Problems to be Solved by the Invention] As described above, the conventional surface conduction electron-emitting device has the following drawbacks because the emitted electron beam flies while spreading in three months.

(1)表面伝導形放出素子から放出された電子ビームを
任意の形状に絞るには、非常に複雑な電子光学系を必要
とする。
(1) To reduce the electron beam emitted from the surface conduction electron-emitting device to an arbitrary shape, an extremely complicated electron optical system is required.

(2)表面伝導形放出素子を複数個、ライン状に規則正
しくマルチに配置した場合、ライン状に均一な電子放出
を得られない。
(2) When a plurality of surface conduction electron-emitting devices are regularly arranged in a multi-line manner, uniform electron emission cannot be obtained in a line shape.

以上のような問題点があるため、従来の表面伝導形放
出素子は、素子構造が簡単でかつ、2つ以上の複数の素
子をライン状に配置することが容易であるにもかかわら
ず、産業上積極的に応用されるには至っていないのが現
状である。
Due to the above-described problems, the conventional surface conduction electron-emitting device has a simple structure, and it is easy to arrange two or more devices in a line. At present, it has not been applied positively.

本発明は、上記のような従来の欠点を除去するために
なされたもので、簡単に電子ビームの形状を制御できる
ようにすると共に、きれいに揃ったライン状の電子放出
が得られるようにすることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to eliminate the above-mentioned drawbacks of the related art, and it is intended to make it possible to easily control the shape of an electron beam and to obtain a well-aligned line-shaped electron emission. With the goal.

[課題を解決するための手段] 上記目的を達成するために成された本発明の構成は、
以下の通りである。
[Means for Solving the Problems] The configuration of the present invention made to achieve the above object is as follows.
It is as follows.

すなわち、本発明の第一では、一対の凹・凸形状の電
極がその凹・凸部分において相対向し、該電極間の凹形
状の領域に、通電処理又は微粒子の分散付設によって形
成された凹形状の電子放出部を有することを特徴とする
電子放出素子としているものである。
That is, in the first aspect of the present invention, a pair of concave / convex electrodes are opposed to each other at the concave / convex portions, and the concave / convex regions formed between the electrodes are formed by energization treatment or dispersion of fine particles. An electron emitting device having an electron emitting portion having a shape.

また、本発明の第二では、上記本発明第一の電子放出
素子が、少なくとも一列、直線的に配列されていること
を特徴とする電子放出素子としているものである。
According to a second aspect of the present invention, the above-mentioned first electron-emitting device of the present invention is an electron-emitting device characterized in that at least one line is linearly arranged.

さらに、本発明の第三では、上記本発明第二の電子放
出素子と、該電子放出装置から放出された電子ビームの
照射により発光する蛍光体基板とを組み合わせたことを
特徴とする発光装置としているものである。
Further, according to a third aspect of the present invention, there is provided a light emitting device characterized by combining the second electron emitting element according to the second aspect of the present invention and a phosphor substrate which emits light by irradiation of an electron beam emitted from the electron emitting device. Is what it is.

本発明の電子放出素子を、本発明の一実施例を示す第
1図で更に説明すると、本発明は、凸形状の電極1と凹
形状の電極2を、その凸部及び凹部において対向するよ
うにし、両電極間に挟まれた凹形状の領域に、凹形状の
電子放出部5を形成したものである。
The electron-emitting device of the present invention will be further described with reference to FIG. 1 showing one embodiment of the present invention. In the present invention, a convex electrode 1 and a concave electrode 2 are opposed to each other at a convex portion and a concave portion. A concave electron emitting portion 5 is formed in a concave region sandwiched between both electrodes.

本発明において、一対の電極1,2は、希望する電子ビ
ームの形状に合わせて、いずれを正極としても、また負
極としてもよいが、整った電子ビームの形状を得る上で
は、凸形の電極1を正極とし、凹形の電極2を負極とす
ることが好ましい。ここで、正極とは、正の電位が印加
される電極をいい、負極とは負の電位が印加される電極
をいう。
In the present invention, the pair of electrodes 1 and 2 may be either a positive electrode or a negative electrode according to a desired electron beam shape, but in order to obtain a uniform electron beam shape, a convex electrode is used. It is preferable that 1 is a positive electrode and the concave electrode 2 is a negative electrode. Here, the positive electrode refers to an electrode to which a positive potential is applied, and the negative electrode refers to an electrode to which a negative potential is applied.

特に、凸形の電極1を正極とし、凹形の電極2を負極
とした本電子放出素子は、整った形状の電子ビームが得
やすいことから、当該素子を直線的に一列に並べて、一
次元状の電子放出をなす電子放出装置を構成するのに適
している。また、当該素子を複数列並べることにより、
対象領域全体に均一な電子ビームの照射が可能な、二次
元状の電子放出を行う電子放出装置を得ることができ
る。
In particular, since the electron-emitting device of the present invention in which the convex electrode 1 is used as a positive electrode and the concave electrode 2 is used as a negative electrode, it is easy to obtain a well-shaped electron beam. It is suitable for constructing an electron emission device that emits electrons in a shape. In addition, by arranging the elements in a plurality of rows,
It is possible to obtain an electron emission device that emits two-dimensional electrons and can irradiate the entire target region with a uniform electron beam.

また、上記本発明の電子放出装置と、第11図に示した
ような蛍光体基板6とを組み合わせることにより、一次
元あるいは二次元状の発光部を形成する発光装置を得る
ことができる。
Further, by combining the above-described electron-emitting device of the present invention with the phosphor substrate 6 as shown in FIG. 11, a light-emitting device forming a one-dimensional or two-dimensional light-emitting portion can be obtained.

更に本発明について説明すると、本発明の電子放出素
子は、従来と同様に基板4上に形成されるもので、この
基板4としては、例えばガラス、石英等の絶対材料が用
いられる。
To further explain the present invention, the electron-emitting device of the present invention is formed on a substrate 4 in the same manner as in the related art, and the substrate 4 is made of an absolute material such as glass or quartz.

電極1,2は、例えば真空蒸着プロセスとフォトリソプ
ロセス等の通常よく用いられる方法で形成することがで
きる。この電極1,2の材料は、一般的な導電材料で、例
えばNi,Al,Cu,Au,Pt,Ag等の金属や、SnO3,ITO等の金属
酸化物等を用いることができる。
The electrodes 1 and 2 can be formed by a commonly used method such as a vacuum deposition process and a photolithography process. The material of the electrodes 1 and 2 is a general conductive material such as a metal such as Ni, Al, Cu, Au, Pt, and Ag, and a metal oxide such as SnO 3 and ITO.

電極1,2間における電子放出部5の形成は、従来と同
様に、例えばIn2O3,SuO2,PbO等の金属酸化物、Ag,Pt,A
l,Cu,Au等の金属、カーボン、その他各種半導体等の電
子放出材料を用いた真空蒸着等によって薄膜3を成膜
し、これにフォーミング処理を施すことで行うことがで
きる(第1図参照)。
The formation of the electron-emitting portion 5 between the electrodes 1 and 2 is performed in the same manner as in the prior art, for example, a metal oxide such as In 2 O 3 , SuO 2 , PbO, Ag, Pt, A
This can be performed by forming a thin film 3 by vacuum deposition using an electron-emitting material such as a metal such as l, Cu, and Au, carbon, and various other semiconductors and performing a forming process (see FIG. 1). ).

また、電子放出部5の他の形成方法としては、上記電
子放出材料の微粒子8を分散媒に分散させた分散液を、
例えばデッピングやスピンコート等で基板4に塗布した
後焼成することによって行うことが挙げられる(第5図
参照)。この場合の分散媒としては、微粒子8を変質さ
せることなく分散させ得るものであればよく、例えば酢
酸ブチル、アルコール類、メチルエチルケトン、シクロ
ヘキサン及びこれらの混合物等が用いられる。また微粒
子8は、数十Å〜数μmの粒径のものが好ましい。
Further, as another method of forming the electron-emitting portion 5, a dispersion liquid in which the fine particles 8 of the electron-emitting material are dispersed in a dispersion medium is used.
For example, it may be performed by applying to the substrate 4 by dipping or spin coating and then baking (see FIG. 5). The dispersion medium in this case may be any medium that can disperse the fine particles 8 without deteriorating them, and examples thereof include butyl acetate, alcohols, methyl ethyl ketone, cyclohexane, and a mixture thereof. Further, the fine particles 8 preferably have a particle size of several tens of μm to several μm.

[作 用] 電極1,2を凸形と凹形にすることによって、電界状態
に変化をもたらすことができ、これに応じて電子ビーム
の形状を変化させることができる。
[Operation] By making the electrodes 1 and 2 convex and concave, the state of the electric field can be changed, and the shape of the electron beam can be changed accordingly.

上記作用は、電子放出部5が“くの字状”もしくは
“三日月状”などの凹形状を有する本発明において顕著
な効果をもたらす。すなわち、凸形の電極1を正極と
し、凹形の電極2を負極とすれば、三日月形の放射特性
が電極1,2のもたらす電界状態によって是正され、特に
電子放出部5自体が“三日月状”などの凹形状である場
合においてその是正効果が大きく、電子ビームの形状は
整った形状となり、当該電子放射素子を直線的に一列に
並べたときに、均一に連なった電子放出状態が得やすく
なるものである。
The above operation brings a remarkable effect in the present invention in which the electron-emitting portion 5 has a concave shape such as a “U-shape” or a “crescent shape”. That is, if the convex electrode 1 is used as a positive electrode and the concave electrode 2 is used as a negative electrode, the crescent-shaped radiation characteristic is corrected by the electric field state provided by the electrodes 1 and 2, and in particular, the electron-emitting portion 5 itself becomes “crescent-shaped”. In the case of a concave shape such as "", the effect of correction is large, the shape of the electron beam becomes a regular shape, and when the electron emitting elements are arranged linearly in a row, a uniform continuous electron emission state is easily obtained. It becomes.

[実施例] 実施例1 第1図は、本実施例に係る電子放出素子の平面図、第
2図はその電子ビームの放射特性を示す説明図である。
第1図に於いて、4は絶縁性を有する基板、3は電子放
射材料で形成された薄膜、1及び2は電気的接続を得る
ための電極、5は電子放出部で、第2図において6は電
子ビームの放射特性を測定するための蛍光体基板、7は
発光部である。
Example 1 Example 1 FIG. 1 is a plan view of an electron-emitting device according to the present example, and FIG. 2 is an explanatory diagram showing emission characteristics of the electron beam.
In FIG. 1, reference numeral 4 denotes an insulating substrate, 3 denotes a thin film formed of an electron emitting material, 1 and 2 denote electrodes for obtaining electrical connection, and 5 denotes an electron emitting portion. Reference numeral 6 denotes a phosphor substrate for measuring the radiation characteristics of the electron beam, and reference numeral 7 denotes a light emitting unit.

本実施例の電子放出素子を次のようにした作製した。 The electron-emitting device of this example was manufactured as follows.

絶縁性の基板4に石英基板を用い、洗浄された基板4
上に、電子放出材料にAuを用いて膜厚1000Åの薄膜3を
成膜し、次いでフォトリソグラフィー技術により、電子
放出部5が形成される幅l=0.1mmのネック部を有する
電子放出材料の薄膜3とした。
A quartz substrate is used as the insulating substrate 4, and the cleaned substrate 4 is used.
A thin film 3 having a thickness of 1000 ° is formed on the electron emitting material by using Au as an electron emitting material, and then the electron emitting material having a neck portion having a width l = 0.1 mm on which an electron emitting portion 5 is formed is formed by photolithography. The thin film 3 was obtained.

次いで、前記薄膜3に形成される電子放出部5と電気
的接続を得る電極1,2を、Niを用いたマスク蒸着によ
り、1500Åの膜厚で形成した。電極1を先端の角度θ
が120゜の凸形とし、電極2を先端の角度θが240゜の
凹形として、電極間隔w=0.05mmになるよう形成した。
Next, electrodes 1 and 2 for obtaining electrical connection with the electron-emitting portion 5 formed on the thin film 3 were formed to a thickness of 1500 ° by mask vapor deposition using Ni. The electrode 1 is at the angle θ 1 at the tip.
The electrode 2 was formed into a convex shape having a convex angle of 120 °, and the tip 2 was formed into a concave shape having an angle θ 2 of 240 ° so that an electrode interval w = 0.05 mm.

前記電極1に正の電圧、電極2に負の電圧が加わるよ
うに、電極1と電極2の間に20Vの電圧を印加すること
により、薄膜3に通電し、これにより発生するジュール
熱で薄膜3を局所的に破壊、変形もしくは変質せしめ、
電気的に高抵抗な状態にした電子放出部5を形成した。
上記のごとく形成された電子放出部5は、電極1,2の形
状に沿った形に形成された。
The thin film 3 is energized by applying a voltage of 20 V between the electrode 1 and the electrode 2 so that a positive voltage is applied to the electrode 1 and a negative voltage is applied to the electrode 2. 3 is locally destroyed, deformed or altered,
The electron emitting portion 5 was made to have an electrically high resistance state.
The electron emitting portion 5 formed as described above was formed in a shape following the shape of the electrodes 1 and 2.

次に、透明基板に、青板ガラスを用い、これを洗浄し
た後、透明電極ITO(In2O3:SnO2=95:5)を蒸着により1
000Åの厚さで形成し、更に電子により発光する蛍光体
を塗布して蛍光体基板6を形成した。
Next, a blue plate glass was used as a transparent substrate, and after washing it, a transparent electrode ITO (In 2 O 3 : SnO 2 = 95: 5) was deposited by evaporation.
A phosphor substrate 6 was formed by applying a phosphor which emits light by electrons.

上記のごとく形成された電子放出素子と蛍光体基板6
を用い、当該素子に駆動電圧14Vを印加し、蛍光体基板
6を上記素子から約5mmの空間上に配置して、放出され
た電子ビームの放射領域、即ち発光部7を測定したとこ
ろ、第2図に示すように、従来の表面伝導形放出素子で
は得ることの出来ない幅W=約0.5mm、長さL=約1.0mm
の長円形の発光部7を得ることが出来た。
Electron-emitting device and phosphor substrate 6 formed as described above
When a driving voltage of 14 V was applied to the device, the phosphor substrate 6 was arranged in a space of about 5 mm from the device, and the emission area of the emitted electron beam, that is, the light emitting section 7 was measured. As shown in FIG. 2, the width W = about 0.5 mm and the length L = about 1.0 mm, which cannot be obtained by the conventional surface conduction type emission device.
The light emitting portion 7 having an oval shape was obtained.

第3図は、上記電子放出素子を用い、ライン状に規則
正しくマルチに配置した電子放出装置の部分平面図、第
4図は、この電子放出装置による電子ビーム放出で蛍光
体基板6上にマルチに発光した発光部7を示した説明図
である。
FIG. 3 is a partial plan view of an electron-emitting device which uses the above-described electron-emitting devices and is regularly arranged in a multi-line manner, and FIG. FIG. 3 is an explanatory diagram showing a light emitting unit 7 that emits light.

第3図に示す電子放出装置に於いて、電極1は凸形
で、正の電圧を印加する個別電極とし、電極2は凹形
で、負の電圧を印加する共通電極とした。上記1素子に
よる発光部7のLが約1mmであるため、各素子間隔を0.8
mmとし、電子ビームが重なり合うように、6素子を、電
子放出部5が直線的になるよう配置し、各素子ごとにフ
ォーミングを行った。
In the electron-emitting device shown in FIG. 3, the electrode 1 was a convex electrode, an individual electrode for applying a positive voltage, and the electrode 2 was a concave electrode, a common electrode for applying a negative voltage. Since the distance L of the light emitting section 7 of one element is about 1 mm, the distance between the elements is 0.8 mm.
mm, and six elements were arranged so that the electron emission portions 5 were linear so that the electron beams overlap, and forming was performed for each element.

上記のごとく配置、形成した6素子を、各々前述した
1素子の駆動と同じ駆動条件で駆動して電子放出させ、
蛍光体基板6を発光させたところ、第4図のごとく、発
光部7は、目視では各素子の発光領域の識別が不可能
な、Wが約0.5mmでLが約5.0mmのライン状の発光を得る
ことができた。
Each of the six elements arranged and formed as described above is driven under the same driving conditions as those for driving one element described above to emit electrons,
When the phosphor substrate 6 was caused to emit light, as shown in FIG. 4, the light-emitting portion 7 had a line-like shape of W of about 0.5 mm and L of about 5.0 mm, where the light-emitting area of each element could not be visually identified. Luminescence could be obtained.

さらに、上記電子放出装置による電子放出安定性は、
1素子で±16%のゆらぎがあるのに対して、6素子のラ
イン状電子源となることにより±12%と電子放出のゆら
ぎが改善された。
Further, the electron emission stability of the electron emission device is as follows:
While a single element has a fluctuation of ± 16%, a six-element linear electron source has improved the fluctuation of electron emission by ± 12%.

実施例2 第5図は、本実施例に係る電子放出素子と蛍光体基板
6の斜視図で、本実施例では、絶縁性の基板4に石英板
を用い、電極1,2を、膜厚1000ÅのNiをEB蒸着により成
膜することで形成した。電極1を先端のRが0.3mmの凸
形に、電極2を電極1との間隔2μmの凹形に、各々フ
ォトリソグラフィー技術により形成した。次いで、電極
1,2の間へ、電子放出材料となる微粒子8として1次粒
径80〜200ÅのSnO2を用いた分散液(SnO2:1g、溶剤:MEK
/シクロヘキサン=3/1のもの1000ccとブチラール=1g)
をスピンコート法により塗布し、250℃で加熱処理し、
電子放出部5を形成した。
Embodiment 2 FIG. 5 is a perspective view of an electron-emitting device and a phosphor substrate 6 according to the present embodiment. In this embodiment, a quartz plate is used for an insulating substrate 4 and electrodes 1 and 2 are formed with a film thickness. It was formed by depositing 1000Å of Ni by EB evaporation. The electrode 1 was formed by a photolithography technique into a convex shape having a tip R of 0.3 mm, and the electrode 2 was formed into a concave shape with a distance of 2 μm from the electrode 1. Then the electrodes
Between 1 and 2 , a dispersion liquid (SnO 2 : 1 g, solvent: MEK) using SnO 2 having a primary particle size of 80 to 200 ° as fine particles 8 serving as an electron emission material
/ Cyclohexane = 3/1 1000cc and butyral = 1g)
Is applied by a spin coat method, and heat-treated at 250 ° C.,
An electron emitting portion 5 was formed.

上記のごとく形成された電子放出素子の電極1,2の間
に、電極1が正電圧、電極2が負電圧となるよう、駆動
電圧13Vを印加し、実施例1で用いたのと同様の蛍光体
基板6を上記素子から約3mmの空間上に配置して、放出
された電子ビームの放射領域、即ち発光部7を測定した
ところ、第5図に示すように、幅W=約0.5mm、長さL
=約0.8mmの長円形の発光部7を得ることができた。
A driving voltage of 13 V is applied between the electrodes 1 and 2 of the electron-emitting device formed as described above so that the electrode 1 has a positive voltage and the electrode 2 has a negative voltage. The phosphor substrate 6 was placed in a space of about 3 mm from the above-mentioned element, and the emission area of the emitted electron beam, that is, the light emitting portion 7 was measured. As shown in FIG. 5, the width W was about 0.5 mm. , Length L
= The light emitting portion 7 having an oval shape of about 0.8 mm was obtained.

上記1素子の発光部7のLが約2mmであるため、素子
間隔を1.6mmとして電子ビームが重なり合うようにし、
凸形の電極1を個別電極とし、凹形の電極2を共通電極
として、6素子を、電子放出部5が直線的になるよう配
置した(第6図)。
Since the L of the light emitting portion 7 of the one element is about 2 mm, the electron beam is overlapped by setting the element interval to 1.6 mm,
Six elements were arranged such that the electron-emitting portion 5 was linear with the convex electrode 1 as an individual electrode and the concave electrode 2 as a common electrode (FIG. 6).

上記のごとく配置、形成した6素子を、1素子と同じ
駆動条件で電子放出させ、蛍光体基板6を発光させたと
ころ、第7図のごとく、発光部7は、目視では各素子の
発光領域の識別が不可能な、Wが約1mmでLが約10mmの
ライン状となった。
When the six elements arranged and formed as described above were subjected to electron emission under the same driving conditions as one element, and the phosphor substrate 6 was allowed to emit light. As shown in FIG. It was impossible to discriminate, and the line shape was about 1 mm for W and about 10 mm for L.

実施例3 第8図は、本実施例に係る電子放出素子の平面図、第
9図はその電子ビームの放射特性を示す説明図である。
Embodiment 3 FIG. 8 is a plan view of an electron-emitting device according to this embodiment, and FIG. 9 is an explanatory diagram showing the radiation characteristics of the electron beam.

本実施例に係る電子放出素子は、電極1を先端がφ0.
3mmの凸形に、電極2を電極1との間隔2μmの凹形に
形成し、電子放出部5を円状部分のみとした点以外は実
施例2と同様とした。
In the electron-emitting device according to the present embodiment, the tip of the electrode 1 is φ0.
Example 2 was the same as Example 2 except that the electrode 2 was formed in a 3 mm convex shape and the electrode 2 was formed in a concave shape with a spacing of 2 μm from the electrode 1, and the electron emitting portion 5 was formed only in a circular portion.

上記のごとく形成された、電子放出素子の電極1,2の
間に、電極1が正電圧、電極2が負電圧となるように駆
動電圧14Vを印加し、実施例1と同様の蛍光体基板6を
上記素子から約3mmの空間上に配置して、放出された電
子ビームの放射領域、即ち発光部7を測定したところ、
第9図に示すように、長径φ=約0.3mmの円形の発光部
7を得ることができ、電子ビームを収束する効果が得ら
れた。
A driving voltage of 14 V is applied between the electrodes 1 and 2 of the electron-emitting device formed as described above so that the electrode 1 has a positive voltage and the electrode 2 has a negative voltage. 6 was placed in a space of about 3 mm from the above-mentioned element, and the emission area of the emitted electron beam, that is, the light-emitting portion 7 was measured.
As shown in FIG. 9, a circular light emitting portion 7 having a major axis φ of about 0.3 mm was obtained, and the effect of converging the electron beam was obtained.

上記素子も、実施例1,2と同様に、ライン状の電子源
を構成することができ、ライン状の均一なマルチの電子
放出を得ることができる。
As in the first and second embodiments, the above-mentioned element can also constitute a linear electron source, and can obtain a linear uniform multi-electron emission.

実施例4 第10図は、本実施例に係る電子放出素子と蛍光体基板
6の斜視図で、同図に於いて、4は絶縁性を有する基
板、9は段差形成層、5は電子放出部、1および2は電
気的接続を得るための電極、8は電子放出材料となる微
粒子である。
Embodiment 4 FIG. 10 is a perspective view of an electron-emitting device and a phosphor substrate 6 according to the present embodiment. In FIG. 10, reference numeral 4 denotes an insulating substrate, 9 denotes a step forming layer, and 5 denotes electron emission. Parts 1, 1 and 2 are electrodes for obtaining electrical connection, and 8 is fine particles serving as an electron emitting material.

本実施例に係る電子放出素子は絶縁性の基板4として
石英板を用い、洗浄された基板4上に、段差形成層9と
して、SiO2の液体コーティング材(東京応化工業社製OC
D)を用いて膜厚3000ÅのSiO2層を塗布、乾燥プロセス
により形成し(他の段差形成層として、MgO,TiO2,Ta
2O5,Al2O3等の絶縁材料の積層物もしくはこれらの混合
物がある。)、次いで、フォトリソグラフィー技術によ
り、電子放出部5の段差部の先端のRが0.3mmの凹形に
なるよう形成した。
In the electron-emitting device according to this embodiment, a quartz plate is used as the insulating substrate 4, and a SiO 2 liquid coating material (OC manufactured by Tokyo Ohka Kogyo Co., Ltd.) is formed on the cleaned substrate 4 as the step forming layer 9.
D) to form a 3000 Å thick SiO 2 layer by coating and drying process (MgO, TiO 2 , Ta
There are laminates of insulating materials such as 2 O 5 and Al 2 O 3 or mixtures thereof. Next, the electron emission portion 5 was formed by photolithography so that the tip R of the stepped portion of the electron emission portion 5 had a concave shape of 0.3 mm.

次いで、前記電子放出部5と電気的接続を得る電極1,
2として、Niを用いて、マスク蒸着により膜厚500Åで幅
wが0.3mmになるよう形成した。この時、電子放出部5
には、成膜時のステップカバーレージを悪くすることに
より、Niが堆積しないようにした。電極1,2の間の電子
放出部5となる段差部側端面に、前述の実施例2と同様
にして、電子放出材料となる微粒子8を形成した。
Next, the electrodes 1 for obtaining an electrical connection with the electron-emitting portion 5 are provided.
As No. 2, Ni was formed by mask evaporation so as to have a thickness of 500 mm and a width w of 0.3 mm. At this time, the electron emission unit 5
In this case, Ni was prevented from being deposited by deteriorating the step coverage during film formation. Fine particles 8 serving as an electron-emitting material were formed on the end face of the stepped portion serving as the electron-emitting portion 5 between the electrodes 1 and 2 in the same manner as in Example 2 described above.

上記のごとく形成された、電子放出素子の電極1,2の
間に、電極2が負電圧、電極1が正電圧となるように駆
動電圧15Vを印加し、実施例1と同様の蛍光体基板6を
上記素子から約3mmの空間上に配置して、放出された電
子ビームの放射領域、即ち発光部7を測定したところ、
第10図に示すように、幅W=約1.1mm、長さL=約1.9mm
の長円形の発光部7を得ることができた。
A driving voltage of 15 V is applied between the electrodes 1 and 2 of the electron-emitting device formed as described above so that the electrode 2 has a negative voltage and the electrode 1 has a positive voltage. 6 was placed in a space of about 3 mm from the above-mentioned element, and the emission area of the emitted electron beam, that is, the light-emitting portion 7 was measured.
As shown in FIG. 10, width W = about 1.1 mm and length L = about 1.9 mm
Oval light-emitting portion 7 was obtained.

上記素子も、前述の実施例と同様に、ライン状の電子
源を構成することができ、ライン状に均一なマルチの電
子放出を得ることができる。
The above-mentioned element can also constitute a linear electron source similarly to the above-mentioned embodiment, and a uniform electron emission can be obtained linearly.

また、電子放出部5の形状に関しても、前述の実施例
が基板1上の電極間隔内であったものが、本実施例で
は、段差部上下端の電極間隔内に変っただけであり、本
実施例でも種々の電極1,2の形状を同様に得ることがで
きる。従って、本実施例においても、前述実施例と同様
に、電子ビームの形状を任意の形に制御することができ
る。
Also, as for the shape of the electron-emitting portion 5, the above-described embodiment is within the electrode interval on the substrate 1, but in the present embodiment, it is only changed to within the electrode interval at the upper and lower ends of the step portion. In the embodiment, various shapes of the electrodes 1 and 2 can be similarly obtained. Therefore, also in this embodiment, the shape of the electron beam can be controlled to an arbitrary shape as in the above-described embodiment.

[発明の効果] 本発明によれば、一対の凹・凸形状の電極をその凹・
凸部分において相対向させ、電極間の凹形状の領域に、
通電処理又は微粒子の分散付設によって凹形状の電子放
出部を形成したことにより、次の効果が得られる。
[Effects of the Invention] According to the present invention, a pair of concave / convex shaped electrodes is
In the convex portion, they are opposed to each other, and in the concave region between the electrodes,
The following effects can be obtained by forming the concave-shaped electron-emitting portion by conducting the current or by dispersing the fine particles.

(1)複雑な電子光学系を用いることなく、電子ビーム
の三日月状の広がりを楕円形あるいは長円形等の好まし
い形状に整形することができる。
(1) The crescent-shaped spread of the electron beam can be shaped into a preferred shape such as an ellipse or an oval without using a complicated electron optical system.

(2)上記素子の電子放出部を直線的に配置することに
より、ライン状に均一な電子放出を得ることができるマ
ルチ電子放出装置を得ることができる。
(2) By arranging the electron-emitting portions of the element linearly, it is possible to obtain a multi-electron-emitting device capable of obtaining uniform electron emission in a line.

(3)上記電子放出装置と、それから放出される電子ビ
ームの照射により発光する蛍光体基板とを組み合わせる
ことにより、任意の形状に制御された発光部を得ること
ができる発光装置を得ることができる。
(3) By combining the above-described electron-emitting device with a phosphor substrate that emits light by irradiation of an electron beam emitted from the electron-emitting device, a light-emitting device capable of obtaining a light-emitting portion controlled to an arbitrary shape can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1に係る表面伝導形放出素子の平面図、
第2図はその電子ビームの放射特性を示す説明図、第3
図は第1図の素子を用いた電子放出装置の部分平面図、
第4図はその電子ビームの放射特性を示す説明図、第5
図は実施例2に係る表面伝導形放出素子と蛍光体基板の
斜視図、第6図は第5図の素子を用いた電子放出装置の
部分平面図、第7図はその電子ビームの放射特性を示す
説明図、第8図は実施例3に係る表面伝導形放出素子の
平面図、第9図はその電子ビームの放射特性を示す説明
図、第10図は実施例4に係る表面伝導形放出素子と蛍光
体基板の斜視図、第11図及び第12図は従来技術の説明図
である。 1,2……電極、3……薄膜 4……基板、5……電子放出部 6……蛍光体基板、7……発光部 8……微粒子、9……段差形成層
FIG. 1 is a plan view of a surface conduction electron-emitting device according to Example 1,
FIG. 2 is an explanatory view showing the radiation characteristics of the electron beam, and FIG.
The figure is a partial plan view of an electron emission device using the element of FIG. 1,
FIG. 4 is an explanatory view showing the radiation characteristics of the electron beam, and FIG.
FIG. 6 is a perspective view of a surface conduction electron-emitting device and a phosphor substrate according to Example 2, FIG. 6 is a partial plan view of an electron-emitting device using the device of FIG. 5, and FIG. FIG. 8 is a plan view of a surface conduction electron-emitting device according to the third embodiment, FIG. 9 is an explanatory diagram showing the radiation characteristics of the electron beam, and FIG. FIG. 11 and FIG. 12 are perspective views of the emission element and the phosphor substrate, and are explanatory views of the prior art. 1,2 ... electrode, 3 ... thin film 4 ... substrate, 5 ... electron emitting portion 6 ... phosphor substrate, 7 ... light emitting portion 8 ... fine particles, 9 ... step forming layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 俊彦 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 金子 哲也 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 吉岡 征四郎 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 鱸 英俊 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭51−40860(JP,A) 特開 平1−311532(JP,A) 実開 昭56−167456(JP,U) 特公 昭46−20944(JP,B1) 特公 昭45−23846(JP,B1) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshihiko Takeda 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Tetsuya Kaneko 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inside (72) Inventor Seishiro Yoshioka 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Hidetoshi Suzuki 3-30-2, Shimomaruko 3-chome, Ota-ku, Tokyo Canon Inc. ( 56) References JP-A-51-40860 (JP, A) JP-A-1-31,532 (JP, A) JP-A-56-167456 (JP, U) JP-B-46-20944 (JP, B1) 1975-23846 (JP, B1)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一対の凹・凸形状の電極がその凹・凸部分
において相対向し、該電極間の凹形状の領域に、通電処
理又は微粒子の分散付設によって形成された凹形状の電
子放出部を有することを特徴とする電子放出素子。
A pair of concave / convex electrodes are opposed to each other at the concave / convex portions, and a concave electron emission formed in a concave region between the electrodes by an energization treatment or dispersion of fine particles. An electron-emitting device comprising a portion.
【請求項2】凸形の電極が正極、凹形の電極が負極であ
ることを特徴とする請求項1の電子放出素子。
2. The electron-emitting device according to claim 1, wherein the convex electrode is a positive electrode and the concave electrode is a negative electrode.
【請求項3】一対の電極が同一平面上で相対向している
ことを特徴とする請求項1又は2の電子放出素子。
3. The electron-emitting device according to claim 1, wherein the pair of electrodes face each other on the same plane.
【請求項4】一対の電極が段差部を挟んで相対向してい
ることを特徴とする請求項1又は2の電子放出素子。
4. The electron-emitting device according to claim 1, wherein the pair of electrodes face each other across the step.
【請求項5】請求項1〜4のいずれかの電子放出素子
が、少なくとも一列、直線的に配列されていることを特
徴とする電子放出装置。
5. An electron-emitting device, wherein the electron-emitting devices according to claim 1 are linearly arranged in at least one line.
【請求項6】請求項5の電子放出装置と、該電子放出装
置から放出された電子ビームの照射により発光する蛍光
体基板とを組み合わせたことを特徴とする発光装置。
6. A light emitting device, comprising: the electron emitting device according to claim 5; and a phosphor substrate which emits light when irradiated with an electron beam emitted from the electron emitting device.
JP14156588A 1988-06-10 1988-06-10 Electron-emitting device, electron-emitting device and light-emitting device using the same Expired - Fee Related JP2654571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14156588A JP2654571B2 (en) 1988-06-10 1988-06-10 Electron-emitting device, electron-emitting device and light-emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14156588A JP2654571B2 (en) 1988-06-10 1988-06-10 Electron-emitting device, electron-emitting device and light-emitting device using the same

Publications (2)

Publication Number Publication Date
JPH01311533A JPH01311533A (en) 1989-12-15
JP2654571B2 true JP2654571B2 (en) 1997-09-17

Family

ID=15294932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14156588A Expired - Fee Related JP2654571B2 (en) 1988-06-10 1988-06-10 Electron-emitting device, electron-emitting device and light-emitting device using the same

Country Status (1)

Country Link
JP (1) JP2654571B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276462B2 (en) 2004-08-25 2007-10-02 Ngk Insulators, Ltd. Dielectric composition and dielectric film element
US7511409B2 (en) 2004-08-25 2009-03-31 Ngk Insulators, Ltd. Dielectric film element and composition

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005334A (en) 1996-04-30 1999-12-21 Canon Kabushiki Kaisha Electron-emitting apparatus having a periodical electron-emitting region
JP2000311587A (en) 1999-02-26 2000-11-07 Canon Inc Electron emitting device and image forming device
US6936972B2 (en) 2000-12-22 2005-08-30 Ngk Insulators, Ltd. Electron-emitting element and field emission display using the same
JP3699451B2 (en) 2000-12-22 2005-09-28 日本碍子株式会社 Electron emitting device and field emission display using the same
JP3848237B2 (en) * 2001-12-20 2006-11-22 日本碍子株式会社 Electron emitting device and field emission display using the same
US6946800B2 (en) 2002-02-26 2005-09-20 Ngk Insulators, Ltd. Electron emitter, method of driving electron emitter, display and method of driving display
US6897620B1 (en) 2002-06-24 2005-05-24 Ngk Insulators, Ltd. Electron emitter, drive circuit of electron emitter and method of driving electron emitter
US7067970B2 (en) 2002-09-30 2006-06-27 Ngk Insulators, Ltd. Light emitting device
JP2004228065A (en) 2002-11-29 2004-08-12 Ngk Insulators Ltd Electronic pulse emission device
JP3867065B2 (en) 2002-11-29 2007-01-10 日本碍子株式会社 Electron emitting device and light emitting device
US7129642B2 (en) 2002-11-29 2006-10-31 Ngk Insulators, Ltd. Electron emitting method of electron emitter
US7187114B2 (en) 2002-11-29 2007-03-06 Ngk Insulators, Ltd. Electron emitter comprising emitter section made of dielectric material
US6975074B2 (en) 2002-11-29 2005-12-13 Ngk Insulators, Ltd. Electron emitter comprising emitter section made of dielectric material
US7176609B2 (en) 2003-10-03 2007-02-13 Ngk Insulators, Ltd. High emission low voltage electron emitter
US7379037B2 (en) 2003-03-26 2008-05-27 Ngk Insulators, Ltd. Display apparatus, method of driving display apparatus, electron emitter, method of driving electron emitter, apparatus for driving electron emitter, electron emission apparatus, and method of driving electron emission apparatus
US7474060B2 (en) 2003-08-22 2009-01-06 Ngk Insulators, Ltd. Light source
US7336026B2 (en) 2003-10-03 2008-02-26 Ngk Insulators, Ltd. High efficiency dielectric electron emitter
JP2005116232A (en) 2003-10-03 2005-04-28 Ngk Insulators Ltd Electron emitting element and its manufacturing method
US7719201B2 (en) 2003-10-03 2010-05-18 Ngk Insulators, Ltd. Microdevice, microdevice array, amplifying circuit, memory device, analog switch, and current control unit
JP2006054161A (en) 2004-07-15 2006-02-23 Ngk Insulators Ltd Dielectric device
US7816847B2 (en) 2004-07-15 2010-10-19 Ngk Insulators, Ltd. Dielectric electron emitter comprising a polycrystalline substance
JP4662140B2 (en) 2004-07-15 2011-03-30 日本碍子株式会社 Electron emitter
US7482739B2 (en) 2004-07-15 2009-01-27 Ngk Insulators, Ltd. Electron emitter comprised of dielectric material mixed with metal
US7495378B2 (en) 2004-07-15 2009-02-24 Ngk Insulators, Ltd. Dielectric device
JP4678832B2 (en) 2004-07-27 2011-04-27 日本碍子株式会社 light source

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140860A (en) * 1974-10-04 1976-04-06 Ise Electronics Corp REIINKYOKUKEIKOHYOJIKAN
JPS56167456U (en) * 1980-05-16 1981-12-11

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276462B2 (en) 2004-08-25 2007-10-02 Ngk Insulators, Ltd. Dielectric composition and dielectric film element
US7511409B2 (en) 2004-08-25 2009-03-31 Ngk Insulators, Ltd. Dielectric film element and composition

Also Published As

Publication number Publication date
JPH01311533A (en) 1989-12-15

Similar Documents

Publication Publication Date Title
JP2654571B2 (en) Electron-emitting device, electron-emitting device and light-emitting device using the same
JP2630988B2 (en) Electron beam generator
JPH0612997A (en) Electron emitting element and manufacture thereof and picture forming device using this electron emitting element
JPH02299136A (en) Image forming device
JP2630983B2 (en) Electron-emitting device
JP2630989B2 (en) Electron-emitting device, electron-emitting device and light-emitting device using the same
JP2631007B2 (en) Electron emitting element, method of manufacturing the same, and image forming apparatus using the element
JP2949639B2 (en) Electron emitting element, electron source, image forming apparatus, and method of manufacturing them
JP2678757B2 (en) Electron emitting device and method of manufacturing the same
JP2748143B2 (en) Electron beam light emitting device
JP2715314B2 (en) Image forming apparatus and driving method thereof
JP2630990B2 (en) Electron emitting device and light emitting device using the same
JP2916807B2 (en) Electron emitting element, electron source, image forming apparatus, and method of manufacturing them
JP2727193B2 (en) Method for manufacturing electron-emitting device
JP2614047B2 (en) Method for manufacturing electron-emitting device
JP2981503B2 (en) Electron emitting element, electron source and image display device
JP2992902B2 (en) Electron beam generator
JPH0765708A (en) Manufacture of electron emission element and image formng device
JP2916808B2 (en) Electron-emitting device, electron source, image forming apparatus, and manufacturing method thereof
JP2961523B2 (en) Electron emitting element, electron source and image forming apparatus
JP3332891B2 (en) Electron source and image forming apparatus using the same
JP3416345B2 (en) Electron source and image forming device
JP2632365B2 (en) Electron emitting device and method of manufacturing the same
JP2933855B2 (en) Electron emitting element, electron beam generator using the same, and method of manufacturing image forming apparatus
JP2835962B2 (en) Image forming device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees