JPH02299136A - Image forming device - Google Patents

Image forming device

Info

Publication number
JPH02299136A
JPH02299136A JP11860289A JP11860289A JPH02299136A JP H02299136 A JPH02299136 A JP H02299136A JP 11860289 A JP11860289 A JP 11860289A JP 11860289 A JP11860289 A JP 11860289A JP H02299136 A JPH02299136 A JP H02299136A
Authority
JP
Japan
Prior art keywords
electron
atmospheric pressure
electrode
pressure resistant
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11860289A
Other languages
Japanese (ja)
Other versions
JP2610188B2 (en
Inventor
Yoshikazu Sakano
坂野 嘉和
Ichiro Nomura
一郎 野村
Tetsuya Kaneko
哲也 金子
Toshihiko Takeda
俊彦 武田
Haruto Ono
治人 小野
Hidetoshi Suzuki
英俊 鱸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1118602A priority Critical patent/JP2610188B2/en
Publication of JPH02299136A publication Critical patent/JPH02299136A/en
Application granted granted Critical
Publication of JP2610188B2 publication Critical patent/JP2610188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/863Spacing members characterised by the form or structure

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

PURPOSE:To obtain stable luminescence with no deterioration of the luminescence effect by providing atmospheric pressure-resistant spacers along the orbit of electrons emitted from surface conductive type electron emitting elements. CONSTITUTION:A thin film 3 made of an electron emitting material having a neck section is formed on a quartz substrate 4. Electrodes 1 and 2 having electric connection to electron emission sections 5 to be provided on the film 3 are formed. The electron emission sections 5 are formed between the electrode 1 and the electrode 2. A phosphor target 7 is arranged on spacers 11. When such spacers 11 are provided, the surface breakdown voltage is increased, the arriving current quantity to the target 7 has no loss, and luminescence with high efficiency and high brightness is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、表面伝導形電子放出素子を用いた画像形成装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an image forming apparatus using surface conduction electron-emitting devices.

[従来の技術] 従来より、簡単な構造で電子の放出が得られる素子とし
ては、例えば「ラジオ・エンジニアリング・エレクトロ
ン・フィジイックス(Radio Eng、Elect
ron、Phys、)J 1965年刊、第10巻12
90−1296る冷陰極素子が知られている。
[Prior Art] Conventionally, as an element that can emit electrons with a simple structure, for example, "Radio Engineering Electron Physics"
ron, Phys, ) J 1965, Volume 10, 12
A cold cathode element named No. 90-1296 is known.

これは、基板上に形成された小面積の薄膜に、膜面に平
行に電流を流すことにより、電子放出が生ずる現象を利
用するもので、一般には表面伝導形放出素子を呼ばれて
いる。
This utilizes the phenomenon that electron emission occurs when a current is passed through a small-area thin film formed on a substrate parallel to the film surface, and is generally called a surface conduction type emission device.

この表面伝導形放出素子としては、前記エリンソン等に
より開発されたSnO□(sb)薄膜を用いたものや、
「スイン・ソリッド・フィルムス(ThinSolid
 Films)J 1972年刊第9巻317頁ディト
マー(G、 Dittmer)により発表されたAu薄
膜によるものや、「アイ・イー・イー・イー技報(IE
EE Trans。
Examples of this surface conduction type emission device include those using the SnO□(sb) thin film developed by Ellingson et al.
“ThinSolid Films”
Films) J, 1972, Vol. 9, p. 317, using Au thin films announced by G. Dittmer,
EE Trans.

ED Conf、N 1975年版519頁でハートウ
ェル(M、Hartwell)及びフォンスタッド(C
,G、 Fonstad)共著になるITO薄膜による
ものや、「真空J 1983年刊第26巻第1号22頁
に荒木久他で発表されたカーボン薄膜によるものなどが
報告されている。
ED Conf, N 1975 edition, p. 519, Hartwell (M) and Fonstad (C)
, G., Fonstad) and a carbon thin film published by Hisashi Araki et al. in ``Vacuum J, Volume 26, No. 1, Page 22, 1983.

これらの表面伝導形放出素子の典型的な素子構成を第1
図に示す。第1図において、1及び2は電気的接続を得
る為の電極、3は電子放出材料で形成される薄膜、は基
板、5は電子放出部を示す。
The typical device configuration of these surface conduction type emitters is shown in the first section.
As shown in the figure. In FIG. 1, 1 and 2 are electrodes for obtaining electrical connection, 3 is a thin film formed of an electron-emitting material, is a substrate, and 5 is an electron-emitting part.

従来、これらの表面伝導形放出素子に於ては、電子放出
を行なう前にあらかじめフォーミングと呼ばれる通電加
熱処理によって電子放出部を形成する。即ち、前記電極
1と電極2の間に電圧を印加する事により、薄膜3に通
電し、これにより発生するジュール熱で薄膜3を局所的
に破壊、変形もしくは変質せしめ、電気的に高抵抗な状
態にした電子放出部5を形成することにより電子放出機
能を得ている。
Conventionally, in these surface conduction type emitting devices, an electron emitting portion is formed in advance by an electrical heating process called forming before electron emission. That is, by applying a voltage between the electrodes 1 and 2, electricity is applied to the thin film 3, and the Joule heat generated thereby locally destroys, deforms, or alters the thin film 3, resulting in a high electrical resistance. The electron emitting function is obtained by forming the electron emitting portion 5 in the state.

さらに、上記素子の電子放出の放射特性、すなわち放出
された電子の広がる面積を目視で測定できる様に上記素
子上に、蛍光体の塗布された基板を用いており、図中6
は蛍光体基板、7は放出電子により発光した発光部であ
る。
Furthermore, a substrate coated with a phosphor is used on the element so that the radiation characteristics of the electron emission of the element, that is, the area in which the emitted electrons spread can be visually measured.
1 is a phosphor substrate, and 7 is a light emitting part that emits light by emitted electrons.

上記素子の電子放出の放射特性は、上記素子から数mm
程度離れた空間に、蛍光体基板6を配置し、数百Vから
数千Vの電圧を印加し、前記電極1と電極2の間に駆動
電圧を印加し、電子放出させると、発光部7は蛍光体基
板6上に第1図に示す如(、電子放出部5から放出され
た電子ビームは、電子放出部5の法線に対して、該素子
に印加した電位の正極側にずれて飛翔する。
The radiation characteristics of electron emission of the above element are several mm from the above element.
A phosphor substrate 6 is placed in a space separated by a certain distance, a voltage of several hundred volts to several thousand volts is applied, and a driving voltage is applied between the electrode 1 and the electrode 2 to cause electron emission. is placed on the phosphor substrate 6 as shown in FIG. Fly.

前記、放射特性は、上記素子を含む、同一平面内で電位
が対称でない、表面伝導形電子放出素子の固有の特性で
ある。
The above-mentioned radiation characteristic is an inherent characteristic of a surface conduction type electron-emitting device including the above-mentioned device, in which the potential is not symmetrical within the same plane.

[発明が解決しようとする課題] 上記のように、同一平面内で電位が対称でない、表面伝
導形電子放出素子は、電子放出部から放出された電子ビ
ームは、該素子に印加した電位の正極側にずれて飛翔す
る。また、該素子は、I X 10−’torr程度以
上の真空中で動作させることから、該素子を用いた画像
形成装置を形成する場合、耐大気圧スペーサを構成する
必要がある。従来、該大気圧スペーサを該素子に対して
垂直に形成していたために次のような欠点があった。
[Problems to be Solved by the Invention] As described above, in a surface conduction electron-emitting device in which the potentials are not symmetrical within the same plane, the electron beam emitted from the electron-emitting part is connected to the positive electrode of the potential applied to the device. Fly off to the side. Further, since the element is operated in a vacuum of about I x 10-'torr or higher, when forming an image forming apparatus using the element, it is necessary to construct an atmospheric pressure resistant spacer. Conventionally, the atmospheric pressure spacer was formed perpendicularly to the element, resulting in the following drawbacks.

(1)放出された電子ビームが正極側の耐大気圧スペー
サに衝突し、蛍光体ターゲット上へ到達する電流量が減
少し、発光効率が低下する。
(1) The emitted electron beam collides with the atmospheric pressure resistant spacer on the positive electrode side, reducing the amount of current reaching the phosphor target and reducing luminous efficiency.

(2)耐大気圧スペーサへのチャージアップにより沿面
耐圧の低下により、沿面放電が発生し、該素子の破壊等
が発生する。
(2) Creeping voltage is lowered due to charge-up on the atmospheric pressure resistant spacer, causing creeping discharge and destruction of the element.

(3)発光効率の低下、沿面放電を防止するような構成
に配置すると、高密度にマルチに該素子を配置した画像
形成装置を構成することが出来ない。
(3) If the elements are arranged in a configuration that prevents a decrease in luminous efficiency and creeping discharge, it is not possible to construct an image forming apparatus in which multiple elements are arranged at high density.

以上のような、問題点があるため、従来、表面伝導形電
子放出素子は、素子構造が簡単でかつ、2つ以上の複数
の素子をライン状に配置することが容易であるにもかか
わらず、産業上、積極的に応用されるには至っていない
Due to the above-mentioned problems, conventional surface conduction electron-emitting devices have a simple device structure and are easy to arrange two or more devices in a line. However, it has not yet been actively applied in industry.

[課題を解決するための手段及び作用]本発明は、上記
のような従来の欠点を解決した画像形成装置を目的とす
る。
[Means and Effects for Solving the Problems] The object of the present invention is to provide an image forming apparatus that solves the above-mentioned conventional drawbacks.

上記目的を達成するために本発明で講じられた手段は、
表面伝導形電子放出素子から放出された、電子ビームの
飛翔軌道に沿って、テーパー、わん曲もしくは、ひな般
式に積層された、耐大気圧スペーサを設けることである
。これにより電子ビームの軌道を確保し、また沿面距離
が長くなることによる沿面耐圧が増加し、電子ビームの
耐大気圧スペーサへの衝突による発光効率の低下、さら
に、耐大気圧スペーサのチャージアップによる沿面耐圧
低下による沿面放電がなくなる。さらに、沿面耐圧の増
加により、加速電圧を上げることができ、より高効率で
輝度の高い発光部が得られる。
The means taken in the present invention to achieve the above object are:
This is to provide an atmospheric pressure resistant spacer which is laminated in a tapered, curved or patterned manner along the trajectory of the electron beam emitted from the surface conduction type electron-emitting device. This secures the trajectory of the electron beam, increases the creepage pressure due to the longer creepage distance, reduces luminous efficiency due to collision of the electron beam with the atmospheric pressure resistant spacer, and also reduces charge-up of the atmospheric pressure resistant spacer. Creeping discharge due to a drop in creeping withstand voltage is eliminated. Furthermore, due to the increase in creepage breakdown voltage, the acceleration voltage can be increased, and a light emitting section with higher efficiency and brightness can be obtained.

[実施例] 実施例1 以下に、図面に示す実施例により、本発明の詳細な説明
する。
[Examples] Example 1 The present invention will be described in detail below using examples shown in the drawings.

第1図、第2図は、本発明の一実施例を示す説明図であ
る。同第1図において、4は、絶縁性を有する基板、3
は、電子放出材料で形成される薄膜、1及υ2は、電気
的接続を得るための電極、5は薄膜3に形成された電子
放出部、7は、電子放出素子の空間上に配置された蛍光
体ターゲット、8は、蛍光体ターゲット7上で発光した
発光部、9は素子を駆動するための駆動電源、10は、
電子放出部5から照射された電子ビームを、蛍光体ター
ゲット7に、到達させるための加速電源である。
FIG. 1 and FIG. 2 are explanatory diagrams showing one embodiment of the present invention. In FIG. 1, 4 is an insulating substrate;
is a thin film formed of an electron-emitting material, 1 and υ2 are electrodes for obtaining electrical connection, 5 is an electron-emitting part formed in the thin film 3, and 7 is arranged above the space of the electron-emitting element. A phosphor target, 8 is a light emitting part that emits light on the phosphor target 7, 9 is a drive power source for driving the element, 10 is a
This is an accelerating power source for causing the electron beam irradiated from the electron emitting section 5 to reach the phosphor target 7.

第1図において、絶縁性基板4に、石英基板を用い、洗
浄された石英基板4上に、電子放出材料にInzOsを
用い、膜厚1000人の薄膜3を成膜する。他の電子放
出材料としては、SnO□、 pbo等の金属酸化物、
Au、Ag等の金属、カーボン、その他の各種半導体な
どを用いることができる。次いで、フォトリソグラフィ
ー技術により、電子放出部5が形成されるL = 1.
0mm、 V/ = 0.3mmのネック部を有する電
子放出材料の薄膜3を形成する。
In FIG. 1, a quartz substrate is used as an insulating substrate 4, and a thin film 3 having a thickness of 1000 is formed on the cleaned quartz substrate 4 using InzOs as an electron emitting material. Other electron emitting materials include metal oxides such as SnO□ and pbo;
Metals such as Au and Ag, carbon, and various other semiconductors can be used. Next, by photolithography technology, the electron emission part 5 is formed L=1.
A thin film 3 of electron-emitting material is formed with a neck of 0 mm and V/ = 0.3 mm.

次いで、前記薄膜3に形成される電子放出部5と電気的
接続を得る電極1.2にNiを用いて、マスク蒸着によ
り膜厚1500人を形成する。電極1.2となる導電性
材料としては他にPu、 Au、 Cu、 A1などの
通常の金属材料を用いることができる。
Next, Ni is used for the electrode 1.2 for electrical connection with the electron emitting portion 5 formed in the thin film 3, and a film thickness of 1500 mm is formed by mask evaporation. As the conductive material for the electrode 1.2, other ordinary metal materials such as Pu, Au, Cu, and A1 can be used.

前記電極1と電極2の間に、30V程度の電圧を印加す
る事により、薄膜3に通電し、これにより発生するジュ
ール熱で薄膜3を局所的に破壊、変形もしくは変質せし
め、電気的に高抵抗な状態にした電子放出部5を形成す
る。
By applying a voltage of about 30V between the electrodes 1 and 2, the thin film 3 is energized, and the Joule heat generated thereby causes the thin film 3 to be locally destroyed, deformed, or altered, resulting in an electrically high An electron emitting section 5 in a resistive state is formed.

次いで、上記素子のH= 5 mmの空間上に、透明な
ガラス基板に青板ガラスを用い、透明電極ITO(In
sOx:5nOz=95:5)を蒸着により1000人
形成し、電子により発光する蛍光体を塗布して形成した
蛍光体ターゲット7を配置する。
Next, a transparent electrode ITO (In
sOx:5nOz=95:5) was formed by vapor deposition, and a phosphor target 7 formed by applying a phosphor that emits light by electrons was placed.

上記のごと(構成した前記素子から放出される電子ビー
ムの放射特性を蛍光体ターゲット7により測定する。ま
ず、蛍光体ターゲット7に加速電源10により、IKV
加速電圧を印加する。次に、前記素子の電極l、2に電
極2が正電位となるように駆動電源9により、18Vの
駆動電圧を印加する。
As described above (the radiation characteristics of the electron beam emitted from the configured element are measured using the phosphor target 7. First, the phosphor target 7 is connected to the IKV
Apply accelerating voltage. Next, a drive voltage of 18 V is applied to the electrodes 1 and 2 of the element by the drive power supply 9 so that the electrode 2 has a positive potential.

駆動電圧を印加された前記素子は、同第1図のごと(蛍
光体ターゲット7上に、電子ビームを照射し、発光部8
を得る。
As shown in FIG.
get.

上記素子により発光した発光部8は、電子放出部5に平
行な方向の長さXが約4.0non、垂直な方向の長さ
Yが約2.0mm、電子放出部5の法線に対し、電極2
側、すなわち、印加電圧に対し、正極側へのずれ量ΔY
は約2.0mmの特性を示した。
The light emitting part 8 emitted by the above element has a length X in the parallel direction to the electron emitting part 5 of about 4.0 mm, a length Y in the perpendicular direction of about 2.0 mm, and a normal line of the electron emitting part 5. , electrode 2
side, that is, the amount of deviation ΔY toward the positive electrode side with respect to the applied voltage
showed a characteristic of about 2.0 mm.

上記放射特性を有する素子と、耐大気圧スペーサとによ
り構成した画像形成装置の断面図を第2図に示す。
FIG. 2 shows a cross-sectional view of an image forming apparatus constructed by an element having the above radiation characteristics and an atmospheric pressure resistant spacer.

第2図に於いて、絶縁性基板4に石英基板を用い、基板
4上に前記素子を、電子放出部5の間隔を6.0mn+
とじ、マルチに形成し、配置し、電極1.2上に感光性
ガラスからなる耐大気圧スペーサ11を、4段からなる
ひな股上に構成した。本実施例では、1段目幅= 2.
0mm、高さ=0゜5mm、2段目幅=1.6mm高さ
=0.5mm、3段目幅=1.2mm、高さ=1.0+
nm、4段目幅=L、Omm、高さ=2.0mmとした
In FIG. 2, a quartz substrate is used as the insulating substrate 4, the above-mentioned element is placed on the substrate 4, and the distance between the electron emitting parts 5 is 6.0 m+.
The electrodes 1.2 were bound, formed into a multi-layered structure, and placed, and an atmospheric pressure resistant spacer 11 made of photosensitive glass was formed on the electrode 1.2 into a four-tiered structure. In this embodiment, the first stage width=2.
0mm, height = 0°5mm, 2nd step width = 1.6mm height = 0.5mm, 3rd step width = 1.2mm, height = 1.0+
nm, fourth stage width = L, Omm, and height = 2.0 mm.

又、耐大気圧スペーサ11は印刷法で形成されるガラス
等、絶縁性の材料であればかまわない。次いで蛍光体タ
ーゲット7を耐大気圧スペーサ11上に配置する。
Further, the atmospheric pressure resistant spacer 11 may be made of an insulating material such as glass formed by a printing method. Next, the phosphor target 7 is placed on the atmospheric pressure resistant spacer 11.

上記のごと(、構成した画像形成装置の蛍光体ターゲッ
ト7に加速電圧IKVを印加、電極1.2に駆動電圧1
8Vを印加したところ、蛍光体ターゲット7の発光状態
の変化するにとのない、すなわち、発光効率の低下のな
い発光部を得ることができた。
As described above (apply acceleration voltage IKV to the phosphor target 7 of the constructed image forming apparatus, drive voltage 1 to electrode 1.2).
When 8 V was applied, it was possible to obtain a light-emitting section in which the light-emitting state of the phosphor target 7 did not change, that is, the light-emitting efficiency did not decrease.

さらに、耐大気圧スペーサ11は、ひな段状に形成した
ことにより沿面距離すなわち沿面耐圧が高(なり、本実
施例では、加速電圧を10KVまで増加したが、沿面放
電による故障が何ら発生することな(、画像を形成する
ことが出来た。
Furthermore, since the atmospheric pressure resistant spacer 11 is formed in a stepped shape, the creepage distance, that is, the creepage withstand voltage is high. (I was able to form an image.

さらに、本実施例によれば、耐大気圧スペーサ11が左
右対称に形成されているため、電極1.2のどちら側が
正電位になろうとも、耐大気圧スペーサ11に何ら影響
を与えることのない、画像形成装置を構成した。
Furthermore, according to this embodiment, since the atmospheric pressure resistant spacer 11 is formed symmetrically, no matter which side of the electrode 1.2 has a positive potential, it will not affect the atmospheric pressure resistant spacer 11 in any way. The image forming apparatus is not configured.

実施例2 第3図、第4図に本発明の第2の実施例を示す。Example 2 A second embodiment of the present invention is shown in FIGS. 3 and 4.

第3図に於いて、絶縁性の基板4に、石英基板を用い、
洗浄された石英基板4上に、電極1.2にNiを用い、
EB蒸着により膜厚1000人を成膜し、フォトリソグ
ラフィー技術により電子放出部5となるW = 0.3
mm、 G ” 0.005mmの形状を有する電極部
を形成する。次いで電極1.2の間へ、電子放出材料と
なる微粒子8に1次粒径80〜200人のSnO□1分
散液(Snow : IL溶剤MEK/シクロヘキサン
=3八二1000cc、ブチラール:1g)を用い、ス
ピンコード法により、塗布し、250℃で加熱処理し、
形成する。
In FIG. 3, a quartz substrate is used as the insulating substrate 4,
On the cleaned quartz substrate 4, using Ni as the electrode 1.2,
A film with a thickness of 1000 mm was formed by EB evaporation, and the electron emission part 5 was formed by photolithography technology, W = 0.3.
An electrode portion having a shape of 0.005 mm is formed between the electrodes 1.2.Next, a SnO□1 dispersion (Snow : IL solvent MEK/cyclohexane = 382 1000 cc, butyral: 1 g) was applied by a spin code method, and heat treated at 250 ° C.
Form.

次いで、上記素子のH” 5 mmの空間上に、前記実
施例1と同様の蛍光体ターゲット7を配置、構成し、前
記素子から放出される電子ビームの放射特性を蛍光体タ
ーゲット7により測定する。先ず蛍光体ターゲット7に
加速電源10によりIKVの加速電圧を印加する。次に
前記素子の電極1.2に、電極2が正電位となるように
、駆動電源9により14Vの駆動電圧を印加する。駆動
電圧を印加された前記素子は、第3図のごとく蛍光体タ
ーゲット7上に電子ビームを照射し発光部8を得る。
Next, a phosphor target 7 similar to that in Example 1 is placed and configured in a space of H" 5 mm of the above element, and the radiation characteristics of the electron beam emitted from the element are measured using the phosphor target 7. First, an accelerating voltage of IKV is applied to the phosphor target 7 by the accelerating power source 10. Next, a driving voltage of 14 V is applied to the electrodes 1.2 of the element by the driving power source 9 so that the electrodes 2 are at a positive potential. The element to which a driving voltage is applied irradiates an electron beam onto the phosphor target 7 to obtain a light emitting section 8 as shown in FIG.

上記素子により発光した発光部8は、電子放出部5に平
行な方向の長さXが約2.0mm、直角な方向の長さY
が約1.5mm、電子放出部5の法線に対し電極2側す
なわち、印加電圧に対し、正極側へのずれ量△Yは約1
.0mmの特性を示した。
The light emitting part 8 emitted by the above element has a length X in a direction parallel to the electron emitting part 5 of approximately 2.0 mm, and a length Y in a perpendicular direction.
is approximately 1.5 mm, and the amount of deviation △Y toward the electrode 2 side with respect to the normal line of the electron emitting part 5, that is, toward the positive electrode side with respect to the applied voltage is approximately 1.
.. It showed the characteristics of 0 mm.

上記放射特性を有する素子と耐大気圧スペーサとにより
構成した画像形成装置の断面図を第4図に示す。
FIG. 4 shows a cross-sectional view of an image forming apparatus constructed of an element having the above radiation characteristics and an atmospheric pressure resistant spacer.

第4図において、絶縁性基板4に石英基板を用い、基板
4上に前記素子を電子放出部5の間隔を3.0mmとし
、マルチに形成、配置し、電極1.2上に感光性ガラス
からなる耐大気圧スペーサ11を幅=1.Omm、高さ
=5.0mm、角度θ=78°にフォトリソエツチング
法によりテーパー状に形成しく放出された電子ビームの
軌道に沿ったわん曲した形状でもよい。)蛍光体ターゲ
ット7を耐大気圧スペーサ11上に配置する。
In FIG. 4, a quartz substrate is used as the insulating substrate 4, the above-mentioned elements are formed and arranged in a multi-layered manner on the substrate 4 with an interval of 3.0 mm between the electron emitting parts 5, and a photosensitive glass is placed on the electrode 1.2. An atmospheric pressure resistant spacer 11 consisting of a width=1. 0 mm, height = 5.0 mm, angle θ = 78°, it may be formed into a tapered shape by photolithography and curved along the trajectory of the emitted electron beam. ) The phosphor target 7 is placed on the atmospheric pressure resistant spacer 11.

上記のごとく構成した画像形成装置の蛍光体ターゲット
7に加速電圧IKVを印加、電極1.2に駆動電圧14
Vを印加したところ、蛍光体ターゲット7の発光状態の
変化することのない、すなわち、発光効率の低下のない
発光部を得ることができた。さらに、耐大気圧スペーサ
11に電子ビームが照射されることがな(なったため、
耐大気圧スペーサ11にチャージアップがなく、沿面放
電の発生のない装置が得られた。
An accelerating voltage IKV is applied to the phosphor target 7 of the image forming apparatus configured as described above, and a driving voltage 14 is applied to the electrode 1.2.
When V was applied, it was possible to obtain a light emitting section in which the light emitting state of the phosphor target 7 did not change, that is, the light emitting efficiency did not decrease. Furthermore, the atmospheric pressure resistant spacer 11 is no longer irradiated with the electron beam.
A device was obtained in which there was no charge-up in the atmospheric pressure resistant spacer 11 and no creeping discharge occurred.

さらに、同様の構造を従来の長方形の耐大気圧スペーサ
で構成すると、電子放出部5の間隔が4mm以上必要で
あるのに対し、本実施例によれば、電子放出部5の間隔
が3mmで良く、従来に比べて電子放出素子を高密度に
マルチに配線することが出来る。
Furthermore, when a similar structure is constructed using a conventional rectangular atmospheric pressure resistant spacer, the distance between the electron emission parts 5 must be 4 mm or more, but according to this embodiment, the distance between the electron emission parts 5 is 3 mm or more. This makes it possible to wire multiple electron-emitting devices at a higher density than in the past.

[発明の効果] 以上説明したように、本発明によれば、表面伝導形電子
放出素子を用いた画像形成装置の耐大気圧スペーサを、
放出された電子ビームの飛翔軌道に沿ってテーパーもし
くは、わん曲もしくはひな般式に積層させ、電子ビーム
の軌道の確保、スペーサ沿岸面距離を増すすなわち、沿
面耐圧が増すことにより、耐大気圧スペーサへの電子ビ
ームの照射がな(なるため、次のような特有の効果があ
る。
[Effects of the Invention] As explained above, according to the present invention, an atmospheric pressure resistant spacer for an image forming apparatus using surface conduction electron-emitting devices can be
By stacking the layers in a tapered, curved or flat pattern along the flight trajectory of the emitted electron beam, the trajectory of the electron beam is secured, and the spacer coastline distance is increased.In other words, the creepage pressure resistance is increased, thereby making the spacer resistant to atmospheric pressure. Because the electron beam is irradiated with

(1)蛍光体ターゲットへの到達電流量のロスがなく、
発光効率の低下のない安定した発光が得られる。
(1) There is no loss in the amount of current reaching the phosphor target,
Stable light emission without deterioration of luminous efficiency can be obtained.

(2)耐大気圧スペーサのチャージアップによる沿面耐
圧低下により発生する沿面放電がなく、素子破壊のない
画像形成装置が得られる。
(2) There is no creeping discharge caused by a drop in creeping voltage due to charge-up of the atmospheric pressure resistant spacer, and an image forming apparatus without element destruction can be obtained.

(3)沿面耐圧の増加により、加速電圧を上げることが
できるため、より高効率で輝度の高い発光部が得られる
(3) Since the acceleration voltage can be increased by increasing the creepage breakdown voltage, a light emitting section with higher efficiency and brightness can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1の実施例を説明する斜視図、第
2図は本発明の第1の実施例の断面図、第3図は本発明
の第2の実施例を説明する斜視図、第4図は本発明の第
2の実施例の断面図、第5図は従来例の説明図である。 1.2:電極 3:薄膜 4:基板 5:電子放出部 6:微粒子 7:蛍光体ターゲット 8:発光部 9:駆動電源 lO:加速電源 11:耐大気圧スペーサ
FIG. 1 is a perspective view illustrating a first embodiment of the present invention, FIG. 2 is a sectional view of the first embodiment of the present invention, and FIG. 3 is a perspective view illustrating a second embodiment of the present invention. FIG. 4 is a sectional view of the second embodiment of the present invention, and FIG. 5 is an explanatory diagram of a conventional example. 1.2: Electrode 3: Thin film 4: Substrate 5: Electron emitting section 6: Fine particles 7: Phosphor target 8: Light emitting section 9: Drive power source 1O: Acceleration power source 11: Atmospheric pressure resistant spacer

Claims (1)

【特許請求の範囲】[Claims] (1)表面伝導形電子放出素子を用いた画像形成装置に
おいて、該素子から放出された電子の軌道に沿って、耐
大気圧スペーサを設けたことを特徴とする画像形成装置
(1) An image forming apparatus using a surface conduction electron-emitting device, characterized in that an atmospheric pressure resistant spacer is provided along the trajectory of electrons emitted from the device.
JP1118602A 1989-05-15 1989-05-15 Image forming device Expired - Fee Related JP2610188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1118602A JP2610188B2 (en) 1989-05-15 1989-05-15 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1118602A JP2610188B2 (en) 1989-05-15 1989-05-15 Image forming device

Publications (2)

Publication Number Publication Date
JPH02299136A true JPH02299136A (en) 1990-12-11
JP2610188B2 JP2610188B2 (en) 1997-05-14

Family

ID=14740634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118602A Expired - Fee Related JP2610188B2 (en) 1989-05-15 1989-05-15 Image forming device

Country Status (1)

Country Link
JP (1) JP2610188B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631295A2 (en) * 1993-05-20 1994-12-28 Canon Kabushiki Kaisha Image-forming apparatus
EP0686990A1 (en) 1994-06-09 1995-12-13 Canon Kabushiki Kaisha Image-forming apparatus and manufacture method of same
EP0725418A1 (en) * 1995-01-31 1996-08-07 AT&T Corp. Field emission devices having corrugated support pillars with discontinuous conductive coating
EP0725419A1 (en) * 1995-01-31 1996-08-07 AT&T Corp. Method for making field emission devices having corrugated support pillars for breakdown resistance
EP0834900A2 (en) * 1996-10-04 1998-04-08 International Business Machines Corporation Display device
US5770918A (en) * 1995-01-06 1998-06-23 Canon Kabushiki Kaisha Electroconductive frit and image-forming apparatus using the same
US6008573A (en) * 1996-10-04 1999-12-28 International Business Machines Corporation Display devices
WO2001071760A1 (en) * 2000-03-23 2001-09-27 Kabushiki Kaisha Toshiba Spacer assembly for plane surface display, method for manufacturing spacer assembly, method for manufacturing plane surface display, plane surface display and mold for use in manufacturing spacer assembly
EP2400521A1 (en) 2010-04-14 2011-12-28 Canon Kabushiki Kaisha Image display apparatus and rib formation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625545A (en) * 1985-06-28 1987-01-12 Matsushita Electric Ind Co Ltd Image display device
JPS6431335A (en) * 1987-07-28 1989-02-01 Canon Kk Electron beam generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625545A (en) * 1985-06-28 1987-01-12 Matsushita Electric Ind Co Ltd Image display device
JPS6431335A (en) * 1987-07-28 1989-02-01 Canon Kk Electron beam generator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631295A3 (en) * 1993-05-20 1995-02-15 Canon Kk Image-forming apparatus.
EP0631295A2 (en) * 1993-05-20 1994-12-28 Canon Kabushiki Kaisha Image-forming apparatus
US5821689A (en) * 1993-05-20 1998-10-13 Canon Kabushiki Kaisha Image-forming apparatus
EP0686990A1 (en) 1994-06-09 1995-12-13 Canon Kabushiki Kaisha Image-forming apparatus and manufacture method of same
US6867537B2 (en) 1994-06-09 2005-03-15 Canon Kabushiki Kaisha Image-forming apparatus having vent tube and getter
US5952775A (en) * 1994-06-09 1999-09-14 Canon Kabushiki Kaisha Image-forming apparatus having vent tubes
US5770918A (en) * 1995-01-06 1998-06-23 Canon Kabushiki Kaisha Electroconductive frit and image-forming apparatus using the same
EP0725419A1 (en) * 1995-01-31 1996-08-07 AT&T Corp. Method for making field emission devices having corrugated support pillars for breakdown resistance
EP0725418A1 (en) * 1995-01-31 1996-08-07 AT&T Corp. Field emission devices having corrugated support pillars with discontinuous conductive coating
EP0834900A3 (en) * 1996-10-04 1998-04-29 International Business Machines Corporation Display device
US5889363A (en) * 1996-10-04 1999-03-30 International Business Machines Corporation Display devices
EP0834900A2 (en) * 1996-10-04 1998-04-08 International Business Machines Corporation Display device
US6008573A (en) * 1996-10-04 1999-12-28 International Business Machines Corporation Display devices
WO2001071760A1 (en) * 2000-03-23 2001-09-27 Kabushiki Kaisha Toshiba Spacer assembly for plane surface display, method for manufacturing spacer assembly, method for manufacturing plane surface display, plane surface display and mold for use in manufacturing spacer assembly
US6583549B2 (en) 2000-03-23 2003-06-24 Kabushiki Kaisha Toshiba Spacer assembly for flat panel display apparatus, method of manufacturing spacer assembly, method of manufacturing flat panel display apparatus, flat panel display apparatus, and mold used in manufacture of spacer assembly
US6672927B2 (en) 2000-03-23 2004-01-06 Kabushiki Kaisha Toshiba Laminated mold for spacer assembly of a flat panel display
EP2400521A1 (en) 2010-04-14 2011-12-28 Canon Kabushiki Kaisha Image display apparatus and rib formation method
US8513869B2 (en) 2010-04-14 2013-08-20 Canon Kabushiki Kaisha Image display apparatus with rib pattern

Also Published As

Publication number Publication date
JP2610188B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JP2704731B2 (en) Electron emission device and driving method thereof
JP2654571B2 (en) Electron-emitting device, electron-emitting device and light-emitting device using the same
JP3999276B2 (en) Charge dissipation type field emission device
US6821175B1 (en) Method of manufacturing a field electron emission cathode having at least one cathode electrode
JPH02299136A (en) Image forming device
JP2946140B2 (en) Electron emitting element, electron source, and method of manufacturing image forming apparatus
JP6324057B2 (en) Electron emitting device and electron emitting device
JP2678757B2 (en) Electron emitting device and method of manufacturing the same
JP2748143B2 (en) Electron beam light emitting device
JP2961426B2 (en) Image forming device
JP2631007B2 (en) Electron emitting element, method of manufacturing the same, and image forming apparatus using the element
JP2715314B2 (en) Image forming apparatus and driving method thereof
JP2617317B2 (en) Electron beam generator
JP2992902B2 (en) Electron beam generator
JP2630989B2 (en) Electron-emitting device, electron-emitting device and light-emitting device using the same
JP2835962B2 (en) Image forming device
JP2981503B2 (en) Electron emitting element, electron source and image display device
JP3010296B2 (en) Image forming device
JPH02247936A (en) Image formation apparatus employing line and surface electron sources and electron source
JP2826549B2 (en) Electron emitting device and image forming apparatus
JP2961523B2 (en) Electron emitting element, electron source and image forming apparatus
JPH01292727A (en) Electron emitting device
JP2933855B2 (en) Electron emitting element, electron beam generator using the same, and method of manufacturing image forming apparatus
JP2961524B2 (en) Electron emitting element, electron source and image forming apparatus
JPH01311534A (en) Surface conductive emitting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees