JP2630984B2 - Method for manufacturing electron-emitting device - Google Patents
Method for manufacturing electron-emitting deviceInfo
- Publication number
- JP2630984B2 JP2630984B2 JP10756988A JP10756988A JP2630984B2 JP 2630984 B2 JP2630984 B2 JP 2630984B2 JP 10756988 A JP10756988 A JP 10756988A JP 10756988 A JP10756988 A JP 10756988A JP 2630984 B2 JP2630984 B2 JP 2630984B2
- Authority
- JP
- Japan
- Prior art keywords
- electron
- emitting device
- thin film
- manufacturing
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/027—Manufacture of electrodes or electrode systems of cold cathodes of thin film cathodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cold Cathode And The Manufacture (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は電子放出素子の製造方法、詳しくは表面伝導
形電子放出素子の製造方法に関するものである。Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an electron-emitting device, and more particularly to a method for manufacturing a surface-conduction electron-emitting device.
[従来の技術] 従来、簡単な構造で電子の放出が得られる素子とし
て、例えば、エム アイ エリンソン(M.I.Elinson)
等によって発表された冷陰極素子が知られている。[ラ
ジオ エンジニアリング エレクトロン フィジィッス
(Radio Eng.Electron.Phys.)第10巻,1290〜1296頁,19
65年] これは、基板上に形成された小面積の薄膜に、膜面に
平行に電流を流すことにより、電子放出が生ずる現象を
利用するもので、一般には表面伝導形放出素子と呼ばれ
ている。[Prior art] Conventionally, as an element which can obtain electron emission with a simple structure, for example, MIElinson
And the like are known. [Radio Engineering Electron Phys. Vol. 10, 1290-1296, 19
65 years] This utilizes the phenomenon that electron emission occurs when a current flows through a small-area thin film formed on a substrate in parallel with the film surface, and is generally called a surface conduction electron-emitting device. ing.
この表面伝導形放出素子としては、前記エリンソン等
により開発されたSnO2(Sb)薄膜を用いたもの、Au薄膜に
よるもの[ジー・ディトマー“スイン ソリド フィル
ムス”(G.Dittmer:“Thin Solid Films"),9巻,317
頁,(1972年)]、ITO薄膜によるもの[エム ハート
ウェル アンド シー ジー フォンスタッド“アイ
イー イー イー トランス”イー ディー コンフ
(M.Hartwell and C.G.Fonstad:“IEEE Trans.ED Con
f.")519頁,(1975年)]、カーボン薄膜によるもの
[荒木久他:“真空",第26巻,第1号,22頁,(1983
年)]などが報告されている。Examples of the surface conduction electron-emitting device include a device using a SnO 2 (Sb) thin film developed by Elinson et al. And a device using an Au thin film [G. Dittmer: “Thin Solid Films”. "), Volume 9, 317
Page, (1972)], by ITO thin film [M Hartwell and CJ Vonstad “I
M. Hartwell and CGFonstad: “IEEE Trans.ED Con
f. ") p. 519, (1975)], using a carbon thin film [Hisashi Araki et al .:" Vacuum ", Vol. 26, No. 1, p. 22, (1983)
Year)].
これらの表面伝導形放出素子の典型的な素子構成を第
4図に示す。同図において、1および2は電気的接続を
得る為の電極、3は電子放出材料で形成される薄膜、4
は基板、8は電子放出部を示す。FIG. 4 shows a typical device configuration of these surface conduction electron-emitting devices. In the figure, 1 and 2 are electrodes for obtaining electrical connection, 3 is a thin film formed of an electron-emitting material,
Denotes a substrate, and 8 denotes an electron emitting portion.
従来、これらの表面伝導形放出素子に於ては、電子放
出を行なう前にあらかじめフォーミングと呼ばれる通電
加熱処理によって電子放出部を形成する。即ち、前記電
極1と電極2の間に電圧を印加する事により、薄膜3に
通電し、これにより発生するジュール熱で薄膜3を局所
的に破壊,変形もしくは変質せしめ、電気的に高抵抗な
状態にした電子放出部8を形成することにより電子放出
機能を得ている。Conventionally, in these surface conduction electron-emitting devices, before emitting electrons, an electron-emitting portion is formed in advance by an electric heating process called forming. That is, by applying a voltage between the electrode 1 and the electrode 2, the thin film 3 is energized, and the thin film 3 is locally broken, deformed or deteriorated by the Joule heat generated by the application of the voltage, and has a high electrical resistance. The electron emission function is obtained by forming the electron emission portion 8 in the state.
[発明が解決しようとしている課題] しかしながら、上記の様な通電加熱処理による電子放
出素子には下記の様な問題があった。[Problems to be Solved by the Invention] However, the following problems have been encountered in the electron-emitting devices formed by the above-described energization heat treatment.
通電加熱の際、基板と薄膜の熱膨張係数の違いか
ら、薄膜が剥離する。また、基板も局所的に加熱される
ため、致命的な割れを生ずる場合がある。このため加熱
温度の上限や基板材料、薄膜材料の選択の組み合わせに
制限がある。特に薄膜が高融点材料や高抵抗薄膜では通
電加熱処理によるフォーミングは難しく、これらの材料
を電子放出材として使用することは非常に困難であっ
た。At the time of electric heating, the thin film peels off due to the difference in thermal expansion coefficient between the substrate and the thin film. In addition, since the substrate is locally heated, fatal cracking may occur. For this reason, there are restrictions on the upper limit of the heating temperature and the combination of the selection of the substrate material and the thin film material. In particular, when the thin film is made of a high melting point material or a high resistance thin film, it is difficult to form the film by conducting heat treatment, and it is very difficult to use these materials as an electron emitting material.
フォーミングが完了するまでには、比較的大電力を
必要とするが、薄膜材料が高融点材では特に大電力を必
要とする。例えば第4図でl=0.5mm,w=0.3mm,厚み約5
00ÅのSnO2(Pb)膜のフォーミングに要する電力量は約1.
5W程度であった。よって薄膜材料によっては、多数素子
のフォーミングのためには大容量の電源が必要であっ
た。Until the forming is completed, relatively high power is required, but particularly high power is required when the thin film material is a high melting point material. For example, in FIG. 4, l = 0.5 mm, w = 0.3 mm, thickness of about 5
The amount of power required for forming a 00Å SnO 2 (Pb) film is about 1.
It was about 5W. Therefore, depending on the thin film material, a large-capacity power source was required for forming a large number of elements.
以上のような問題点があるため表面伝導形電子放出素
子は、素子構造が簡単であるという利点があるにもかか
わらず、産業上積極的に応用されるには至っていなかっ
た。Due to the above-mentioned problems, the surface conduction electron-emitting device has not been actively applied in industry, despite the advantage that the device structure is simple.
[課題を解決するための手段] 本発明は、上記の様な従来例の欠点を解決するために
なされたものである。従来、通電加熱によってフォーミ
ングされた薄膜の高抵抗部では、薄膜に亀裂が生じ1μ
m以下の微小間隔部ができ、さらに微小間隔部内に微粒
子から成る島状構造を有している。この微小間隔部及び
島状構造は、薄膜に用いた材料で構成される。[Means for Solving the Problems] The present invention has been made to solve the above-described drawbacks of the conventional example. Conventionally, in a high-resistance portion of a thin film formed by electric heating, a crack is generated in the thin film and the thickness is 1 μm.
m or less, and has an island-like structure composed of fine particles in the minute space. The minute gaps and the island-like structure are made of the material used for the thin film.
本発明は、微小間隔を含む導電性膜を有する電子放出
素子の製造方法において、微小間隔が形成された導電性
膜の少なくとも該微小間隔部に、微粒子を配置する工程
を有することを特徴とする電子放出素子の製造方法であ
る。The present invention provides a method for manufacturing an electron-emitting device having a conductive film including minute spaces, wherein the method includes a step of disposing fine particles at least in the minute spaces of the conductive film in which minute spaces are formed. This is a method for manufacturing an electron emitting device.
即ち本発明は、電子放出にかかわる微粒子とそこへ高
電界を与える導電性膜の微小間隔部とを製法及び材料で
分離し、各々適した材料を選択、製造設計することがで
きる電子放出素子の製造方法である。That is, the present invention separates the fine particles involved in the electron emission and the minute gaps of the conductive film that gives a high electric field thereto by the manufacturing method and the material, and selects an appropriate material, and can design the manufacturing of the electron emitting element. It is a manufacturing method.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
第1図(a)〜(d)は本発明の電子放出素子の製造
工程を示す説明図であり、第2図は本発明の製造方法に
より作製される電子放出素子の一例を示す平面図であ
る。1 (a) to 1 (d) are explanatory views showing steps for manufacturing an electron-emitting device of the present invention, and FIG. 2 is a plan view showing an example of an electron-emitting device manufactured by the manufacturing method of the present invention. is there.
本発明の製造方法においては、まず基板4上に第2図
に示す形状の金属又は半導体からなる薄膜3を形成する
(第1図(a)参照)。In the manufacturing method of the present invention, first, a thin film 3 made of a metal or a semiconductor having a shape shown in FIG. 2 is formed on a substrate 4 (see FIG. 1A).
次いで、薄膜3の両端に第2図に示す形状の導電性金
属を堆積,形成することによって電極1,2を形成する
(第1図(b)参照)。Next, electrodes 1 and 2 are formed by depositing and forming a conductive metal having the shape shown in FIG. 2 on both ends of the thin film 3 (see FIG. 1 (b)).
さらに、電極1,2に通電処理を施すと薄膜3の中央部
に亀裂が生じ、薄膜の微小間隔部5が形成される。この
微小間隔部は薄膜3が局所的に不連続膜となった部分で
ある(第1図(c)参照)。なお、薄膜の材料によって
は、通電処理によって薄膜が電気的に断線する場合もあ
るが、本発明においては次以降の工程を行うことによっ
て、断線部は最終的に電気的高抵抗となり、電子放出素
子を作製することができる。Further, when the electrodes 1 and 2 are energized, a crack is generated at the center of the thin film 3, and a minute interval 5 of the thin film is formed. The minute interval is a portion where the thin film 3 is locally discontinuous (see FIG. 1 (c)). Depending on the material of the thin film, the thin film may be electrically disconnected by the energization treatment. However, in the present invention, by performing the following steps, the disconnected portion finally becomes an electrically high resistance, and the electron emission An element can be manufactured.
その後、該素子上に微粒子を分散塗布する。塗布方法
としては、微粒子を分散した有機溶媒又は有機金属等を
含む有機溶媒をスピンコートやディップコートし、乾燥
する方法等がある。この工程によって薄膜3の微小間隔
部5、すなわち不連続膜部分に微粒子6が配置された構
造となり、電子放出素子が得られる(第1図(d)参
照)。Thereafter, fine particles are dispersed and applied onto the element. As a coating method, there is a method of spin-coating or dip-coating an organic solvent containing fine particles or an organic solvent containing an organic metal or the like, followed by drying. By this step, a structure is obtained in which the fine particles 6 are arranged in the minute interval portions 5 of the thin film 3, that is, in the discontinuous film portion, and an electron-emitting device is obtained (see FIG. 1 (d)).
この様にして形成された素子を真空容器中で電極1,2
間に電圧を印加し、引き出し電極(図示せず)にて素子
上部へ高電圧を印加すると、微粒子6を含む薄膜3の微
小間隔部5より電子が放出される。The element thus formed is placed in a vacuum vessel with electrodes 1, 2
When a voltage is applied between the electrodes and a high voltage is applied to the upper part of the element by an extraction electrode (not shown), electrons are emitted from the minute interval portions 5 of the thin film 3 containing the fine particles 6.
一方、本発明により製造される電子放出素子の一例の
構造及びその製造方法において、段差形成材を設けて、
段差部を有する基板とし、この段差形成材の形状端とな
る段差部を電子放出部とすることもできる。第3図
(a)〜(d)にその構造及びその製造方法を示す。同
図において、基板4上に絶縁性材料から成る段差形成材
7を堆積形成する(第3図(a)参照)。On the other hand, in the structure of an example of the electron-emitting device manufactured according to the present invention and the manufacturing method thereof, a step forming material is provided,
A substrate having a step portion may be used, and the step portion which is the shape end of the step forming material may be an electron emitting portion. 3 (a) to 3 (d) show the structure and the manufacturing method. In the figure, a step forming material 7 made of an insulating material is deposited and formed on a substrate 4 (see FIG. 3A).
次いで段差形成材7及び基板4上に第2図に示す形状
の金属又は半導体等からなる薄膜3を段差部で電気的に
断線しないように堆積,形成する(第3図(b)参
照)。Next, a thin film 3 made of a metal, a semiconductor, or the like having the shape shown in FIG. 2 is deposited and formed on the step forming material 7 and the substrate 4 so as not to be electrically disconnected at the steps (see FIG. 3B).
さらに上述例と同様にして電極1,2を堆積形成する
(第3図(c)参照)。ここで、電極1,2は電子放出の
ため外部より印加する電圧の電気的接続を良好とするた
めのものであって、次の通電処理工程を大きく左右する
ものではない。これは後述するように本例によれば通電
処理に要する電力量を小さくすることができ、従来のよ
うに電極形状による通電処理時におけるジュール熱の発
生位置や材料の熱伝導,熱膨張等をあまり考慮しなくて
も良好な通電処理がされるためである。Further, electrodes 1 and 2 are deposited and formed in the same manner as in the above example (see FIG. 3 (c)). Here, the electrodes 1 and 2 are for improving the electrical connection of the voltage applied from the outside for emitting electrons, and do not largely influence the next energization process. As described later, according to this example, the amount of power required for the energization process can be reduced, and the generation position of the Joule heat, the heat conduction and the thermal expansion of the material during the energization process by the electrode shape can be reduced as described later. This is because good energization processing is performed without much consideration.
その後、電極1,2に通電処理を施すと薄膜3の段差部
が通電処理され、薄膜の微小間隔部5が形成される。こ
の微小間隔部は前述したように薄膜3が局所的に不連続
膜となった部分である(第3図(d)参照)。After that, when the electrodes 1 and 2 are subjected to an energizing process, the step portion of the thin film 3 is energized and a minute interval portion 5 of the thin film is formed. The minute interval portion is a portion where the thin film 3 is locally discontinuous as described above (see FIG. 3D).
なお、本例においても、通電処理によって薄膜が電気
的に断線する場合もあるが、前述したのと同様に、断線
部は最終的には電気的高抵抗となり電子放出素子とする
ことができる。Also in this example, the thin film may be electrically disconnected by the energization process. However, as described above, the disconnected portion eventually becomes an electrically high resistance, and can be used as an electron-emitting device.
その後、上述した例と同様に微粒子を分散し、薄膜3
の微小間隔部5、すなわち段差形成材7の段差部側壁に
位置する不連続膜部分に微粒子6が配置された構造とな
り、電子放出素子が得られる(第3図(e)参照)。Thereafter, fine particles are dispersed in the same manner as in the above-described example, and the thin film 3 is dispersed.
In this case, the fine particles 6 are arranged in the minute gap portions 5, that is, in the discontinuous film portion located on the side wall of the step portion of the step forming material 7, and an electron-emitting device is obtained (see FIG. 3E).
この様にして形成された素子は上述例と同様にして電
子放出を得ることができる。なお、本例においては、上
述例とは別に、微小間隔部の発生位置の特定、通電処理
電力量の軽減、微小間隔部領域の制御が可能であるとい
う特長を有している。The element formed in this manner can obtain electron emission in the same manner as in the above-described example. Note that, in this example, apart from the above-described example, it is possible to specify the generation position of the minute interval, reduce the amount of power to be processed, and control the minute interval region.
以上の例で示した本発明による電子放出素子におい
て、電子放出にかかわる微小間隔部すなわち不連続薄膜
部を形成する薄膜の材料としては、通常表面伝導形電子
放出素子として使用されている広範囲のもの、例えばSn
O2,In2O3,PbO等の金属酸化物、Au,Ag等の金属、カーボ
ン、その他各種の半導体など、自らが電子放出材料とし
て適当なものが使用できる。しかし、本発明では電子放
出にかかわる微粒子を別に配置させることができるた
め、薄膜材料としては薄膜電極の機能を有し、かつ通電
処理により微小間隔部を形成することができれば、どの
ような材料でも使用可能である。一般に高融点材料では
通電処理時に多大の電力量とジュール熱を必要とする。
しかし、第3図で示した例のように、段差部での薄膜を
通電処理する方法では、通電処理電力量が軽減できるた
め、高融点材料でも比較的容易に通電処理することがで
きる。従って薄膜の材料としては、前記例以外に一般電
極材料や導電性の高融点金属等も使用できる。例えば、
Cu,Al,Ni,Pd,Pt,W,Ta,Mo,Cr,Ti等であるが、この限りで
はない。In the electron-emitting device according to the present invention shown in the above example, the material of the thin film forming the minute gaps related to the electron emission, that is, the discontinuous thin film portion, is a wide range of materials commonly used as surface conduction electron-emitting devices. , For example Sn
Materials suitable as the electron-emitting material, such as metal oxides such as O 2 , In 2 O 3 and PbO, metals such as Au and Ag, carbon, and various other semiconductors, can be used. However, in the present invention, since fine particles relating to electron emission can be separately arranged, any material can be used as long as it has the function of a thin film electrode as a thin film material and can form a minute interval by an energization process. Can be used. Generally, a high melting point material requires a large amount of electric power and Joule heat at the time of energization processing.
However, in the method of energizing the thin film at the step as in the example shown in FIG. 3, the energizing power can be reduced, so that the energizing process can be performed relatively easily even with a high melting point material. Therefore, as a material of the thin film, a general electrode material, a conductive high melting point metal, or the like can be used in addition to the above examples. For example,
Examples include, but are not limited to, Cu, Al, Ni, Pd, Pt, W, Ta, Mo, Cr, Ti.
薄膜の膜厚は、通常の表面伝導形電子放出素子に用い
られる厚さであれば良く、その具体例を示すと、使用さ
れる材料の種類により異なるが通常0.01〜5μm、好ま
しくは0.01〜2μm程度である。The thickness of the thin film may be any thickness as long as it is used for an ordinary surface conduction electron-emitting device. Specific examples thereof vary depending on the type of material used, but are usually 0.01 to 5 μm, preferably 0.01 to 2 μm. It is about.
また電子放出にかかわる微粒子材料としては例えば電
子を電界放出し易い物質や、二次電子放出し易い物質、
或いは電子の衝撃によって電子を放出しやすく、且つ耐
熱性、耐腐蝕性に強い物質であれば良く、例えば、仕事
関数が低く、耐熱性の高いW,Ti,Au,Ag,Cu,Cr,Al,Pt,Pd
等の金属や、SnO2,In2O3,BaO,MgO等の酸化物、もしく
はカーボン或いは以上の混合物等であるが、この限りで
はない。また、本発明において微粒子の大きさは通常直
径が数十Åから数千Å程度が好ましい。Examples of the fine particle material related to electron emission include a substance that easily emits electrons in a field, a substance that easily emits secondary electrons,
Alternatively, any substance that easily emits electrons by the impact of electrons and has high heat resistance and corrosion resistance may be used. For example, W, Ti, Au, Ag, Cu, Cr, Al having a low work function and high heat resistance may be used. , Pt, Pd
Metal, oxides such as SnO 2 , In 2 O 3 , BaO, MgO, etc., or carbon or a mixture thereof, but is not limited thereto. In addition, in the present invention, the size of the fine particles is usually preferably several tens to several thousand of diameter.
電極部材としては、特に限定することなく通常使用さ
れる広範囲な電極材が使用できる。As the electrode member, a wide range of commonly used electrode materials can be used without any particular limitation.
また段差形成材の材料としては、絶縁性材料が用いら
れる。例えばSiO2,Si3N4,TiO2,Ta2O5,Al2O3等の
他、基板自体の表面を加工し基板材自体を段差形成材と
して使うこともできる。An insulating material is used as a material of the step forming material. For example, in addition to SiO 2 , Si 3 N 4 , TiO 2 , Ta 2 O 5 , and Al 2 O 3 , the surface of the substrate itself can be processed and the substrate material itself can be used as a step forming material.
段差形成材の厚みは段差上に堆積する薄膜の膜厚及び
成膜法によって調整する必要があり、通常、段差部上の
薄膜が電気的に断線せず、かつ段差部上の薄膜膜厚が他
部分の薄膜膜厚に比べ薄くなるかまたは、膜質が変化す
ることが必要である。一般的に、段差形成材の膜厚、す
なわち段差部高さは、堆積する薄膜の1/3から3倍程度
が好ましい。It is necessary to adjust the thickness of the step forming material by the thickness of the thin film deposited on the step and the film forming method. Usually, the thin film on the step is not electrically disconnected and the film thickness on the step is small. It is necessary that the thickness of the thin film be smaller than that of the other portions or that the film quality be changed. In general, the thickness of the step forming material, that is, the height of the step portion is preferably about 1/3 to 3 times the thickness of the deposited thin film.
また基板材料に関しては、従来表面伝導形電子放出素
子に用いられていた材料、例えば石英ガラス等の他に、
薄膜の材料を選択することによって通電処理における発
熱量を小さくすることができるため青板ガラス等、局所
加熱による応力発生が大きな材料でも基板割れ等が発生
せずに使用することができる。Regarding the substrate material, in addition to the materials conventionally used for surface conduction electron-emitting devices, such as quartz glass,
By selecting the material of the thin film, the amount of heat generated during the energization process can be reduced, so that even a material such as a soda lime glass which generates a large amount of stress due to local heating can be used without causing a substrate crack or the like.
以上説明した様に本発明によると特に電子放出にかか
わる微粒子とそこへ高電界を与える微小間隔部を有する
薄膜の選定材料が従来例に比べ格段に増大した。As described above, according to the present invention, particularly, the selection materials of the thin film having the fine particles related to the electron emission and the minute gap for applying a high electric field thereto are remarkably increased as compared with the conventional example.
よって、通電処理を行なう薄膜材料は、通電処理時の
電力量や局所的に発生する熱の量、基板材等に対する熱
膨張係数や、また電子放出時における電極の耐電圧や耐
熱、寿命等を考慮して多くの材料の中から選択すること
ができる。Therefore, the thin film material to be subjected to the energization process has the following characteristics: the amount of electric power during the energization process, the amount of locally generated heat, the coefficient of thermal expansion with respect to the substrate material, and the withstand voltage, heat resistance, and life of the electrode during electron emission. A number of materials can be selected for consideration.
また微粒子においても、耐熱性、耐腐蝕性や低仕事関
数材料等電子放出しやすい材料を多くの中から選択する
ことができる。As for the fine particles, a material which easily emits electrons, such as heat resistance, corrosion resistance and a low work function material, can be selected from many materials.
[実施例] 実施例1 前述の第1図に示す製造工程に基づいて第2図に示す
態様の電子放出素子を製造した。[Example] Example 1 An electron-emitting device having an embodiment shown in Fig. 2 was manufactured based on the manufacturing process shown in Fig. 1 described above.
製造方法としては、まず、厚み約1mmの清浄な石英ガ
ラス基板上に、マスクEB蒸着法によりNiを1000Åの厚み
で第2図に示す形で堆積し、薄膜3を形成した。この際
第2図の形状のうちl=0.5mm,w=0.3mmとした(第1図
(a)参照)。First, a thin film 3 was formed on a clean quartz glass substrate having a thickness of about 1 mm by depositing Ni in a thickness of 1000 mm in the form shown in FIG. At this time, 1 = 0.5 mm and w = 0.3 mm among the shapes shown in FIG. 2 (see FIG. 1A).
次に薄膜3の両端に厚み50ÅのCrを下敷き層とする50
0Å厚みのAu電極1,2をマスク蒸着法により形成した(第
1図(b)参照)。Next, 50 mm thick Cr is used as an underlayer on both ends of the thin film 3.
Au electrodes 1 and 2 having a thickness of 0 ° were formed by a mask vapor deposition method (see FIG. 1B).
さらに、電極1,2に通電処理を行ない、薄膜3の中央
部に微小間隔部5を形成した。通電処理の消費電力は、
約0.8W程度であった。(第1図(c)参照)。Further, the electrodes 1 and 2 were subjected to an energization treatment, and a minute interval 5 was formed in the center of the thin film 3. The power consumption of the energization process is
It was about 0.8W. (See FIG. 1 (c)).
その後、有機パラジウム化合物を含む有機溶媒(奥野
製薬工業製キャタペーストCCP)を本素子上にスピンナ
ーにより回転塗布し、約250℃で10分間焼成し分散塗布
されたPd微粒子を配置し、これを微粒子6とした(第1
図(d)参照)。Then, an organic solvent containing an organic palladium compound (Catapaste CCP manufactured by Okuno Pharmaceutical Co., Ltd.) is spin-coated on the device by a spinner, baked at about 250 ° C. for 10 minutes, and dispersed and coated Pd fine particles are arranged. 6 (first
FIG. (D)).
以上の工程で製造された電子放出素子の電子放出特性
を測定した結果、放出電流Ie=1μA、放出効率α(膜
内電流に対する放出電流の比)=1×10-4程度の電子放
出が得られた。As a result of measuring the electron emission characteristics of the electron-emitting device manufactured in the above steps, the electron emission having an emission current Ie = 1 μA and an emission efficiency α (ratio of the emission current to the in-film current) = 1 × 10 −4 was found. Obtained.
実施例2 第3図に示す様に基板4上に段差形成材7により段差
部を形成し、以下実施例1と同様な工程により電子放出
素子を作製した。Example 2 As shown in FIG. 3, a step portion was formed on a substrate 4 using a step forming material 7, and an electron-emitting device was manufactured by the same steps as in Example 1 below.
製造方法としては、まず、厚み約1mmの清浄な石英ガ
ラス基板上に、SiO2液体コーティング剤(東京応化工業
製OCD)をスピンナーにより回転塗布し、その後約400℃
で1時間焼成して膜厚約2000ÅのSiO2膜を得、フォトリ
ソエッチング法により段差部を有する段差形成材7を形
成した(第3図(a)参照)。As a manufacturing method, first, an SiO 2 liquid coating agent (OCD manufactured by Tokyo Ohka Kogyo Co., Ltd.) is spin-coated on a clean quartz glass substrate with a thickness of about 1 mm by a spinner, and then about 400 ° C.
For 1 hour to obtain a SiO 2 film having a thickness of about 2000 °, and a step forming material 7 having a step portion was formed by a photolithographic etching method (see FIG. 3A).
次に、段差形成材7の段差部を覆う様にし厚み1000Å
のNi薄膜3を堆積形成した(第3図(b)参照)。Next, a thickness of 1000 mm is applied so as to cover the step portion of the step forming material 7.
(See FIG. 3 (b)).
以下実施例1と同様に電極1,2を形成し、通電処理を
行ない、微小間隔部5を形成した。通電処理の消費電力
は約0.2W程度であった。さらに有機パラジウム化合物を
含む有機溶媒の塗布,焼成によりPd微粒子を微小間隔部
に配置し、これを微粒子6とした(第3図(c)(d)
(e)参照)。Thereafter, the electrodes 1 and 2 were formed in the same manner as in Example 1, and an energization process was performed to form the minute interval portions 5. The power consumption of the energization process was about 0.2 W. Further, Pd fine particles were arranged at minute intervals by applying and baking an organic solvent containing an organic palladium compound, and this was used as fine particles 6 (FIGS. 3 (c) and (d)).
(E)).
以上の工程で製造された電子放出素子の電子放出特性
を測定した結果、放出電流Ie=2μA,放出効率α=5×
10-4程度の電子放出が得られた。As a result of measuring the electron emission characteristics of the electron-emitting device manufactured by the above process, the emission current Ie = 2 μA and the emission efficiency α = 5 ×
About 10 -4 electron emission was obtained.
以上実施例1,2では微粒子としてPd材を用いた。しか
し、一次粒径が約100ÅのSnO2微粒子を、有機バインダ
ーと共に有機溶媒に分散,溶解したSnO2微粒子分散液
を、素子上に塗布,焼成してSnO2微粒子を配置した場合
でも同様な電子放出素子を得ることができた。In Examples 1 and 2, the Pd material was used as the fine particles. However, even when the SnO 2 fine particles having a primary particle size of about 100Å are dispersed and dissolved in an organic solvent together with an organic binder, the SnO 2 fine particles are applied to the device and fired to arrange the SnO 2 fine particles. An emission device was obtained.
[発明の効果] 以上説明したように、本発明では、通電処理により生
じた薄膜の微小間隔部に微粒子を配置することによっ
て、電子放出にかかわる微粒子とそこへ電界を与える薄
膜の微小間隔部を製法,材料で分離し、各々適した材料
を選択、製造、設計することができる。[Effects of the Invention] As described above, in the present invention, by arranging the fine particles in the minute gaps of the thin film generated by the energization process, the fine grains involved in electron emission and the minute gaps of the thin film for applying an electric field thereto are formed. It is possible to select, manufacture, and design a suitable material for each material, separated by manufacturing method and material.
従って従来法では難しいとされていた高融点材料等を
電子放出材としたり、また通電処理における消費電力の
小さい薄膜材料を用いることにより、大電力を必要とせ
ずに通電処理が行なえる等の効果を有している。Therefore, by using a high melting point material, etc., which was considered difficult in the conventional method, as an electron emitting material, and by using a thin film material with low power consumption in the energizing process, the energizing process can be performed without requiring large power. have.
第1図は本発明の電子放出素子の製造方法を示す説明
図、第2図は本発明により作製される電子放出素子を示
す平面図、第3図は本発明の別の電子放出素子の製造方
法を示す説明図、第4図は従来の電子放出素子を示す説
明図である。FIG. 1 is an explanatory view showing a method for manufacturing an electron-emitting device according to the present invention, FIG. 2 is a plan view showing an electron-emitting device manufactured according to the present invention, and FIG. FIG. 4 is an explanatory view showing a method, and FIG. 4 is an explanatory view showing a conventional electron-emitting device.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 俊彦 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平1−279540(JP,A) 特開 平2−192638(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Takeda 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-1-279540 (JP, A) JP-A-2 -192638 (JP, A)
Claims (8)
素子の製造方法において、微小間隔が形成された導電性
膜の少なくとも該微小間隔部に、微粒子を配置する工程
を有することを特徴とする電子放出素子の製造方法。1. A method for manufacturing an electron-emitting device having a conductive film including minute spaces, comprising a step of disposing fine particles at least in the minute spaces of the conductive film having minute spaces. Of manufacturing an electron-emitting device.
うに配設されており、前記微小間隔は、該段差部に配設
されている請求項1に記載の電子放出素子の製造方法。2. The electron-emitting device according to claim 1, wherein the conductive film is provided so as to straddle a step on the substrate, and the minute interval is provided at the step. Production method.
囲内にある請求項1又は2に記載の電子放出素子の製造
方法。3. The method for manufacturing an electron-emitting device according to claim 1, wherein the diameter of the fine particles is in the range of several tens to several thousand degrees.
1〜3のいずれかに記載の電子放出素子の製造方法。4. The method for manufacturing an electron-emitting device according to claim 1, wherein said minute interval is 1 μm or less.
れた亀裂である請求項1〜4のいずれかに記載の電子放
出素子の製造方法。5. The method for manufacturing an electron-emitting device according to claim 1, wherein the minute interval is a crack formed in a part of the conductive film.
印加する工程を有する請求項1〜5のいずれかに記載の
電子放出素子の製造方法。6. The method of manufacturing an electron-emitting device according to claim 1, wherein the step of forming the minute interval includes a step of applying a voltage to the conductive film.
ている請求項1〜6のいずれかに記載の電子放出素子の
製造方法。7. The method for manufacturing an electron-emitting device according to claim 1, wherein said conductive film is disposed between a pair of electrodes.
素子である請求項1〜7のいずれかに記載の電子放出素
子の製造方法。8. The method according to claim 1, wherein said electron-emitting device is a surface conduction electron-emitting device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10756988A JP2630984B2 (en) | 1988-05-02 | 1988-05-02 | Method for manufacturing electron-emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10756988A JP2630984B2 (en) | 1988-05-02 | 1988-05-02 | Method for manufacturing electron-emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01279541A JPH01279541A (en) | 1989-11-09 |
JP2630984B2 true JP2630984B2 (en) | 1997-07-16 |
Family
ID=14462496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10756988A Expired - Fee Related JP2630984B2 (en) | 1988-05-02 | 1988-05-02 | Method for manufacturing electron-emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2630984B2 (en) |
-
1988
- 1988-05-02 JP JP10756988A patent/JP2630984B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01279541A (en) | 1989-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4954744A (en) | Electron-emitting device and electron-beam generator making use | |
US5532544A (en) | Electron-emitting device with electron-emitting region insulated from electrodes | |
US5576051A (en) | Multiple electron emission device | |
US5661362A (en) | Flat panel display including electron emitting device | |
JPH0687392B2 (en) | Method for manufacturing electron-emitting device | |
JP2632359B2 (en) | Electron emitting device and method of manufacturing the same | |
JP2632883B2 (en) | Electron-emitting device | |
JP2630983B2 (en) | Electron-emitting device | |
JP2630984B2 (en) | Method for manufacturing electron-emitting device | |
JP2646236B2 (en) | Electron emitting device and method of manufacturing the same | |
JP2646235B2 (en) | Electron emitting device and method of manufacturing the same | |
JPH07114104B2 (en) | Electron-emitting device and manufacturing method thereof | |
JP2614048B2 (en) | Method and apparatus for manufacturing electron-emitting device | |
JP2631007B2 (en) | Electron emitting element, method of manufacturing the same, and image forming apparatus using the element | |
JP2678757B2 (en) | Electron emitting device and method of manufacturing the same | |
JP2727193B2 (en) | Method for manufacturing electron-emitting device | |
JPH06101297B2 (en) | Electron-emitting device | |
JPH07114106B2 (en) | Method for manufacturing electron-emitting device | |
JP2748133B2 (en) | Electron-emitting device | |
JPH0765708A (en) | Manufacture of electron emission element and image formng device | |
JP3023712B2 (en) | Method of manufacturing surface conduction electron-emitting device and method of manufacturing electron-emitting device | |
JPH01320725A (en) | Electron emission element | |
JPH07123023B2 (en) | Electron-emitting device and manufacturing method thereof | |
JP3332891B2 (en) | Electron source and image forming apparatus using the same | |
JPH05190077A (en) | Electron emitting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |