JP2646235B2 - Electron emitting device and method of manufacturing the same - Google Patents

Electron emitting device and method of manufacturing the same

Info

Publication number
JP2646235B2
JP2646235B2 JP10756788A JP10756788A JP2646235B2 JP 2646235 B2 JP2646235 B2 JP 2646235B2 JP 10756788 A JP10756788 A JP 10756788A JP 10756788 A JP10756788 A JP 10756788A JP 2646235 B2 JP2646235 B2 JP 2646235B2
Authority
JP
Japan
Prior art keywords
electron
emitting device
conductive film
fine particles
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10756788A
Other languages
Japanese (ja)
Other versions
JPH02192638A (en
Inventor
哲也 金子
嘉和 坂野
俊彦 武田
一郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10756788A priority Critical patent/JP2646235B2/en
Publication of JPH02192638A publication Critical patent/JPH02192638A/en
Application granted granted Critical
Publication of JP2646235B2 publication Critical patent/JP2646235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子放出素子及びその製造方法、詳しくは表
面伝導形電子放出素子に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting device and a method of manufacturing the same, and more particularly, to a surface conduction electron-emitting device.

[従来の技術] 従来、簡単な製造で電子の放出が得られる素子とし
て、例えば、エム アイ エリンソン(M.I.Elinson)
等によって発表された冷陰極素子が知られている。[ラ
ジオ エンジニアリング エレクトロン フィジィッス
(Radio Eng.Electron.Phys.)第10巻,1290〜1296頁,19
65年] これは、基板上に形成された小面積の薄膜に、薄面に
平行に前流を流すことにより、電子放出が生ずる現像を
利用するもので、一般には表面伝導形放出素子と呼ばれ
ている。
[Prior art] Conventionally, as an element which can obtain electron emission by a simple manufacturing, for example, MIElinson
And the like are known. [Radio Engineering Electron Phys. Vol. 10, 1290-1296, 19
65 years] This uses development in which electron emission is caused by flowing a pre-current parallel to the thin surface on a small-area thin film formed on a substrate, and is generally called a surface conduction electron-emitting device. ing.

この表面伝導形放出素子としては、前記エリンソン等
により開発されたSnO2(Sb)薄膜を用いたもの、Au薄膜
によるもの[ジー・ディトマー“スイン ソリド フィ
ルムス”(G.Dittmer:“Thin Solid Films"),9巻,317
頁,(1972年)]、ITO薄膜によるもの[エム ハート
ウェル アンド シー ジー フォンスタッド“アイイ
ー イー イー トランス”イー ディー コンフ(M.
Hartwell and C.G.Fonstad:“IEEE Trans.ED Conf.")5
19頁,(1975年)]、カーボン薄膜によるもの[荒木久
他:“真空",第26巻,第1号,22頁,(1983年)]など
が報告されている。
Examples of the surface conduction electron-emitting device include a device using a SnO 2 (Sb) thin film developed by Elinson et al. And a device using an Au thin film [G. Dittmer: “Thin Solid Films”. "), Volume 9, 317
Page, (1972)], using ITO thin film [M. Hartwell and C.G.Fonstad “IIE Transformer”
Hartwell and CGFonstad: “IEEE Trans.ED Conf.”) 5
19, (1975)], and those using a carbon thin film [Hisashi Araki et al .: "Vacuum", Vol. 26, No. 1, p. 22, (1983)].

これらの表面伝導形放出素子の典型的な素子構成を第
4図に示す。同図において、1および2は電気的接続を
得る為の電極、3は電子放出材料で形成される薄膜、4
は基板、10は電子放出部を示す。
FIG. 4 shows a typical device configuration of these surface conduction electron-emitting devices. In the figure, 1 and 2 are electrodes for obtaining electrical connection, 3 is a thin film formed of an electron-emitting material,
Denotes a substrate, and 10 denotes an electron emitting portion.

従来、これらの表面伝導形放出素子に於ては、電子放
出を行なう前にあらかじめフォーミングと呼ばれる通電
加熱処理によって電子放出部を形成する。即ち、前記電
極1と電極2の間に電圧を印加する事により、薄膜3に
通電し、これにより発生するジュール熱で薄膜3を局所
的に破壊,変形もしくは変質せしめ、前記的に高抵抗な
状態にした電子放出部10を形成することにより電子放出
機能を得ている。
Conventionally, in these surface conduction electron-emitting devices, before emitting electrons, an electron-emitting portion is formed in advance by an electric heating process called forming. That is, by applying a voltage between the electrode 1 and the electrode 2, the thin film 3 is energized, and the thin film 3 is locally broken, deformed or deteriorated by Joule heat generated by the application of the voltage. An electron emitting function is obtained by forming the electron emitting portion 10 in the state.

[発明が解決しようとしている課題] しかしながら、上記の様な通電加熱処理による電子放
出素子には下記の様な問題があった。
[Problems to be Solved by the Invention] However, the following problems have been encountered in the electron-emitting devices formed by the above-described energization heat treatment.

通電加熱の際、基板の薄膜の熱膨張系数の違いか
ら、薄膜が剥離する。また、基板も局所的に加熱される
ため、致命的な割れを生ずる場合がある。このため加熱
温度の上限や基板材料、薄膜材料の選択の組み合わせに
制限がある。特に薄膜が高融点材料や高抵抗薄膜では通
電加熱処理によるフォーミングは難しく、これらの材料
を電子放出材として使用することは非常に困難であっ
た。
During energization heating, the thin film peels off due to the difference in thermal expansion coefficient of the thin film on the substrate. In addition, since the substrate is locally heated, fatal cracking may occur. For this reason, there are restrictions on the upper limit of the heating temperature and the combination of the selection of the substrate material and the thin film material. In particular, when the thin film is made of a high melting point material or a high resistance thin film, it is difficult to form the film by conducting heat treatment, and it is very difficult to use these materials as an electron emitting material.

フォーミングが完了するまでには、比較的大電力を
必要とするが、薄膜材料が高融点材では特に大電力を必
要とする。例えば第4図でl=0.5mm,w=0.3mm,厚み約5
00ÅのSnO2(Pb)膜のフォーミングに要する電力量は約
1.5W程度であった。よって薄膜材料によっては、多数素
子のフォーミングのためには大容量の電源が必要であっ
た。
Until the forming is completed, relatively high power is required, but particularly high power is required when the thin film material is a high melting point material. For example, in FIG. 4, l = 0.5 mm, w = 0.3 mm, thickness of about 5
The amount of power required for forming a 00Å SnO 2 (Pb) film is approximately
It was about 1.5W. Therefore, depending on the thin film material, a large-capacity power source was required for forming a large number of elements.

以上のような問題点があるため表面伝導形電子放出素
子は、素子構造が簡単であるという利点があるにもかか
わらず、産業上積極的に応用されるには至っていなかっ
た。
Due to the above-mentioned problems, the surface conduction electron-emitting device has not been actively applied in industry, despite the advantage that the device structure is simple.

[課題を解決するための手段] 本発明は、上記の様な従来例の欠点を解決するために
なされたものである。従来、通電加熱によってフォーミ
ングされた薄膜の高抵抗部では、薄膜に亀裂が生じ1μ
m以下の微小間隔部ができ、さらに微小間隔部内に微粒
子から成る島状構造を有している。この微小間隔部及び
島状構造は、薄膜に用いた材料で構成される。
[Means for Solving the Problems] The present invention has been made to solve the above-described drawbacks of the conventional example. Conventionally, in a high-resistance portion of a thin film formed by electric heating, a crack is generated in the thin film and the thickness is 1 μm.
m or less, and has an island-like structure composed of fine particles in the minute space. The minute gaps and the island-like structure are made of the material used for the thin film.

本発明は、微小間隔を含む導電性膜を有する電子放出
素子において、前記微小間隔部及び導電性膜の表面に、
微粒子を有することを特徴とする電子放出素子、及び、
該電子放出素子の製造方法であって、その表面に微粒子
が配置された導電性膜に、微小間隔を形成する工程を有
することを特徴とする電子放出素子の製造方法を提供す
るものである。
The present invention provides an electron-emitting device having a conductive film including minute spaces, wherein the minute spaces and the surface of the conductive film are
An electron-emitting device having fine particles, and
An object of the present invention is to provide a method for manufacturing an electron-emitting device, comprising a step of forming minute intervals in a conductive film having fine particles disposed on its surface.

即ち本発明は、電子放出にかかわる微粒子とそこへ高
電界を与える導電性膜の微小間隔部とを材料分離し、各
々適した材料を選択、製造設計することができる。
That is, according to the present invention, the fine particles involved in electron emission and the minutely spaced portions of the conductive film for applying a high electric field thereto are separated from each other, and appropriate materials can be selected and manufactured.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

第1図(a)〜(d)は本発明の電子放出素子の製造
工程を示す説明図であり、第2図は本発明の電子放出素
子の一例を示す平面図である。
1 (a) to 1 (d) are explanatory views showing the steps of manufacturing the electron-emitting device of the present invention, and FIG. 2 is a plan view showing an example of the electron-emitting device of the present invention.

本発明の電子放出素子を製造するには、まず基板4上
に第2図に示す形状の金属又は半導体からなる薄膜3を
形成する(第1図(a)参照)。
In order to manufacture the electron-emitting device of the present invention, first, a thin film 3 made of a metal or a semiconductor having a shape shown in FIG. 2 is formed on a substrate 4 (see FIG. 1A).

次いで、薄膜3上に微粒子を分散塗布する。分散塗布
は、微粒子を分散した有機溶媒又は有機金属等を含む有
機溶媒をスピンコートがディッピングによる。その後焼
成を行って薄膜3上に微粒子5が配置される(第1図
(b)参照)。
Next, fine particles are dispersed and applied onto the thin film 3. In the dispersion coating, spin coating of an organic solvent in which fine particles are dispersed or an organic solvent containing an organic metal or the like is performed by dipping. Thereafter, baking is performed to dispose the fine particles 5 on the thin film 3 (see FIG. 1B).

さらに、薄膜3の両端に第2図に示す形状の導電性金
属を堆積、形成することによって電極1,2を形成する
(第1図(c)参照)。
Further, electrodes 1 and 2 are formed by depositing and forming a conductive metal having the shape shown in FIG. 2 on both ends of the thin film 3 (see FIG. 1 (c)).

その後電極1,2に通電処理を施すと、薄膜3の中央部
に亀裂が生じ薄膜の微小間隔部6が形成される。この微
小間隔部6には、微粒子5が配置された構造となり電子
放出素子が得られる(第1図(d)参照)。
Thereafter, when the electrodes 1 and 2 are subjected to an energizing treatment, a crack is generated in the center of the thin film 3 to form a minute gap 6 between the thin films. The minute gap 6 has a structure in which the fine particles 5 are arranged, and an electron-emitting device is obtained (see FIG. 1 (d)).

この様にして形成された素子を真空容器中で電極1,2
間に電圧を印加し、引き出し電極(図示せず)にて素子
上部へ高電圧を印加すると微粒子5を含む微小間隔部よ
り電子が放出される。
The element thus formed is placed in a vacuum vessel with electrodes 1, 2
When a voltage is applied between the electrodes and a high voltage is applied to the upper part of the element by an extraction electrode (not shown), electrons are emitted from the minute interval including the fine particles 5.

また本発明の上述の電子放出素子の構造及び、その製
造方法において、段差形成材7を形成し、該段差形成材
の形状端となる段差部を電子放出部とすることもでき
る。図(a)〜(d)にその構造及びその製造方法を示
す。同第3図において、基板4上に絶縁性材料から成る
段差形成材7を体積形成する(第3図(a)参照)。
In the above-described structure of the electron-emitting device and the method of manufacturing the same according to the present invention, the step-forming material 7 may be formed, and the step portion serving as the shape end of the step-forming material may be used as the electron-emitting portion. (A) to (d) show the structure and the manufacturing method thereof. 3, a step forming material 7 made of an insulating material is formed on the substrate 4 by volume (see FIG. 3 (a)).

次いで、段差形成材7及び基板4上に前述例の様に薄
膜3,微粒子5,電極1,2を形成する。この際、段差部で薄
膜3が断切れしないように堆積する(第3図(b),
(c)参照)。但し、電極1,2は電子放出のため外部よ
り印加する電圧の電気的接続を良好とするためのもので
あって、次の通電処理・工程を大きく左右するものでは
ない。これは、後述するように、本例によれば、通電処
理に要する電力量を小さくすることができ、従来のよう
に、電極形状による通電処理時における、ジュール熱の
発生位置や材料の熱伝導,熱膨張等をあまり考慮しなく
でも、良好な通電処理がされるためである。
Next, the thin film 3, the fine particles 5, and the electrodes 1 and 2 are formed on the step forming material 7 and the substrate 4 as described above. At this time, the thin film 3 is deposited so as not to be broken at the step (FIG. 3B,
(C)). However, the electrodes 1 and 2 are provided for improving the electrical connection of a voltage applied from the outside for emitting electrons, and do not significantly influence the next energization process / process. This is because, as will be described later, according to the present embodiment, the amount of power required for the energization process can be reduced. This is because good energization processing can be performed without much consideration of thermal expansion and the like.

さらに、電極1,2に通電処理を施すと薄膜3の段差部
が通電処理され、薄膜の微小間隔部6が形成される。こ
の工程によって薄膜の微小間隔部6には、微粒子5が配
置された構造となり電子放出素子が得られる(第3図
(d)参照)。
Further, when the electrodes 1 and 2 are energized, the steps of the thin film 3 are energized to form minute gaps 6 between the thin films. By this step, the structure in which the fine particles 5 are arranged in the minute interval portions 6 of the thin film is obtained, and the electron-emitting device is obtained (see FIG. 3D).

この様にして形成された素子は前述例と同様にして電
子放出を得ることができる。また、本例においては、前
述例とは別に次の特長を有している。即ち、微小間隔の
発生位置の特定、通電処理電力量の軽減、微小間隔部領
域の制御が可能である。
The device formed in this manner can obtain electron emission in the same manner as in the above-described example. This embodiment has the following features in addition to the above-described embodiment. That is, it is possible to specify the generation position of the minute interval, reduce the amount of power to be processed, and control the minute interval region.

以上の例で示した本発明において、電子放出にかかわ
る微小間隔部すなわち不連続薄膜部を形成する薄膜の材
料としては、通常表面伝導形電子放出素子として使用さ
れている広範囲のもの、例えばSnO2,In2O3,PbO等の金属
酸化物、Au,Ag等の金属、カーボン、その他各種の半導
体など、自らが電子放出材料として適当なものが使用で
きる。しかし、本発明では電子放出にかかわる微粒子を
別に配置させるこのができるため、薄膜材料としては薄
膜電極の機能を有し、かつ通電処理により微小間隔部を
形成することができれば、どのような材料でも使用可能
にある。一般に高融点材料では通電処理時に多大な電力
量とジュール熱を必要とする。しかし、第3図で示した
例のように、段差部での薄膜を通電処理する方法では、
通電処理電力量が軽減できるため、高融点材料でも比較
的容易に通電処理することができる。従って薄膜の材料
としては、前記例以外に一般電極材料や導電性の高融点
金属等も使用できる。例えば、Cu,Al,Ni,Pd,Pt,W,Ta,M
o,Cr,Ti等であるが、この限りではない。
In the present invention shown in the above examples, as the material of the thin film forming the minute gaps related to the electron emission, that is, the discontinuous thin film portion, a wide range of materials usually used as surface conduction electron-emitting devices, for example, SnO 2 , an in 2 O 3, metal oxides, such as PbO, Au, metal such as Ag, carbon and other various semiconductors, is itself suitable as an electron emitting material can be used. However, in the present invention, since it is possible to separately arrange fine particles involved in electron emission, any material can be used as long as it has the function of a thin-film electrode as a thin-film material and can form a minute gap by energization treatment. Available for use. In general, a high melting point material requires a large amount of electric power and Joule heat during energization processing. However, as in the example shown in FIG. 3, in the method of energizing the thin film at the step portion,
Since the amount of power for energization processing can be reduced, energization processing can be performed relatively easily even with a high melting point material. Therefore, as a material of the thin film, a general electrode material, a conductive high melting point metal, or the like can be used in addition to the above examples. For example, Cu, Al, Ni, Pd, Pt, W, Ta, M
o, Cr, Ti, etc., but not limited thereto.

薄膜の膜厚は、通常の表面伝導形電子放出素子に用い
られる厚さであれば良く、その具体例を示すと、使用さ
れる材料の種類により異なるが通常0.01〜5μm、好ま
しくは0.01〜2μm程度である。
The thickness of the thin film may be any thickness as long as it is used for an ordinary surface conduction electron-emitting device. Specific examples thereof vary depending on the type of material used, but are usually 0.01 to 5 μm, preferably 0.01 to 2 μm. It is about.

また電子放出にかかわる微粒子材料としては例えば電
子を電界放出し易い物質や、二次電子放出し易い物質、
或いは電子の衝撃によって電子を放出しやすく、且つ耐
熱性、耐腐蝕性に強い物質であれば良く、例えば、仕事
関数が低く、耐熱性の高いW,Ti,Au,Ag,Cu,Cr,Al,Pt,Pd
等の金属や、SnO2,In2O3,BaO,MgO等の酸化物、もしくは
カーボン或いは以上の混合物等であるが、この限りでは
ない。本発明において微粒子の大きさは通常直径が数十
Åから数千Å程度が好ましい。
Examples of the fine particle material related to electron emission include a substance that easily emits electrons in a field, a substance that easily emits secondary electrons,
Alternatively, any substance that easily emits electrons by the impact of electrons and has high heat resistance and corrosion resistance may be used. For example, W, Ti, Au, Ag, Cu, Cr, Al having a low work function and high heat resistance may be used. , Pt, Pd
Or oxides such as SnO 2 , In 2 O 3 , BaO, MgO, etc., or carbon or a mixture thereof, but is not limited thereto. In the present invention, the size of the fine particles is usually preferably about several tens to several thousand millimeters in diameter.

電極部材としては、特に限定することなく通常使用さ
れる広範囲な電極材が使用できる。
As the electrode member, a wide range of commonly used electrode materials can be used without any particular limitation.

また段差形成材の材料としては、絶縁性材料が用いら
れる。例えばSiO2,Si3N4,TiO2,Ta2O5,Al2O3等の他、基
板自体の表面を加工し基板材自体を段差形成材として使
うこともできる。
An insulating material is used as a material of the step forming material. For example, in addition to SiO 2 , Si 3 N 4 , TiO 2 , Ta 2 O 5 , Al 2 O 3, etc., the surface of the substrate itself can be processed and the substrate material itself can be used as a step forming material.

段差形成材の厚みは段差上に堆積する薄膜の膜厚及び
成膜法によって調製する必要があり、通常、段差部上の
薄膜が電気的に断線せず、かつ段差部上の薄膜膜厚が他
部分の薄膜膜厚に比べ薄くなるかまたは、膜質が変化す
ることが必要である。一般的に、段差形成材の膜厚、す
なわち段差部高さは、体積する薄膜の1/3から3倍程度
が好ましい。
The thickness of the step forming material needs to be adjusted by the film thickness of the thin film deposited on the step and the film forming method. Usually, the thin film on the step is not electrically disconnected, and the film thickness on the step is usually small. It is necessary that the thickness of the thin film be smaller than that of the other portions or that the film quality be changed. Generally, the thickness of the step forming material, that is, the height of the step portion is preferably about 1/3 to 3 times the volume of the thin film.

また基板材料に関しては、従来表面伝導形電子放出素
子に用いられていた材料、例えば石英ガラス等の他に、
薄膜の材料を選択することによって通電処理における発
熱量を小さくすることができるため青板にガラス等、局
所加熱による応力発生が大きな材料でも、基板割れ等が
発生せずに使用することができる。
Regarding the substrate material, in addition to the materials conventionally used for surface conduction electron-emitting devices, such as quartz glass,
By selecting a material for the thin film, the amount of heat generated in the energization treatment can be reduced, so that even a blue plate made of a material, such as glass, which generates a large amount of stress due to local heating can be used without causing a substrate crack or the like.

以上説明した様に本発明では、特に電子放出にかかわ
る微粒子とそこへ高電界を与える微小間隔部を有する薄
膜の選定材料が、従来例に比べ格段に増大した。
As described above, in the present invention, particularly, the selection material of the thin film having the fine particles involved in the electron emission and the minute gap for applying a high electric field thereto has been remarkably increased as compared with the conventional example.

よって、通電処理を行なう薄膜材料は、通電処理時の
電力量や局所的に発生する熱の量、基板材等に対する熱
膨張係数や、また電子放出時における電極の耐電圧や耐
熱、寿命等を考慮して多くの材料の中から選択すること
ができる。
Therefore, the thin film material to be subjected to the energization process has the following characteristics: the amount of electric power during the energization process, the amount of locally generated heat, the coefficient of thermal expansion with respect to the substrate material, and the withstand voltage, heat resistance, and life of the electrode during electron emission. A number of materials can be selected for consideration.

また微粒子においても、耐熱性、耐腐蝕性や低仕事関
数材料等、電子放出しやすい材料を多くの中から選択す
ることができる。
Also, for the fine particles, a material that easily emits electrons, such as heat resistance, corrosion resistance, and a low work function material, can be selected from many materials.

[実施例] 実施例1 前述の第1図に示す製造工程に基づいて第2図に示す
態様の電子放出素子を製造した。
[Example] Example 1 An electron-emitting device having an embodiment shown in Fig. 2 was manufactured based on the manufacturing process shown in Fig. 1 described above.

製造方法としては、まず、厚み約1mmの清浄な石英ガ
ラス基板上に、マスクEB蒸着法によりNiを1000Åの厚み
で第2図に示す形で体積し、薄膜3を形成した。この際
第2図の形状のうちl=0.5mm,w=0.3mmとした(第1図
(a)参照)。
First, as a manufacturing method, a thin film 3 was formed on a clean quartz glass substrate having a thickness of about 1 mm by mask EB vapor deposition with a thickness of 1000 mm in the form shown in FIG. At this time, 1 = 0.5 mm and w = 0.3 mm among the shapes shown in FIG. 2 (see FIG. 1A).

次に有機パラジウム化合物を含む有機溶媒(奥野製薬
工業製キャタペーストCCP)を薄膜3上にスピンナーに
より回転塗布し、約250℃で10分間焼成し、分散塗布さ
れたPd微粒子5を配置した(第1図(b)参照)。さら
に薄膜3の両端に厚み50ÅのCrを下敷き層とする500Å
厚みのAu電極1,2をマスク蒸着法により形成した(第1
図(c)参照)。
Next, an organic solvent containing an organic palladium compound (Catapaste CCP manufactured by Okuno Pharmaceutical Co., Ltd.) is spin-coated on the thin film 3 by a spinner, baked at about 250 ° C. for 10 minutes, and the dispersed and coated Pd fine particles 5 are arranged (No. (See FIG. 1 (b)). In addition, 500 mm thick Cr is used as an underlayer on both ends of the thin film 3.
Thick Au electrodes 1 and 2 were formed by a mask evaporation method (first
FIG. (C)).

その後電極1,2に通電処理を行ない、薄膜3の中央部
に微小間隔部6を形成した。通電処理の消費電力は約0.
8W程度であった(第1図(d)参照)。
Thereafter, the electrodes 1 and 2 were energized to form a minute gap 6 in the center of the thin film 3. The power consumption of the energization process is about 0.
It was about 8 W (see FIG. 1 (d)).

以上の工程で製造された電子放出素子の電子放出特性
を測定した結果、放出電流Ie=0.8μA、放出効率α
(膜内電流に対する放出電流の比)=0.8×19-4度の電
子放出が得られた。
As a result of measuring the electron emission characteristics of the electron-emitting device manufactured by the above steps, the emission current Ie = 0.8 μA and the emission efficiency α
(Ratio of emission current to in-film current) = 0.8 × 19 -4 degree electron emission was obtained.

実施例2 前述の第3図に示す工程によって得られる、段差部を
有する電子放出素子を製造した。
Example 2 An electron-emitting device having a step portion obtained by the process shown in FIG. 3 was manufactured.

製造方法としては、まず、厚み約1mmの清浄な石英ガ
ラス基板上に、SiO2液体コーティング剤(東京応化工業
製OCD)をスピンナーで回転塗布し、その後約400℃で1
時間焼成し、膜厚約2000ÅのSiO2膜を得、フォトリソエ
ッチング法により段差部を有する段差形成材7を形成し
た(第3図(a)参照)。
As a manufacturing method, first, a SiO 2 liquid coating agent (OCD manufactured by Tokyo Ohka Kogyo Co., Ltd.) is spin-coated on a clean quartz glass substrate having a thickness of about 1 mm with a spinner.
After baking for a time, an SiO 2 film having a thickness of about 2000 ° was obtained, and a step forming material 7 having a step was formed by a photolithographic etching method (see FIG. 3A).

さらに段差形成材7の段差部を覆う様にして厚み1000
ÅのNi薄膜3を体積形成し、次に実施例1と同様にして
Pd微粒子5を配置した(第3図(b)参照)。
Further, the thickness of the step forming material 7 is set to 1000 so as to cover the step.
Ni Ni thin film 3 is formed in volume, and then in the same manner as in Example 1.
Pd fine particles 5 were arranged (see FIG. 3B).

その後、実施例1と同様に電極1,2を形成し、通電処
理を行ない、微小間隔部6を形成した。通電処理の消費
電力は約0.2Wであった(第3図(c)参照)。
Thereafter, the electrodes 1 and 2 were formed in the same manner as in Example 1, and the energization process was performed to form the minute interval portions 6. The power consumption of the energization process was about 0.2 W (see FIG. 3 (c)).

以上の工程で製作された電子放出素子の電子放出特性
を測定した結果、放出電流Ie=1.6μA,放出効率α=1
×10-4程度の電子放出が得られた。
As a result of measuring the electron emission characteristics of the electron-emitting device manufactured by the above process, the emission current Ie = 1.6 μA and the emission efficiency α = 1
Electron emission of about × 10 -4 was obtained.

以上の実施例では微粒子としてPd材を用いた。しか
し、一次粒径が約100ÅのSnO2微粒子を、有機バインダ
ーと共に有機溶媒に分散,溶解したSnO2微粒子分散液
を、素子上に塗布,焼成してSnO2微粒子を配置した場合
も同様な電子放出素子を得ることができた。
In the above examples, a Pd material was used as the fine particles. However, when the SnO 2 fine particles having a primary particle diameter of about 100 mm are dispersed and dissolved in an organic solvent together with an organic binder, the SnO 2 fine particles dispersion liquid is applied to the element and baked to arrange the SnO 2 fine particles. An emission device was obtained.

[発明の効果] 以上説明したように、本発明では、微粒子を有する薄
膜を通電処理して薄膜の微小間隔部に微粒子を配置する
ことによって、電子放出にかかわる微粒子とそこへ電界
を与える薄膜の微小間隔部を材料で分離し、各々適した
材料を選択、設計することができる。
[Effects of the Invention] As described above, according to the present invention, by applying a current to a thin film having fine particles and arranging the fine particles at minute intervals of the thin film, the fine particles involved in electron emission and the thin film that gives an electric field thereto The minute intervals can be separated by a material, and a suitable material can be selected and designed.

従って従来法では難しいとされていた高融点材料等を
電力放出材としたり、また通電処理における消費電力の
小さい薄膜材料を用いることにより、大電力を必要とせ
ずに通電処理が行なえる等の効果を有している。
Therefore, by using a high melting point material, etc., which was considered difficult in the conventional method, as the power emitting material, and by using a thin film material with low power consumption in the energizing process, the energizing process can be performed without requiring large power. have.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の製造方法の一例を示す工程図、第2図
は本発明の電子放出素子の一例を示す平面図、第3図は
本発明の製造方法の別の例を示す工程図、第4図は従来
の電子放出素子を示す説明図である。
FIG. 1 is a process diagram showing an example of the manufacturing method of the present invention, FIG. 2 is a plan view showing an example of the electron-emitting device of the present invention, and FIG. 3 is a process diagram showing another example of the manufacturing method of the present invention. FIG. 4 is an explanatory view showing a conventional electron-emitting device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 一郎 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平1−186740(JP,A) 特開 平1−200532(JP,A) 特開 平1−279540(JP,A) 特開 平1−279541(JP,A) 特公 平7−123023(JP,B2) 特公 平7−97473(JP,B2) 特公 平6−87391(JP,B2) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Nomura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-1-186740 (JP, A) JP-A-1 -200532 (JP, A) JP-A-1-279540 (JP, A) JP-A-1-279541 (JP, A) JP-A-7-122323 (JP, B2) JP-A-7-97473 (JP, B2) ) Tokiko Hei 6-87391 (JP, B2)

Claims (16)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】微小間隔を含む導電性膜を有する電子放出
素子において、前記微小間隔部及び前記導電性膜の表面
に、微粒子を有することを特徴とする電子放出素子。
1. An electron-emitting device having a conductive film including a minute gap, wherein the fine-grain portion and the surface of the conductive film have fine particles.
【請求項2】前記導電性膜が、基板上に形成された段差
部を跨ぐように配設されており、前記微小間隔部が、該
段差部に形成されている請求項1に記載の電子放出素
子。
2. The electronic device according to claim 1, wherein the conductive film is disposed so as to straddle a step formed on the substrate, and the minute interval is formed in the step. Emission element.
【請求項3】前記微粒子の直径が、数十Å〜数千Åの範
囲にある請求項1又は2に記載の電子放出素子。
3. The electron-emitting device according to claim 1, wherein the diameter of the fine particles is in the range of several tens to several thousand degrees.
【請求項4】前記微小間隔が、1μm以下である請求項
1〜3のいずれかに記載の電子放出素子。
4. The electron-emitting device according to claim 1, wherein said minute interval is 1 μm or less.
【請求項5】前記微小間隔が、前記導電性膜の一部に形
成された亀裂である請求項1〜4のいずれかに記載の電
子放出素子。
5. The electron-emitting device according to claim 1, wherein the minute interval is a crack formed in a part of the conductive film.
【請求項6】前記導電性膜が、一対の電極間に配置され
ている請求項1〜5のいずれかに記載の電子放出素子。
6. The electron-emitting device according to claim 1, wherein said conductive film is disposed between a pair of electrodes.
【請求項7】前記電子放出素子が、表面伝導形電子放出
素子である請求項1〜6のいずれかに記載の電子放出素
子。
7. The electron-emitting device according to claim 1, wherein said electron-emitting device is a surface conduction electron-emitting device.
【請求項8】電子放出部を含む導電性膜を有する電子放
出素子の製造方法において、その表面に微粒子が配置さ
れた導電性膜に、微小間隔を形成する工程を有すること
を特徴とする電子放出素子の製造方法。
8. A method for manufacturing an electron-emitting device having a conductive film including an electron-emitting portion, comprising the step of forming minute intervals in a conductive film having fine particles disposed on its surface. A method for manufacturing an emission element.
【請求項9】前記微粒子が配置された導電性膜が、基板
上に形成された段差部を跨ぐように配設されている請求
項8に記載の電子放出素子の製造方法。
9. The method for manufacturing an electron-emitting device according to claim 8, wherein the conductive film on which the fine particles are arranged is arranged so as to straddle a step formed on the substrate.
【請求項10】前記微粒子が配置された導電性膜が、導
電性膜の形成後、該導電性膜表面に微粒子を分散配置す
ることにより形成される請求項8又は9に記載の電子放
出素子の製造方法。
10. The electron-emitting device according to claim 8, wherein the conductive film on which the fine particles are arranged is formed by dispersing fine particles on the surface of the conductive film after forming the conductive film. Manufacturing method.
【請求項11】前記微粒子の直径が、数十Å〜数千Åの
範囲にある請求項8〜10のいずれかに記載の電子放出素
子の製造方法。
11. The method for manufacturing an electron-emitting device according to claim 8, wherein the diameter of the fine particles is in the range of several tens to several thousand degrees.
【請求項12】前記微小間隔が、1μm以下である請求
項1〜3のいずれかに記載の電子放電素子の製造方法。
12. The method according to claim 1, wherein the minute interval is 1 μm or less.
【請求項13】前記微小間隔が、前記導電性膜の一部に
形成された亀裂である請求項8〜12のいずれかに記載の
電子放出素子の製造方法。
13. The method for manufacturing an electron-emitting device according to claim 8, wherein the minute interval is a crack formed in a part of the conductive film.
【請求項14】前記微粒子が配置された導電性膜に微小
間隔を形成する工程が、該導電性膜に電圧を印加する工
程を有する請求項8〜13のいずれかに記載の電子放出素
子の製造方法。
14. The electron-emitting device according to claim 8, wherein the step of forming minute intervals in the conductive film on which the fine particles are arranged includes a step of applying a voltage to the conductive film. Production method.
【請求項15】前記微粒子が配置された導電性膜が、一
対の電極間に配置されている請求項8〜14のいずれかに
記載の電子放出素子の製造方法。
15. The method according to claim 8, wherein the conductive film on which the fine particles are arranged is arranged between a pair of electrodes.
【請求項16】前記電子放出素子が、表面伝導形電子放
出素子である請求項8〜15のいずれかに記載の電子放出
素子の製造方法。
16. The method according to claim 8, wherein said electron-emitting device is a surface conduction electron-emitting device.
JP10756788A 1988-05-02 1988-05-02 Electron emitting device and method of manufacturing the same Expired - Lifetime JP2646235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10756788A JP2646235B2 (en) 1988-05-02 1988-05-02 Electron emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10756788A JP2646235B2 (en) 1988-05-02 1988-05-02 Electron emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02192638A JPH02192638A (en) 1990-07-30
JP2646235B2 true JP2646235B2 (en) 1997-08-27

Family

ID=14462443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10756788A Expired - Lifetime JP2646235B2 (en) 1988-05-02 1988-05-02 Electron emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2646235B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010006238A (en) 1997-04-09 2001-01-26 모리시타 요이찌 Electron emitting device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH02192638A (en) 1990-07-30

Similar Documents

Publication Publication Date Title
US4954744A (en) Electron-emitting device and electron-beam generator making use
US5532544A (en) Electron-emitting device with electron-emitting region insulated from electrodes
JPH0687392B2 (en) Method for manufacturing electron-emitting device
JP2632359B2 (en) Electron emitting device and method of manufacturing the same
JP2632883B2 (en) Electron-emitting device
JP2630983B2 (en) Electron-emitting device
JP2646235B2 (en) Electron emitting device and method of manufacturing the same
JP2646236B2 (en) Electron emitting device and method of manufacturing the same
JP2630984B2 (en) Method for manufacturing electron-emitting device
JPH01200532A (en) Electron emission element and manufacture thereof
JP2614048B2 (en) Method and apparatus for manufacturing electron-emitting device
JP2631007B2 (en) Electron emitting element, method of manufacturing the same, and image forming apparatus using the element
JP2727193B2 (en) Method for manufacturing electron-emitting device
JP2961477B2 (en) Electron emitting element, electron beam generator, and method of manufacturing image forming apparatus
JP2748128B2 (en) Electron beam generator
JPH0765708A (en) Manufacture of electron emission element and image formng device
JP3023712B2 (en) Method of manufacturing surface conduction electron-emitting device and method of manufacturing electron-emitting device
JP2981503B2 (en) Electron emitting element, electron source and image display device
JP2622838B2 (en) Method for manufacturing electron-emitting device
JP2748133B2 (en) Electron-emitting device
JPH07114106B2 (en) Method for manufacturing electron-emitting device
JPH06101297B2 (en) Electron-emitting device
JP2617739B2 (en) Method of manufacturing electron-emitting device and electron-emitting device
JP2632365B2 (en) Electron emitting device and method of manufacturing the same
JPH04363834A (en) Electron emission device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term