JP2646236B2 - Electron emitting device and method of manufacturing the same - Google Patents

Electron emitting device and method of manufacturing the same

Info

Publication number
JP2646236B2
JP2646236B2 JP10756888A JP10756888A JP2646236B2 JP 2646236 B2 JP2646236 B2 JP 2646236B2 JP 10756888 A JP10756888 A JP 10756888A JP 10756888 A JP10756888 A JP 10756888A JP 2646236 B2 JP2646236 B2 JP 2646236B2
Authority
JP
Japan
Prior art keywords
electron
emitting device
thin film
fine particles
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10756888A
Other languages
Japanese (ja)
Other versions
JPH01279540A (en
Inventor
哲也 金子
一郎 野村
嘉和 坂野
俊彦 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10756888A priority Critical patent/JP2646236B2/en
Publication of JPH01279540A publication Critical patent/JPH01279540A/en
Application granted granted Critical
Publication of JP2646236B2 publication Critical patent/JP2646236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子放出素子及びその製造方法、詳しくは表
面伝導電子放出素子に関するものである。
Description: TECHNICAL FIELD The present invention relates to an electron-emitting device and a method for manufacturing the same, and more particularly to a surface conduction electron-emitting device.

[従来の技術] 従来、簡単な構造で電子の放出が得られる素子とし
て、例えば、エム アイ エリンソン(M.I.Elinson)
等によって発表された冷陰極素子が知られている。[ラ
ジオ エンジニアリング エレクトロン フィジィッス
(Radio Eng. Electron. Phys.)第10巻,1290〜1296頁,
1965年] これは、基板上に形成された小面積の薄膜に、薄面に
平行に電流を流すことにより、電子放出が生ずる現象を
利用するもので、一般には表面伝導形放出素子と呼ばれ
ている。
[Prior art] Conventionally, as an element which can obtain electron emission with a simple structure, for example, MIElinson
And the like are known. [Radio Eng. Electron. Phys. Vol. 10, 1290-1296,
1965] This utilizes the phenomenon that electron emission occurs when a current flows through a thin film with a small area formed on a substrate in parallel with the thin surface, and is generally called a surface conduction electron-emitting device. I have.

この表面伝導形放出素子としては、前記エリンソン等
により開発されたSnO2(Sb)薄膜を用いたもの、Au薄膜
によるもの[ジー・ディトマー“スイン ソリド フィ
ルムス”(G.Dittmer:“Thin Solid Films"),9巻,317
頁,(1972年)]、ITO薄膜にもるもの[エム ハート
ウェル アンド シー ジー フォンスタッド“アイ
イー イー イー トランス”イー ディー コンフ
(M.Hartwell and C.G.Fonstad:“IEEETrans.ED Con
f.")519頁,(1975年)]、カーボン薄膜によるもの
[荒木久他:“真空",第26巻,第1号,22頁,(1983
年)]などが報告されている。
Examples of the surface conduction electron-emitting device include a device using a SnO 2 (Sb) thin film developed by Elinson et al. And a device using an Au thin film [G. Dittmer: “Thin Solid Films”. "), Volume 9, 317
Page, (1972)], ITO thin film [M Hartwell and CJ Fontstad “I
M. Hartwell and CGFonstad: “IEEE Trans.ED Con
f. ") p. 519, (1975)], using a carbon thin film [Hisashi Araki et al .:" Vacuum ", Vol. 26, No. 1, p. 22, (1983)
Year)].

これらの表面伝導形放出素子の典型的な素子構成を第
6図に示す。同図において、1および2は電気的接続を
得る為の電極、3は電子放出材料で形成される薄膜、4
は基板、11は電子放出部を示す。
FIG. 6 shows a typical device configuration of these surface conduction electron-emitting devices. In the figure, 1 and 2 are electrodes for obtaining electrical connection, 3 is a thin film formed of an electron-emitting material,
Denotes a substrate, and 11 denotes an electron emitting portion.

従来、これらの表面伝導形放出素子に於ては、電子放
出を行なう前にあらかめフォーミングと呼ばれる通電加
熱処理によって電子放出部を形成する。即ち、前記電極
1と電極2の間に電圧を印加する事により、薄膜3に通
電し、これにより発生するジュール熱で薄膜3を局所的
に破壊,変形もしくは変質せしめ、電気的に高抵抗な状
態にした電子放出部11を形成することにより電子放出機
能を得ている。
Conventionally, in these surface conduction electron-emitting devices, before emitting electrons, an electron-emitting portion is formed by an energizing heating process called forming. That is, by applying a voltage between the electrode 1 and the electrode 2, the thin film 3 is energized, and the thin film 3 is locally broken, deformed or deteriorated by the Joule heat generated by the application of the voltage, and has a high electrical resistance. An electron emitting function is obtained by forming the electron emitting portion 11 in the state.

[発明が解決しようとしている課題] しかしながら、上記の様な通電加熱処理による電子放
出素子には下記の様な問題があった。
[Problems to be Solved by the Invention] However, the following problems have been encountered in the electron-emitting devices formed by the above-described energization heat treatment.

通電加熱の際、基板と薄膜の熱膨張計数の違いか
ら、薄膜が剥離する。また、基板も局所的に加熱される
ため、致命的な割れを生ずる場合がある。このため加熱
温度の上限や基板材料、薄膜材料の選択の組み合わせに
制限がある。特に薄膜が高融点材料や高抵抗薄膜では通
電加熱処理によるフォーミングは難しく、これらの材料
を電子放出材として使用することは非常に困難であっ
た。
During energization heating, the thin film peels off due to the difference in thermal expansion coefficient between the substrate and the thin film. In addition, since the substrate is locally heated, fatal cracking may occur. For this reason, there are restrictions on the upper limit of the heating temperature and the combination of the selection of the substrate material and the thin film material. In particular, when the thin film is made of a high melting point material or a high resistance thin film, it is difficult to form the film by conducting heat treatment, and it is very difficult to use these materials as an electron emitting material.

フォーミングが完了するまでには、比較的大電力を
必要とするが、薄膜材料が高融点材では特に大電力を必
要とする。例えば第7図でl=0.5mm,w=0.3mm,厚み約5
00ÅのSnO2(Pb)膜のフォーミングに要する電力量は約
1.5W程度であった。よって薄膜材料によっては、多数素
子のフォーミングのためには大容量の電源が必要であっ
た。
Until the forming is completed, relatively high power is required, but particularly high power is required when the thin film material is a high melting point material. For example, in FIG. 7, l = 0.5 mm, w = 0.3 mm, and a thickness of about 5
The amount of power required for forming a 00Å SnO 2 (Pb) film is approximately
It was about 1.5W. Therefore, depending on the thin film material, a large-capacity power source was required for forming a large number of elements.

以上のような問題点があるため表面伝導形電子放出素
子は、素子構造が簡単であるという利点があるにもかか
わらず、産業上積極的に応用されるには至っていなかっ
た。
Due to the above-mentioned problems, the surface conduction electron-emitting device has not been actively applied in industry, despite the advantage that the device structure is simple.

[課題を解決するための手段] 本発明は、上記の様な従来例の欠点を解決するために
なされたものである。従来、通電加熱によってフォーミ
ングされた薄膜の高抵抗部では、薄膜に亀裂が生じ1μ
m以下の微小間隔部ができ、さらに微小間隔部内に微粒
子から成る島状構造を有している。この微小間隔部及び
島状構造は、薄膜に用いた材料で構成される。
[Means for Solving the Problems] The present invention has been made to solve the above-described drawbacks of the conventional example. Conventionally, in a high-resistance portion of a thin film formed by electric heating, a crack is generated in the thin film and the thickness is 1 μm.
m or less, and has an island-like structure composed of fine particles in the minute space. The minute gaps and the island-like structure are made of the material used for the thin film.

本発明は、微小間隔を含む導電性膜を有する電子放出
素子において、前記導電性膜が、微粒子を含む部材上に
配置されていることで特徴とする電子放出素子、及び、
該素子?の製造方法であって、微粒子を含む部材上に配
置された導電性膜に、微小間隔を形成する工程を有する
ことを特徴とする電子放出素子の製造方法を提供するも
のである。
The present invention provides an electron-emitting device having a conductive film including minute intervals, wherein the conductive film is disposed on a member including fine particles, and
The element? The method of manufacturing an electron-emitting device according to any one of claims 1 to 3, further comprising the step of forming minute gaps in the conductive film disposed on the member containing the fine particles.

即ち本発明は、電子放出にかかわる微粒子と、そこへ
高電界を与える導電性膜の微小間隔部とを製法及び材料
で分離し、各々に適した材料を選択、製造設計すること
ができる電子放出素子及びその製造方法である。
That is, the present invention separates the fine particles involved in electron emission from the minute gaps of the conductive film that applies a high electric field thereto by the manufacturing method and the material, and can select and manufacture the material suitable for each. An element and a method for manufacturing the same.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

第1図(a)〜(d)は本発明の電子放出素子の製造
方法の一例を示す工程図であり、第2図は本発明の電子
放出素子の平面図である。
1 (a) to 1 (d) are process diagrams showing an example of a method for manufacturing an electron-emitting device of the present invention, and FIG. 2 is a plan view of the electron-emitting device of the present invention.

電子放出素子を得るには、まず、金属又は半導体から
なる微粒子7を絶縁性の液体コーティング剤に分散さ
せ、これを基板4上に塗布、焼成し、微粒子7を含む支
持体6を形成する(第1図(a)参照)。この後、微粒
子7を支持体6の表面へより突出させた形状とするた
め、支持体6の表面の少々エッチングしてもよい。
In order to obtain an electron-emitting device, first, fine particles 7 made of a metal or a semiconductor are dispersed in an insulating liquid coating agent, and this is applied on the substrate 4 and fired to form a support 6 containing the fine particles 7 ( FIG. 1 (a)). After that, the surface of the support 6 may be slightly etched to make the fine particles 7 protrude more toward the surface of the support 6.

次に、第2図に示す形状の金属又は半導体等からなる
薄膜3を支持体6上に形成する(第1図(b)参照)。
Next, a thin film 3 made of a metal or a semiconductor having the shape shown in FIG. 2 is formed on the support 6 (see FIG. 1B).

さらに、第2図に示す形状の導電性金属を薄膜3の両
端に堆積、形成することによって電極1,2を形成する
(第1図(c)参照)。
Further, electrodes 1 and 2 are formed by depositing and forming a conductive metal having the shape shown in FIG. 2 on both ends of the thin film 3 (see FIG. 1 (c)).

その後、電極1,2に通電処理を施すと薄膜3の中央部
分に亀裂が生じ薄膜の微小間隔部5が形成される。この
微小間隔部は通電により発生したジュール熱で薄膜3が
局所的に破壊,変形した部分である。この薄膜の通電処
理による微小間隔部に関し、一般には、薄膜3が局所的
に不連続膜となり、また薄膜3が表面伝導形電子放出素
子として用いられる材料であれば不連続部には、薄膜3
の材質からなる微粒子が配置された形状となっていると
考えられており、これより電子放出が得られる。
Thereafter, when the electrodes 1 and 2 are energized, a crack is generated in the central portion of the thin film 3 to form a minute gap 5 between the thin films. The minute gap is a portion where the thin film 3 is locally broken and deformed by Joule heat generated by energization. With respect to the minute gaps caused by the current application of the thin film, generally, the thin film 3 locally becomes a discontinuous film, and if the thin film 3 is made of a material used as a surface conduction electron-emitting device, the discontinuous portion includes the thin film 3
It is considered that the particles have a shape in which fine particles made of the above materials are arranged, and thus, electron emission can be obtained.

しかし、もしも薄膜3が表面伝導形電子放出素子とし
て用いられない様な導電性材料で、かつ電子放出体を有
さない部材上の薄膜の通電処理だけであると、電子放出
を得るまでには至らない。
However, if the thin film 3 is made of a conductive material that is not used as a surface conduction electron-emitting device, and only the energization treatment of the thin film on a member having no electron-emitting body, the electron emission is not obtained. I can't.

ここまでの製造工程により、薄膜3の下地には支持体
6があり、部分的に微粒子7が微小間隔部5の不連続な
薄膜部に配置された構造の電子放出素子が得られる(第
1図(d)参照)。
By the above manufacturing steps, an electron-emitting device having a structure in which the support 6 is provided under the thin film 3 and the fine particles 7 are partially disposed in the discontinuous thin film portion of the minute interval portion 5 is obtained (first example). FIG. (D)).

このようにして形成された素子を真空容器中で電極1,
2間に電圧を印加し、素子上部へ引き出し電極(図示せ
ず)にて高電圧を印加すると、微粒子7を含む薄膜3の
微小間隔部5より電子が放出される。
The element thus formed is placed in a vacuum vessel with electrodes 1,
When a voltage is applied between the two and a high voltage is applied to the upper part of the element by an extraction electrode (not shown), electrons are emitted from the minute interval portions 5 of the thin film 3 containing the fine particles 7.

他方、基板上の支持体の形状端により段差部を形成
し、この段差部を電子放出部とすることができる。第3
図(a)〜(d)にかかる態様の電子放出素子の製造工
程を示す。
On the other hand, a step can be formed by the shape end of the support on the substrate, and this step can be used as an electron-emitting portion. Third
(A) to (d) show a manufacturing process of the electron-emitting device according to the embodiment.

まず、上述例と同様にして微粒子7を含む支持体を堆
積する。その後、この支持体をフォトリソエッチング法
等により基板4のほぼ中心部分より半分を取り除き、段
差部を有する支持体8を形成する(第3図(a)参
照)。
First, a support containing the fine particles 7 is deposited in the same manner as in the above-described example. Thereafter, half of the support is removed from the substantially central portion of the substrate 4 by photolithography or the like to form a support 8 having a step (see FIG. 3A).

次いで、支持体8及び基板4上に第2図に示す形状の
金属又は半導体等からなる薄膜3を段差部で電気的に断
線しないように堆積、形成する(第3図(b)参照)。
Next, a thin film 3 made of a metal, a semiconductor, or the like having the shape shown in FIG. 2 is deposited and formed on the support 8 and the substrate 4 so as not to be electrically disconnected at the steps (see FIG. 3B).

さらに上述例と同様にして電極1,2を堆積形成する。
但し、電極1,2は電子放出のため外部より印加する電圧
の電気的接続を良好とするためのものであって、次の通
電処理工程を大きく左右するものではない。これは、後
述するように本例によれば、通電処理に要する電力量を
小さくすることができ、従来のように電極形状によるフ
ォーミング時におけるジュール熱の発生位置や材料の熱
伝導,熱膨張等をあまり考慮しなくても、良好な通電処
理がされるためである(第3図(c)参照)。
Further, electrodes 1 and 2 are deposited and formed in the same manner as in the above example.
However, the electrodes 1 and 2 are provided for improving the electrical connection of a voltage applied from the outside for emitting electrons, and do not significantly influence the next energization process. This is because, according to the present embodiment, as described below, the amount of power required for the energization process can be reduced, and as in the conventional case, the position where Joule heat is generated at the time of forming by the electrode shape, the heat conduction and thermal expansion of the material, etc. This is because good energization processing can be performed without taking into account (see FIG. 3 (c)).

その後、電極1,2に通電処理を施すと薄膜3の段差部
に亀裂が生じ、薄膜の微小間隔部が形成される。この微
小間隔部は通電により発生したジュール熱で薄膜3が局
所的に破壊、変形した部分であり、特に段差部側壁の薄
膜3は膜厚や膜質が他部分の薄膜とは異なるために該段
差部において薄膜3は亀裂を生じやすい。
Thereafter, when the electrodes 1 and 2 are energized, cracks are formed in the steps of the thin film 3 and minute gaps between the thin films are formed. The minute gap is a portion where the thin film 3 is locally broken and deformed by Joule heat generated by energization. In particular, the thin film 3 on the side wall of the step portion is different from the thin film in other portions in thickness and film quality. In the portion, the thin film 3 is liable to crack.

すなわち本例においては、亀裂の生じる薄膜の位置
を、支持体8の段差位置と薄膜3の形状によって特定す
ることができる。また、段差部側壁の薄膜3は他部分の
薄膜に比べ薄膜を薄く、膜強度の弱い状態とすることが
容易であり、通電処理によるジュール熱で亀裂が生じや
すい薄膜と言える。従って、通電処理に要する電力量は
上述例に比べると少量でよいことになる。さらには、該
支持体段差部側壁の薄膜3の高さ領域は、支持体8の層
厚高さと薄膜3の堆積厚みにより制御することが出来
る。よって薄膜3の亀裂の生じやすい領域を制御するこ
とが可能であり、さらには、電子放出部となる微小間隔
部5の不連続薄膜の領域も制御することが可能となる。
That is, in this example, the position of the thin film where a crack occurs can be specified by the step position of the support 8 and the shape of the thin film 3. Further, the thin film 3 on the side wall of the step portion is thinner than the thin film of the other portion, and it is easy to make the film strength weak, and it can be said that the thin film 3 is liable to be cracked by Joule heat due to the energization treatment. Therefore, the amount of power required for the energization process is smaller than that in the above-described example. Further, the height region of the thin film 3 on the side wall of the step portion of the support can be controlled by the layer thickness of the support 8 and the deposition thickness of the thin film 3. Therefore, it is possible to control the region of the thin film 3 where cracks are likely to occur, and it is also possible to control the region of the discontinuous thin film in the minute interval portion 5 that becomes the electron emitting portion.

ここまでの製造工程により、微小間隔部5の不連続な
薄膜部に支持体8の段差部側壁に位置し、突出した微粒
子7が配置された構造となり電子放出素子が得られる
(第3図(d)参照)。
By the manufacturing steps up to this point, a structure is obtained in which the projecting fine particles 7 are arranged on the side wall of the stepped portion of the support 8 on the discontinuous thin film portion of the minute interval portion 5, and the electron-emitting device is obtained (FIG. d)).

なお、上述の例では、支持体8を完全に下地基板4の
表面が露出するまでエッチングしたが、下地基板4の表
面までエッチングせず、支持体8の段差面のみで段差部
を形成してもよい。
In the above-described example, the support 8 is etched until the surface of the base substrate 4 is completely exposed. However, the step is formed only on the step surface of the support 8 without etching the surface of the base substrate 4. Is also good.

以上第1図〜第3図によって、微粒子が支持体に分散
含有されいる電子放出素子の例を示したが、別途実施例
で述べるように、微粒子を部材表面上や部材上の段差形
成部表面上に配置した場合も、同様な電子放出素子を得
ることができる。
1 to 3 show examples of the electron-emitting device in which the fine particles are dispersedly contained in the support. However, as will be described in another embodiment, the fine particles are dispersed on the surface of the member or the surface of the step forming portion on the member. A similar electron-emitting device can be obtained also when it is arranged above.

以上の例で示した本発明において、電子放出にかかわ
る微小間隔部を形成する薄膜の材料しては、通常、表面
伝導電子放出素子として使用されている広範囲のもの、
例えばSnO2,In2O3,PbO等の金属酸化物、Au,Ag等の金
属、カーボン、その他各種の半導体など、自らが電子放
出材料として適当なものが使用できる。しかし本発明で
は電子放出にかかわる微粒子を別に配置させることがで
きるため、薄膜材料としては薄膜電極の機能を有し、か
つ通電処理により微小間隔部を形成することができれ
ば、どのような材料でも使用可能である。一般に高融点
材料では通電処理時に多大の電力量とジュール熱を必要
とする。しかし、第3図で示した例のように、段差部で
の薄膜を通電処理する方法では通電処理電力量が軽減で
きるため、高融点材料でも比較的容易に通電処理するこ
とができる。従って薄膜の材料としては、前記例以外に
一般電極材料や導電性の高融点金属等も使用できる。例
えば、Cu,Al,Ni,Pd,Pt,W,Ta,Mo,Cr,Ti等であるが、この
限りではない。
In the present invention shown in the above examples, as the material of the thin film forming the minute space involved in electron emission, a wide range of materials that are usually used as surface conduction electron-emitting devices,
For example, metal oxides such as SnO 2 , In 2 O 3 , and PbO, metals such as Au and Ag, carbon, and various other semiconductors can be used as appropriate as the electron emitting material. However, in the present invention, fine particles involved in electron emission can be separately arranged, so that any material can be used as long as it has the function of a thin film electrode as a thin film material and can form a minute gap by energization treatment. It is possible. Generally, a high melting point material requires a large amount of electric power and Joule heat at the time of energization processing. However, in the method of energizing the thin film at the step portion as in the example shown in FIG. 3, the energizing power can be reduced, so that the energizing process can be performed relatively easily even with a high melting point material. Therefore, as a material of the thin film, a general electrode material, a conductive high melting point metal, or the like can be used in addition to the above examples. For example, Cu, Al, Ni, Pd, Pt, W, Ta, Mo, Cr, Ti, etc., but are not limited thereto.

薄膜の膜厚は通常の表面伝導形電子放出素子に用いら
れる大きさであれば良く、その具体例を示すと、使用さ
れる材料の種類により異なるが通常0.01〜5μm、好ま
しくは0.01〜2μm程度である。
The thickness of the thin film may be any size as long as it is used for a normal surface-conduction electron-emitting device. Specific examples thereof vary depending on the type of material used, but are usually about 0.01 to 5 μm, preferably about 0.01 to 2 μm. It is.

また電子放出にかかわる微粒子材料としては例えば電
子を電界放出し易い物質や、二次電子放出し易い物質、
或いは電子の衝撃によって電子を放出しやすく、且つ耐
熱性、耐腐蝕性に強い物質であれば良く、例えば、仕事
関数が低く、耐熱性の高いW,Ti,Au,Ag,Cu,Cr,Al,Pt,Pd
等の金属や、SnO2,In2O3,BaO,MgO等の酸化物、もしくは
カーボン或いは以上の混合物等であるが、この限りでは
ない。
Examples of the fine particle material related to electron emission include a substance that easily emits electrons in a field, a substance that easily emits secondary electrons,
Alternatively, any substance that easily emits electrons by the impact of electrons and has high heat resistance and corrosion resistance may be used. For example, W, Ti, Au, Ag, Cu, Cr, Al having a low work function and high heat resistance may be used. , Pt, Pd
Or oxides such as SnO 2 , In 2 O 3 , BaO, MgO, etc., or carbon or a mixture thereof, but is not limited thereto.

本発明において、微粒子の大きさは通常直径が十Åか
ら数千Å程度が好ましい。また電子放出体を薄膜とする
場合、その厚みはやはり数十Åから数千Å程度が好まし
い。
In the present invention, the size of the fine particles is preferably preferably about 10 to several thousand mm in diameter. When the electron emitter is formed as a thin film, the thickness thereof is also preferably about several tens to several thousands of mm.

さらに電極部材としては、特に限定することなく通常
使用される広範囲な電極材が使用できる。
Further, as the electrode member, a wide range of commonly used electrode materials can be used without any particular limitation.

また段差形成材や微粒子を含む支持体の材料として
は、絶縁性材料が用いられる。例えばSiO2,Si3N4,TiO2,
Ta2O5,Al2O3等であり、これらの積層物もしくはこれら
の混合物でもよい。さらに段差形成材においては基板自
体の表面を加工し基板材自体が段差形成材として使うこ
ともできる。
An insulating material is used as a material of the support including the step forming material and the fine particles. For example, SiO 2 , Si 3 N 4 , TiO 2 ,
Ta 2 O 5 , Al 2 O 3 and the like, and a laminate thereof or a mixture thereof may be used. Further, in the step forming material, the surface of the substrate itself can be processed, and the substrate material itself can be used as the step forming material.

段差形成材や微粒子を含む支持体の厚みは段差上に堆
積する薄膜の膜厚及び成膜法によって調製する必要があ
り、通常、段差部上の薄膜が電気的に断線せず、かつ段
差部上の薄膜膜厚が他部分の薄膜膜圧に比べ薄くなるか
または、膜質が変化することが必要である。一般的に、
段差形成材や支持体の膜厚、すなわち段差部高さは、堆
積する薄膜の1/3から3倍程度が好ましい。
The thickness of the support including the step forming material and the fine particles must be adjusted by the thickness of the thin film deposited on the step and the film forming method. Usually, the thin film on the step is not electrically disconnected, and It is necessary that the thickness of the upper thin film is smaller than the thin film thickness of the other portion or that the film quality is changed. Typically,
The thickness of the step forming material or the support, that is, the height of the step portion is preferably about 1/3 to 3 times the thin film to be deposited.

また基板材料に関しては、従来表面伝導形電子放出素
子に用いられていた材料、例えば石英ガラス等の他に、
薄膜の材料を選択することによって通電処理における発
熱量を小さくすることができるため青板ガラス等、局所
加熱による応力発生が大きな材料でも基板割れ等が発生
せずに使用することができる。
Regarding the substrate material, in addition to the materials conventionally used for surface conduction electron-emitting devices, such as quartz glass,
By selecting the material of the thin film, the amount of heat generated during the energization process can be reduced, so that even a material such as a soda lime glass which generates a large amount of stress due to local heating can be used without causing a substrate crack or the like.

以上説明した様に本発明では特に電子放出にかかわる
微粒子とそこへ高電界を与える微小間隔部を有する薄膜
の選定材料が従来例に比べ格段に増大した。
As described above, in the present invention, particularly, the selection material of the thin film having the fine particles related to the electron emission and the minute gap for applying the high electric field thereto has been remarkably increased as compared with the conventional example.

よって、通電処理を行なう薄膜材料は、通電処理時の
電力量や局所的に発生する熱の量、基板材等に対する熱
膨張係数や、また電子放出時における電極の耐電圧や耐
熱、寿命等を考慮して多くの材料の中から選択すること
ができる。また微粒子においても、耐熱性、耐腐触性や
低仕事関数材料等電子放出しやすい材料を多くの中から
選択することができる。
Therefore, the thin film material to be subjected to the energization process has the following characteristics: the amount of electric power during the energization process, the amount of locally generated heat, the coefficient of thermal expansion with respect to the substrate material, and the withstand voltage, heat resistance, and life of the electrode during electron emission. A number of materials can be selected for consideration. As for the fine particles, a material which easily emits electrons, such as heat resistance, corrosion resistance and a low work function material, can be selected from many materials.

[実施例] 実施例1 前述の第1図及び第2図に示す態様で本発明に係る電
子放出素子を作製した。
Example Example 1 An electron-emitting device according to the present invention was manufactured in the manner shown in FIGS. 1 and 2 described above.

製造方法としては、まず、SiO2液体コーティング剤
(東京応化工業製OCD)に有機パラジウム化合物を含む
有機溶媒(奥野製薬工業製キャタベーストCCP)を混合
し、SiO2:Pdのモル比を約10:1に調製した溶液を作り、
厚み約1mmの清浄な石英ガラス基板上に、スピンナーに
より回転塗布した。その後約400℃で1時間焼成し、膜
厚約1500ÅのPd微粒子7を含んだSiO2支持体6を得た。
この後支持体層の表面をフッ酸水溶液によって1秒間エ
ッチングを行なった(第1図(a)参照)。
As a manufacturing method, first, SiO 2 liquid coating an organic solvent containing a (manufactured by Tokyo Ohka Kogyo OCD) in an organic palladium compound (Okuno Chemical Industries Ltd. Kyatabesuto CCP) were mixed, SiO 2: the molar ratio of Pd of about 10 1: Make a prepared solution,
It was spin-coated by a spinner on a clean quartz glass substrate having a thickness of about 1 mm. Thereafter, it was baked at about 400 ° C. for 1 hour to obtain a SiO 2 support 6 containing Pd fine particles 7 having a thickness of about 1500 °.
Thereafter, the surface of the support layer was etched with a hydrofluoric acid aqueous solution for 1 second (see FIG. 1 (a)).

次に、支持体6上にNiをマスクEB蒸着法により500Å
の厚みで第2図に示す形で薄膜3を堆積形成した。この
際第2図の形状のうちl=0.5mm,w=0.3mmとした(第1
図(b)参照)。
Next, 500 nm of Ni is coated on the support 6 by a mask EB evaporation method.
A thin film 3 was deposited and formed in the form shown in FIG. At this time, l = 0.5 mm and w = 0.3 mm among the shapes in FIG.
Fig. (B).

さらに薄膜3の両端に、50Å厚みのCrを下敷き層とす
る、500Å厚みのAu電極1,2をマスク蒸着法により形成し
た(第1図(c)参照)。
Further, on both ends of the thin film 3, Au electrodes 1 and 2 having a thickness of 500 mm were formed by a mask evaporation method using a 50 mm-thick Cr underlayer (see FIG. 1 (c)).

その後電極1,2に通電処理を行ない、薄膜3の中央部
に微小間隔部5を形成した。通電処理の消費電力は、約
0.8W程度であった。
Thereafter, the electrodes 1 and 2 were subjected to an energization treatment to form a minute interval 5 in the center of the thin film 3. The power consumption of the energization process is approximately
It was about 0.8W.

この素子の電子放出特性を測定した結果、放出電流Ie
=1μA、放出効率α(膜内電流に対する放出電流の
比)=1×10×-4程度の電子放出が得られた。
As a result of measuring the electron emission characteristics of this device, the emission current I e
= 1 μA and emission efficiency α (ratio of emission current to in-film current) = 1 × 10 × −4 were obtained.

実施例2 第3図に示す様に実施例1で用いた微粒子7を含む支
持体6を基板中心部まで取り除き段差部を有する支持体
8として、以下実施例1と同様に電子放出素子を作製し
た。
Example 2 As shown in FIG. 3, the support 6 containing the fine particles 7 used in Example 1 was removed to the center of the substrate to form a support 8 having a step, and an electron-emitting device was manufactured in the same manner as in Example 1 below. did.

支持体8は、フォトリソエッチング法によりフッ酸水
溶液でエッチングし、段差部を形成した(第3図(a)
参照)。
The support 8 was etched with a hydrofluoric acid aqueous solution by a photolithographic etching method to form a step (FIG. 3A).
reference).

次に、厚み1500Åの支持体8の段差部を覆う様にし
て、厚み500ÅのNi薄膜3を堆積形成した(第3図
(b)参照)。
Next, a Ni thin film 3 having a thickness of 500 mm was deposited and formed so as to cover a stepped portion of the support 8 having a thickness of 1500 mm (see FIG. 3B).

以下実施例1と同様に電極1,2を形成し、通電処理を
行ない微小間隔部5を形成し、電子放出素子とした。通
電処理の消費電力は約0.2W程度であった。この素子の電
子放出特性を測定した結果、放出電流Ie=2μA、放出
効率α=5×10-4程度の電子放出が得られた。
Thereafter, electrodes 1 and 2 were formed in the same manner as in Example 1, and a current-passing process was performed to form minute gaps 5 to obtain an electron-emitting device. The power consumption of the energization process was about 0.2 W. As a result of measuring the electron emission characteristics of this device, electron emission having an emission current Ie of 2 μA and an emission efficiency α of about 5 × 10 −4 was obtained.

以上実施例1,2では微粒子7の材料として有機金属化
合物の有機溶媒を用いたが、一次粒径が100Å程度のSnO
2微粒子を分散させたSiO2液体コーティング剤でも、同
様な電子放出素子を得ることができた。
As described above, in Examples 1 and 2, the organic solvent of the organometallic compound was used as the material of the fine particles 7, but the SnO having a primary particle size of about 100 ° was used.
A similar electron-emitting device could be obtained with the SiO 2 liquid coating agent in which two fine particles were dispersed.

実施例3 第4図に示す様に、実施例1で用いた微粒子7を含む
支持体6を用いずに、微粒子9を分散、塗布した基板4
上に薄膜3と電極1,2を設け、通電処理することにより
電子放出素子を得ることができる。
Example 3 As shown in FIG. 4, the substrate 4 on which the fine particles 9 were dispersed and coated was used without using the support 6 containing the fine particles 7 used in Example 1.
An electron-emitting device can be obtained by providing the thin film 3 and the electrodes 1 and 2 thereon and conducting an electric current.

まず基板4上に有機パラジウム化合物を含む有機溶媒
(奥野製薬工業製キャタペーストCCP)をスピンナーに
より回転塗布し、250℃で10分間焼成した。これによりP
d微粒子9が基板4上に形成された(第4図(a)参
照)。
First, an organic solvent containing an organic palladium compound (Catapaste CCP manufactured by Okuno Pharmaceutical Co., Ltd.) was spin-coated on a substrate 4 by a spinner and baked at 250 ° C. for 10 minutes. This gives P
d Particles 9 were formed on the substrate 4 (see FIG. 4A).

次に実施例1と同様にして基板4上に厚み500ÅのNi
薄膜3及びAu電極1,2を形成した(第4図(b),
(c)参照)。その後、薄膜3の通電処理を行ない微小
間部5を形成することによって電子放出素子に作製した
(第4図(d)に参照)。
Next, in the same manner as in Example 1, a Ni
A thin film 3 and Au electrodes 1 and 2 were formed (FIG. 4 (b),
(C)). Thereafter, the thin film 3 was energized to form minute gaps 5 to produce an electron-emitting device (see FIG. 4D).

この素子の電子放出特性を測定した所、実施例1と同
様な結果が得られた。
When the electron emission characteristics of this device were measured, the same results as in Example 1 were obtained.

実施例4 第5図に示す様に、基板4の中央に段差形成材10によ
り段差部を形成し微粒子を分散、塗布し、段差上に薄膜
を設け通電処理することにより電子放出素子を得ること
ができる。
Embodiment 4 As shown in FIG. 5, a step portion is formed in the center of a substrate 4 by a step forming material 10, fine particles are dispersed and applied, a thin film is provided on the step, and a current is applied to obtain an electron-emitting device. Can be.

まず、SiO2液体コーティング剤(東京応化工業製OC
D)をスピンナーにより基板4上に回転塗布した。その
後約400℃で1時間焼成し、膜厚約1500ÅのSiO2から成
る段差形成材を作り、フォトリソエッチング法により形
成し、基板4上のほぼ中央部に段差部を設けた。さら
に、基板4上に実施例3と同様にしてPd微粒子9の段差
部に形成した(第5図(a)参照)。
First, a SiO 2 liquid coating agent (OC manufactured by Tokyo Ohka Kogyo Co., Ltd.
D) was spin-coated on the substrate 4 by a spinner. Thereafter, it was baked at about 400 ° C. for 1 hour to produce a step forming material made of SiO 2 having a thickness of about 1500 ° and formed by a photolithographic etching method. Further, Pd fine particles 9 were formed on the steps 4 on the substrate 4 in the same manner as in Example 3 (see FIG. 5A).

次に実施例2と同様にして薄膜3、電極1,2を形成し
た(第5図(b),(c)参照)。その後、薄膜3の通
電処理を行ない、微小間隔部5を形成することによって
電子放出素子を作製した(第5図(d)参照)。
Next, a thin film 3 and electrodes 1 and 2 were formed in the same manner as in Example 2 (see FIGS. 5B and 5C). Thereafter, the thin film 3 was energized, and the minute gaps 5 were formed to produce an electron-emitting device (see FIG. 5D).

この素子の電子放出特性を測定した所、実施例2と同
様な結果が得られた。
When the electron emission characteristics of this device were measured, the same results as in Example 2 were obtained.

以上実施例3,4では微粒子9の材料として有機金属化
合物の有機溶媒を用いたが、一次粒径が100Å程度のSnO
2微粒子を有機バインダーと共に有機溶媒に分散溶解さ
せたSnO2の分散溶液を用いても同様な電子放出素子を得
ることができた。
As described above, in Examples 3 and 4, the organic solvent of the organometallic compound was used as the material of the fine particles 9, but the primary particle diameter of SnO was about 100 °.
A similar electron-emitting device could be obtained by using a dispersion of SnO 2 in which two fine particles were dispersed and dissolved in an organic solvent together with an organic binder.

[発明の効果] 以上説明したように、本発明では、微粒子を有する部
材上の薄膜を通電処理することによって薄膜の微小間隔
部を形成し、該微小間隔部に微粒子が位置する製造の電
子放出素子とすることによって、電子放出にかかわる微
粒子と、そこへ電界を与える薄膜の微小間隔部とを製法
及び材料で分離し、各々適した材料を選択、製造、設計
することができる。
[Effects of the Invention] As described above, in the present invention, a thin film on a member having fine particles is subjected to an electric current treatment to form minute gaps in the thin film, and the electron emission in the production in which the fine particles are located in the minute gaps By forming the element, fine particles involved in electron emission and minute gaps of a thin film for applying an electric field thereto can be separated by a manufacturing method and a material, and an appropriate material can be selected, manufactured, and designed.

従って従来法では難しいとされていた高融点材料等を
電子放出材としたり、また通電処理における消費電力の
小さい薄膜材料を用いることにより、大電力を必要とせ
ずに通電処理が行なえる等の効果を有している。
Therefore, by using a high melting point material, etc., which was considered difficult in the conventional method, as an electron emitting material, and by using a thin film material with low power consumption in the energizing process, the energizing process can be performed without requiring large power. have.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の電子放出素子の製造工程図、第2図は
本発明の電子放出素子の平面図、第3図〜第5図は、各
々本発明に係る別の態様の電子放出素子の製造工程図、
第6図は従来の電子放出素子を示す平面図である。
FIG. 1 is a view showing a manufacturing process of the electron-emitting device of the present invention, FIG. 2 is a plan view of the electron-emitting device of the present invention, and FIGS. 3 to 5 are electron-emitting devices of another embodiment according to the present invention. Manufacturing process diagram,
FIG. 6 is a plan view showing a conventional electron-emitting device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 俊彦 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平1−200532(JP,A) 特開 平2−192638(JP,A) 特開 平1−279541(JP,A) 特公 平6−101297(JP,B2) 特公 平7−114106(JP,B2) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Takeda 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (56) References JP-A-1-200532 (JP, A) JP-A-2 JP-A-192638 (JP, A) JP-A-1-279541 (JP, A) JP-B-6-101297 (JP, B2) JP-B-7-114106 (JP, B2)

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】微小間隙を含む導電性膜を有する電子放出
素子において、前記導電性膜が、微粒子を含む部材上に
配置されていることを特徴とする電子放出素子。
1. An electron-emitting device having a conductive film including a minute gap, wherein the conductive film is disposed on a member containing fine particles.
【請求項2】前記導電性膜は、前記微粒子を含む部材に
て基板上に形成された段差部を跨ぐように配設されてお
り、前記微小間隔が、該段差部に配設されている請求項
1に記載の電子放出素子。
2. The conductive film is disposed so as to straddle a step formed on a substrate by a member containing the fine particles, and the minute interval is disposed in the step. The electron-emitting device according to claim 1.
【請求項3】前記微粒子の直径が、数十Å〜数千Åの範
囲内にある請求項1又は2に記載の電子放出素子。
3. The electron-emitting device according to claim 1, wherein the diameter of the fine particles is in the range of several tens to several thousand degrees.
【請求項4】前記微小間隔が、1μm以下である請求項
1〜3のいずれかに記載の電子放出素子。
4. The electron-emitting device according to claim 1, wherein said minute interval is 1 μm or less.
【請求項5】前記微小間隔が、前記導電性膜の一部に形
成された亀裂である請求項1〜4のいずれかに記載の電
子放出素子。
5. The electron-emitting device according to claim 1, wherein the minute interval is a crack formed in a part of the conductive film.
【請求項6】前記導電性膜が、一対の電極間に配置され
ている請求項1〜4のいずれかに記載の電子放出素子。
6. The electron-emitting device according to claim 1, wherein said conductive film is disposed between a pair of electrodes.
【請求項7】前記電子放出素子が、表面伝導形電子放出
素子である請求項1〜6のいずれかに記載の電子放出素
子の製造方法。
7. The method according to claim 1, wherein said electron-emitting device is a surface conduction electron-emitting device.
【請求項8】電子放出部を含む導電性膜を有する電子放
出素子の製造方法において、微粒子を含む部材上に配置
された導電性膜に、微小間隔を形成する工程を有するこ
とを特徴とする電子放出素子の製造方法。
8. A method for manufacturing an electron-emitting device having a conductive film including an electron-emitting portion, comprising a step of forming minute intervals in a conductive film disposed on a member including fine particles. A method for manufacturing an electron-emitting device.
【請求項9】前記導電性膜が、前記微粒子を含む部材に
て基板上に形成された段差部を跨ぐように配置されてい
る請求項8に記載の電子放出素子。
9. The electron-emitting device according to claim 8, wherein the conductive film is disposed so as to straddle a step formed on the substrate by the member containing the fine particles.
【請求項10】前記微粒子の直径が、数十Å〜数千Åの
範囲内にある請求項8又は9に記載の電子放出素子の製
造方法。
10. The method for manufacturing an electron-emitting device according to claim 8, wherein the diameter of the fine particles is in the range of several tens to several thousand degrees.
【請求項11】前記微小間隔が、1μm以下である請求
項8〜10のいずれかに記載の電子放出素子の製造方法。
11. The method for manufacturing an electron-emitting device according to claim 8, wherein said minute interval is 1 μm or less.
【請求項12】前記微小間隔が、前記導電性薄膜の一部
に形成された亀裂である請求項8〜11のいずれかに記載
の電子放出素子の製造方法。
12. The method according to claim 8, wherein the minute gap is a crack formed in a part of the conductive thin film.
【請求項13】前記微粒子が配置された導電性薄膜に微
小間隔を形成する工程が、該導電性膜に電圧を印加する
工程を有する請求項8〜12のいずれかに記載の電子放出
素子の製造方法。
13. The electron-emitting device according to claim 8, wherein the step of forming a minute interval in the conductive thin film on which the fine particles are arranged includes a step of applying a voltage to the conductive film. Production method.
【請求項14】前記微粒子が配置された導電性膜が、一
対の電極間に配置されている請求項8〜13のいずれかに
記載の電子放出素子の製造方法。
14. The method according to claim 8, wherein the conductive film on which the fine particles are arranged is arranged between a pair of electrodes.
【請求項15】前記電子放出素子が、表面伝導電子放出
素子である請求項8〜14のいずれかに記載の電子放出素
子の製造方法。
15. The method of manufacturing an electron-emitting device according to claim 8, wherein said electron-emitting device is a surface conduction electron-emitting device.
JP10756888A 1988-05-02 1988-05-02 Electron emitting device and method of manufacturing the same Expired - Lifetime JP2646236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10756888A JP2646236B2 (en) 1988-05-02 1988-05-02 Electron emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10756888A JP2646236B2 (en) 1988-05-02 1988-05-02 Electron emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH01279540A JPH01279540A (en) 1989-11-09
JP2646236B2 true JP2646236B2 (en) 1997-08-27

Family

ID=14462471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10756888A Expired - Lifetime JP2646236B2 (en) 1988-05-02 1988-05-02 Electron emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2646236B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548498B2 (en) 2000-05-08 2004-07-28 キヤノン株式会社 Electron source forming substrate, electron source using the substrate, and image display device
JP3530800B2 (en) 2000-05-08 2004-05-24 キヤノン株式会社 Electron source forming substrate, electron source using the substrate, and image display device

Also Published As

Publication number Publication date
JPH01279540A (en) 1989-11-09

Similar Documents

Publication Publication Date Title
US5532544A (en) Electron-emitting device with electron-emitting region insulated from electrodes
US4954744A (en) Electron-emitting device and electron-beam generator making use
US5661362A (en) Flat panel display including electron emitting device
JP2632359B2 (en) Electron emitting device and method of manufacturing the same
JP2632883B2 (en) Electron-emitting device
JP2646236B2 (en) Electron emitting device and method of manufacturing the same
JP2630983B2 (en) Electron-emitting device
JPH07114104B2 (en) Electron-emitting device and manufacturing method thereof
JP2630984B2 (en) Method for manufacturing electron-emitting device
JP2646235B2 (en) Electron emitting device and method of manufacturing the same
JP2631007B2 (en) Electron emitting element, method of manufacturing the same, and image forming apparatus using the element
JP2630990B2 (en) Electron emitting device and light emitting device using the same
JP2727193B2 (en) Method for manufacturing electron-emitting device
JP2646999B2 (en) Field emission cold cathode
JPH07114106B2 (en) Method for manufacturing electron-emitting device
JPH06101297B2 (en) Electron-emitting device
JPH0765708A (en) Manufacture of electron emission element and image formng device
JP2748133B2 (en) Electron-emitting device
JP2981503B2 (en) Electron emitting element, electron source and image display device
JP3250164B2 (en) Method of manufacturing image forming apparatus
JPH07123022B2 (en) Method for manufacturing electron-emitting device
JP3023712B2 (en) Method of manufacturing surface conduction electron-emitting device and method of manufacturing electron-emitting device
JP2632365B2 (en) Electron emitting device and method of manufacturing the same
JP3332891B2 (en) Electron source and image forming apparatus using the same
JP2627623B2 (en) Electron-emitting device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term