JP2632883B2 - Electron-emitting device - Google Patents

Electron-emitting device

Info

Publication number
JP2632883B2
JP2632883B2 JP30729087A JP30729087A JP2632883B2 JP 2632883 B2 JP2632883 B2 JP 2632883B2 JP 30729087 A JP30729087 A JP 30729087A JP 30729087 A JP30729087 A JP 30729087A JP 2632883 B2 JP2632883 B2 JP 2632883B2
Authority
JP
Japan
Prior art keywords
electron
emitting device
fine particles
electrodes
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30729087A
Other languages
Japanese (ja)
Other versions
JPH01149335A (en
Inventor
俊彦 武田
一郎 野村
哲也 金子
嘉和 坂野
英俊 鱸
幸次郎 横野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30729087A priority Critical patent/JP2632883B2/en
Publication of JPH01149335A publication Critical patent/JPH01149335A/en
Application granted granted Critical
Publication of JP2632883B2 publication Critical patent/JP2632883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/027Manufacture of electrodes or electrode systems of cold cathodes of thin film cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷陰極型の電子放出素子に係り、特に素子表
面に電流を流すことにより電子を放出する電子放出素子
に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-cathode type electron-emitting device, and more particularly to an electron-emitting device that emits electrons by passing a current through the surface of the device.

〔従来の技術〕[Conventional technology]

従来、簡単な構造で電子放出を得られる素子として、
例えば、Elinson等によって発表された(Radio Eng.Ele
ctron.Rhys.10.1290.1965)冷陰極素子が知られてい
る。
Conventionally, as an element that can obtain electron emission with a simple structure,
For example, published by Elinson et al. (Radio Eng. Ele
ctron.Rhys.10.1290.1965) Cold cathode devices are known.

これは、基板上に形成された小面積の薄膜に膜面に平
行に電流を流すことにより、電子放出が生ずる現象を利
用するもので、一般には表面伝導型放出素子と呼ばれて
いる(表面伝導型放出素子という呼称は、薄膜ハンドブ
ツクの記載に準じた)。
This utilizes a phenomenon in which electron emission occurs when a current flows through a small-area thin film formed on a substrate in parallel with the film surface, and is generally called a surface conduction electron-emitting device (surface-emitting device). The name of the conduction type emission element is based on the description of the thin film handbook).

表面伝導型放出素子としてはSnO2(Sb)薄膜を用いた
前記Elinson等の例以外にも、Au薄膜によるものや(G.D
ittmar:Thin Solid Films9、317(1972))、ITO薄膜に
よるもの(M.Hartwell and C.G.Fonstad:IEEE Trans.ED
Conf.519(1975))、カーボン薄膜によるもの(荒木久
他:真空.第26巻、第1号、P−22(1983))などが報
告されている。
As the surface conduction electron-emitting device, in addition to the above-mentioned example of Elinson using a SnO 2 (Sb) thin film, a device using an Au thin film or (GD
ittmar: Thin Solid Films 9, 317 (1972)), using ITO thin film (M. Hartwell and CGFonstad: IEEE Trans.ED)
Conf. 519 (1975)), and those using a carbon thin film (Hisashi Araki et al .: Vacuum, Vol. 26, No. 1, P-22 (1983)) and the like have been reported.

これら表面伝導型放出素子の典型的な素子構成を第8
図に示す。21および22は電気的接続を得る為の電極、23
は電子放出材料で形成される薄膜、24は基板、26は電子
放出部を示す。
A typical device configuration of these surface conduction electron-emitting devices is the eighth device.
Shown in the figure. 21 and 22 are electrodes for obtaining an electrical connection, 23
Denotes a thin film formed of an electron emission material, 24 denotes a substrate, and 26 denotes an electron emission portion.

従来、これらの表面伝導型放出素子に於いては、電子
放出を行う前に、あらかじめフオーミングと呼ばれる処
理が行われている。即ち、前記電極21と電極22の間に電
圧を印加する事により、薄膜23に通電し、これにより発
生するジユール熱で薄膜23を局所的に破壊もしくは変形
もしくは変質せしめ、電気的に高抵抗な状態にした電子
放出部25を得るものである。
Conventionally, in these surface conduction electron-emitting devices, a process called forming is performed before electron emission. That is, by applying a voltage between the electrode 21 and the electrode 22, the thin film 23 is energized, and the thin film 23 is locally destroyed, deformed or deteriorated by the generated Joule heat, and has a high electrical resistance. This is to obtain the electron emitting section 25 in the state.

上述電気的な高抵抗状態とは、薄膜23の一部に0.5μ
m〜5μmの亀裂を有し、且つ亀裂内がいわゆる島構造
を有する不連続状態膜を云う。島構造とは一般に数十オ
ングストロームから数ミクロン径の微粒子が基板24上に
あり、各微粒子は空間的に不連続で電気的に連続な膜を
云う。
The above-mentioned electrical high resistance state means that 0.5 μ
A discontinuous film having a crack of m to 5 μm and having a so-called island structure inside the crack. In general, the island structure has fine particles having a diameter of several tens angstroms to several microns on the substrate 24, and each fine particle is a spatially discontinuous and electrically continuous film.

従来、表面伝導型電子放出素子は上述高抵抗不連続膜
に電極21,22により電圧を印加し、素子表面に電流を流
すことにより、上述微粒子より電子放出せしめるもので
ある。
Conventionally, in the surface conduction electron-emitting device, electrons are emitted from the fine particles by applying a voltage to the high-resistance discontinuous film by the electrodes 21 and 22 and flowing a current to the surface of the device.

〔発明が解決しようとしている問題点〕[Problems to be solved by the invention]

上述の如く、従来表面伝導型電子放出素子は製造上フ
オーミング行程が必要であり、そのため次のような欠点
があった。
As described above, the conventional surface conduction electron-emitting device requires a forming step in manufacturing, and therefore has the following disadvantages.

(1)通電加熱によるフオーミングでは電子放出部とな
る島構造の設計が不可能なため、素子の改良が難しく素
子間のバラツキを生じやすい。
(1) Since it is impossible to design an island structure serving as an electron emitting portion in the forming by the electric heating, it is difficult to improve the elements, and variations among the elements are likely to occur.

(2)島構造の寿命が短くかつ不安定である。また、外
界の電磁波ノイズにより素子破壊を生じやすい。
(2) The life of the island structure is short and unstable. In addition, the element is easily destroyed by external electromagnetic noise.

(3)フオーミング工程による島形成を行うため、島構
成材料の選択に対する自由度が小さい。
(3) Since an island is formed by the forming process, the degree of freedom in selecting an island constituent material is small.

(4)フオーミング工程では局所的な熱の集中を必要と
するため素子形状が限定される。
(4) In the forming step, local heat concentration is required, so that the element shape is limited.

(5)局所的な熱の集中によって基板破壊を生じやす
い。
(5) The substrate is easily broken due to local heat concentration.

以上のような問題点があるため、表面伝導型電子放出素
子は、素子構造が簡単であるという利点があるにもかか
わらず、産業上積極的に利用されるには至っていなかっ
た。
Due to the above-mentioned problems, the surface conduction electron-emitting device has not been actively used in industry, despite the advantage that the device structure is simple.

〔発明の目的〕[Object of the invention]

本発明は、上記の様な従来例の欠点を除去するために
なされたものであり、前記の如き従来のフオーミングと
呼ばれる処理を施すことなく、フオーミング処理により
得られる電子放出素子と同等以上の品質を有し、特性の
ばらつきが少なく、しかも特性の制御が可能であり、か
つ電子放出部の位置も制御できる新規な構造を有する電
子放出素子を提供することを目的とするものである。
The present invention has been made in order to eliminate the disadvantages of the conventional example as described above, and has a quality equal to or higher than that of an electron-emitting device obtained by a forming process without performing a process called the conventional forming as described above. It is an object of the present invention to provide an electron-emitting device having a novel structure that has small variations in characteristics, can control characteristics, and can control the position of an electron-emitting portion.

〔問題点を解決するための手段(及び作用)〕[Means (and action) for solving the problem]

本発明の電子放出素子は、電極間の絶縁体表面に複数
の多結晶微粒子が、互いに隣接する多結晶微粒子と離間
して分散配置されていることを特徴としている。
The electron-emitting device according to the present invention is characterized in that a plurality of polycrystalline fine particles are dispersedly arranged on the insulator surface between the electrodes so as to be spaced apart from adjacent polycrystalline fine particles.

従来、表面伝導型電子放出素子においては、電極間に
設けられた薄膜をフオーミング処理によって島状構造化
することで電子放出が得られるとされている。
Conventionally, in a surface conduction electron-emitting device, electron emission is obtained by forming a thin film provided between electrodes into an island structure by a forming process.

しかしながら、本発明者らはフオーミング処理とその
構造及び電子放出特性について鋭意検討した結果、多結
晶材料の微粒子を微少間隔を有する電極間に位置的に選
択して配置せしめることによって、フオーミング処理を
施すことなく従来の表面伝導型素子と同等あるいはそれ
以上の電子放出機能が得られることを見出した。
However, the present inventors have conducted intensive studies on the forming process and its structure and electron emission characteristics. As a result, the forming process is performed by selectively positioning the fine particles of the polycrystalline material between the electrodes having minute intervals. It has been found that an electron emission function equivalent to or higher than that of the conventional surface conduction type element can be obtained without using the same.

具体的には、結晶成長により得られた多結晶微粒子を
電極間に有する電子放出素子を特徴とするものである。
Specifically, the present invention is characterized by an electron-emitting device having polycrystalline fine particles obtained by crystal growth between electrodes.

つまり、電極間上に堆積面材料の種類による堆積材料
の核形成密度の差を利用して、多結晶材料の微粒子を選
択的に形成するものである。
In other words, the fine particles of the polycrystalline material are selectively formed on the electrodes by utilizing the difference in the nucleation density of the deposition material depending on the type of the deposition surface material.

以下、図面を用いて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明による電子放出素子の一実施例形態
を示す模式図であり、第2図は第1図A−B方向の模式
的断面図である。第1図及び第2図において、ガラス等
の絶縁体5上に対向する電極1及び2を設け、その間に
多結晶材料から成る微粒子3が分散配置されたことによ
って電子放出部4が形成されている。また不図示である
が、電子放出部の上面に間隔を取って、放出された電子
を引き出すための電極を設けてある。本素子を真空容器
中で電極1,2間に電圧を印加する(この電圧をVfとす
る)ことにより、電極間に電流が流れ(Ifとする)、引
き出し電極を+側として電圧を印加すると、電子は素子
構成基板1に対してほぼ垂直に放出される(この電子放
出の電流をIeとする)。
FIG. 1 is a schematic view showing an embodiment of an electron-emitting device according to the present invention, and FIG. 2 is a schematic cross-sectional view taken along the line AB in FIG. In FIGS. 1 and 2, opposing electrodes 1 and 2 are provided on an insulator 5 such as glass, and fine particles 3 made of a polycrystalline material are dispersed and arranged therebetween to form an electron emitting portion 4. I have. Although not shown, electrodes are provided on the upper surface of the electron-emitting portion at intervals to extract emitted electrons. When a voltage is applied between the electrodes 1 and 2 in the vacuum vessel (this voltage is Vf), current flows between the electrodes (If), and the voltage is applied with the extraction electrode set to the + side. The electrons are emitted substantially perpendicularly to the element structure substrate 1 (this electron emission current is defined as Ie).

同図において、電極1及び2の間隔は数100Å〜数10
μmが適当である。本発明で用いられる微粒子の材料は
非常に広範囲におよび、通常の金属、半金属、半導体と
いった導電性材料の多結晶であればほとんど全く使用可
能である。なかでも、低仕事関係で高融点かつ低蒸気圧
という性質をもつ通常の陰極材料や従来のフオーミング
処理によって電子放出素子を形成する材料や2次電子放
出効率の高い材料の多結晶が好適である。
In the figure, the interval between the electrodes 1 and 2 is several hundreds to several tens.
μm is appropriate. The material of the fine particles used in the present invention is very wide, and almost any polycrystalline conductive material such as a normal metal, semimetal or semiconductor can be used. Among them, a normal cathode material having a property of a high melting point and a low vapor pressure with a low work relationship, a material for forming an electron-emitting device by a conventional forming process, and a polycrystal of a material having a high secondary electron emission efficiency are preferable. .

具体的には、LaB6,CeB6,YB4,GdB4などの硼化物。T
iC,ZrC,HfC,TaC,SiC,WCなどの炭化物。TiN,ZrN,HfN等の
窒化物。Nb,Mo,Rh,Hf,Ta,W,Re,Ir,Pt,Ti,Au,Ag,Cu,Cr,A
l,Co,Ni,Fe,Pb,Pd,Csなどの金属。In2O3,SnO2,Sb2O3
などの金属酸化物。Si,Geなどの半導体、カーボンAgMg
などの多結晶を一例として挙げることができる。
Specifically, borides such as LaB 6 , CeB 6 , YB 4 and GdB 4 . T
Carbides such as iC, ZrC, HfC, TaC, SiC, WC. Nitride such as TiN, ZrN, HfN. Nb, Mo, Rh, Hf, Ta, W, Re, Ir, Pt, Ti, Au, Ag, Cu, Cr, A
Metals such as l, Co, Ni, Fe, Pb, Pd, and Cs. In 2 O 3 , SnO 2 , Sb 2 O 3
Such as metal oxides. Semiconductors such as Si and Ge, carbon AgMg
And the like can be cited as an example.

なお、本発明は上記材料に限定されるものではない。 Note that the present invention is not limited to the above materials.

さらに、又、本発明では上述の材料のうち異なる物質
を選ぶ、目的に応じて2種以上の異なる物質の多結晶微
粒子を形成させてもよい。
Furthermore, in the present invention, different substances may be selected from the above-mentioned materials, and polycrystalline fine particles of two or more different substances may be formed according to the purpose.

基板上に位置制御性良く多結晶微粒子を形成する方法
として素子構成基板上での所望材料の核形成密度差を利
用した結晶成長法がある。この方法によれば、所望の材
料に対して核形成密度の高い領域を予め基板上に設けた
後に結晶成長を行うことで、所望の位置に所望の粒径の
多結晶微粒子を形成することができる。これによって、
島構造を自由にしかもいっそう精密に制御して作成でき
るので、電子放出特性のばらつきを抑え制御することが
できる。
As a method of forming polycrystalline fine particles on a substrate with good position controllability, there is a crystal growth method utilizing a difference in nucleation density of a desired material on an element constituting substrate. According to this method, after a region having a high nucleation density for a desired material is provided in advance on a substrate and crystal growth is performed, polycrystalline fine particles having a desired particle size can be formed at a desired position. it can. by this,
Since the island structure can be formed freely and more precisely, the variation in the electron emission characteristics can be suppressed and controlled.

前記核形成密度の高い領域の形成方法には、蒸着法や
イオン注入法等が適用可能であり、所望材料に対して最
適な材料、方法が選択できる。
As a method for forming the region having a high nucleation density, an evaporation method, an ion implantation method, or the like can be applied, and an optimum material and method can be selected for a desired material.

多結晶微粒子を形成した後、該微粒子が微小な間隔内
に入る位置に対向電極を形成し、素子を完成する。
After the polycrystalline fine particles are formed, a counter electrode is formed at a position where the fine particles fall within a minute interval to complete the element.

本発明による電子放出素子は、表面に電流を流すた
め、基板材料の影響は受けない。従って基板に用いる材
料は選択範囲が広い。
In the electron-emitting device according to the present invention, a current flows through the surface, and is not affected by the substrate material. Therefore, the selection range of the material used for the substrate is wide.

以下本発明の実施例を用いて詳細に説明する。 Hereinafter, the present invention will be described in detail using embodiments.

〔実施例1〕 第3図は、本発明の電子放出素子の一実施例を示す概
略的部分断面図である。
Embodiment 1 FIG. 3 is a schematic partial sectional view showing an embodiment of the electron-emitting device of the present invention.

同図に示すように、洗浄及び化学エツチングを行った
洗浄な#7059ガラス基板(コーニング社製)5上に減圧
CVD法によってSi3N4層を500Å堆積させた。次に、通常
のフオトリソグラフイ技術を用いてSi3N4層をパターニ
ングし、直径約5μmの円形Si3N4層6を5μm間隔に
形成した。
As shown in the same drawing, the pressure was reduced on a clean # 7059 glass substrate (manufactured by Corning) 5 which had been subjected to cleaning and chemical etching.
A 500 nm Si 3 N 4 layer was deposited by CVD. Next, the Si 3 N 4 layer was patterned using ordinary photolithography to form circular Si 3 N 4 layers 6 having a diameter of about 5 μm at intervals of 5 μm.

続いてSiH4を原料とし、HClとH2の混合ガスをキヤリ
アガスとして、上記基板5上にSiを選択的に成長させ
た。この時の基板温度は〜600℃、圧力は〜100Torrであ
る。
Subsequently, Si was selectively grown on the substrate 5 using SiH 4 as a raw material and a mixed gas of HCl and H 2 as a carrier gas. At this time, the substrate temperature is ~ 600 ° C and the pressure is ~ 100 Torr.

数10分程度の成長時間でガラス基板上5に設けたSi3N
4の微細な5とは異種の材料6を中心に多結晶のSiの粒
子3が成長した。多結晶Si微粒子3の直径はほぼ5μm
であった。
Si 3 N provided on a glass substrate 5 with a growth time of about several tens of minutes
Polycrystalline Si particles 3 grew around a material 6 different from the fine 5 of 4 . The diameter of the polycrystalline Si fine particles 3 is approximately 5 μm
Met.

こうして得られた、多結晶Si微粒子の成長したガラス
基板に、第4図に示すように前記微粒子がギヤツプ間に
入るようにフオトリソグラフイ及び真空蒸着によってNi
電極1及び2を形成し(厚さは1000Å)、素子を完成し
た。
The thus obtained glass substrate on which the polycrystalline Si fine particles were grown was coated with Ni by photolithography and vacuum deposition so that the fine particles entered between the gaps as shown in FIG.
Electrodes 1 and 2 were formed (thickness: 1000 mm) to complete the device.

こうして得られた電子放出素子の素子抵抗は、およそ
1Mオームと高抵抗であった。
The device resistance of the electron-emitting device thus obtained is approximately
It had a high resistance of 1M ohm.

次に、本発明による素子を〜10-5Torrの真空容器に入
れ、Ni電極1,2間に直流電圧を印加し、素子から5mm離れ
た所に設けた引き出し電極に1KVを印加して、電子電流
を測定した結果、電子放出が生じていることが確認され
た。また、放出電流は安定しており、素子印加電圧Vf=
20Vで、Ifは0.1mA、放出電流Ie=2.5μAが得られた。
Next, the device according to the present invention was placed in a vacuum container of ~ 10 -5 Torr, a DC voltage was applied between the Ni electrodes 1 and 2, and 1 KV was applied to an extraction electrode provided at a position 5 mm away from the device, As a result of measuring the electron current, it was confirmed that electron emission occurred. In addition, the emission current is stable, and the element applied voltage Vf =
At 20 V, If was 0.1 mA and emission current Ie = 2.5 μA was obtained.

電子放出前後での微粒子の形状及び配置に差異はみら
れなかった。また、各素子間の電子放出特性のばらつき
は、ほぼ5%以内におさえられ、かつ同一プロセスを経
て得られた素子の再現性も従来フオーミングによる電子
放出素子に比べ良好であった。
No difference was observed in the shape and arrangement of the fine particles before and after electron emission. Further, the variation in the electron emission characteristics between the respective devices was suppressed to within approximately 5%, and the reproducibility of the devices obtained through the same process was better than that of the conventional electron-emitting devices formed by the forming.

〔実施例2〕 第5図に示すように、清浄なSi基板上にCVD法を用い
て、非晶質SiO2層8を約1000Å形成した。次にSiO2層上
に集束イオンビーム装置を用いて、二価Siイオンを加速
電圧40KVで注入し、核形成密度の高い領域9を10μm間
隔で形成した。このときのSiイオンビーム径はほぼ0.2
μm、注入を行った範囲は5μm角の正方形領域で、Si
O2表面での注入量は、1×1018(ions/cm2)である。こ
うして行われた基板上に、前記実施例1と同様に、Si
H4,HCl,H2の混合ガスを用いて、CVD法によって前記Si注
入領域に多結晶シリコン微粒子の成長を行った。このと
きの成長時間は60分であり、微粒子の直径はほぼ10μm
であった。
Example 2 As shown in FIG. 5, an amorphous SiO 2 layer 8 was formed on a clean Si substrate by the CVD method at a thickness of about 1000 °. Next, using a focused ion beam apparatus, divalent Si ions were implanted on the SiO 2 layer at an acceleration voltage of 40 KV to form regions 9 having a high nucleation density at intervals of 10 μm. At this time, the Si ion beam diameter was almost 0.2.
μm, the area where implantation was performed was a square area of 5 μm square,
The injection amount on the O 2 surface is 1 × 10 18 (ions / cm 2 ). On the substrate thus formed, Si was applied in the same manner as in the first embodiment.
Using a mixed gas of H 4 , HCl, and H 2 , polycrystalline silicon fine particles were grown in the Si injection region by a CVD method. At this time, the growth time is 60 minutes, and the diameter of the fine particles is approximately 10 μm.
Met.

さらに同一基板上に、第5図に示すように、再度イオ
ン注入を行い、核形成密度の高い領域11を形成した後、
再度CVD法によってSiの核成長を10分間行った。この結
果、同一基板上に大きさの異なる2種類の多結晶Si微粒
子が位置制御されて形成された。最後に、第6図に示す
ように、大小2種類の微粒子を共にギヤツプ内部に含む
ようにNi電極1,2を蒸着によって形成して(厚さ1000
Å)素子を完成させた。
Further, as shown in FIG. 5, ion implantation is performed again on the same substrate to form a region 11 having a high nucleation density.
The nucleus growth of Si was performed again by the CVD method for 10 minutes. As a result, two types of polycrystalline Si fine particles having different sizes were formed on the same substrate by controlling the position. Finally, as shown in FIG. 6, Ni electrodes 1 and 2 are formed by vapor deposition (thickness of 1000) so that two kinds of fine particles, large and small, are both contained inside the gap.
Ii) The device was completed.

こうして得られた電子放出素子の電子放出特性は、フ
オーミングを必要とする従来の素子に比べ非常に安定し
ており、電流の変動幅はほぼ5%以内であった。
The electron-emitting characteristics of the electron-emitting device thus obtained were much more stable than those of the conventional device requiring forming, and the fluctuation range of the current was within approximately 5%.

また、微粒子の大きさ及び間隔を一定にした素子で
は、諸特性の再現性は良好であった。
In the device in which the size and the interval of the fine particles were constant, the reproducibility of various characteristics was good.

〔実施例3〕 積層構造を有する薄膜によって形成された電子放出素
子の上面図を第7図−aに示す。同図において、5は素
子を構成する基板、13,13′は絶縁層、14は核形成密度
の高い変質領域、15は14から成長した多結晶微粒子、1,
2は素子駆動用の電極である。
Example 3 FIG. 7-a shows a top view of an electron-emitting device formed of a thin film having a laminated structure. In the figure, 5 is a substrate constituting an element, 13 and 13 'are insulating layers, 14 is an altered region having a high nucleation density, 15 is polycrystalline fine particles grown from 14, 1,
Reference numeral 2 denotes an element driving electrode.

また、第7図−aのA−A′に沿った断面図を第7図
−bに、B−B′に沿った断面図を第7図−cに示す。
FIG. 7-b shows a cross-sectional view along AA 'in FIG. 7-a, and FIG. 7-c shows a cross-sectional view along BB' in FIG. 7-a.

正常な#7059ガラス基板(コーニング社製)5上に通
常の真空蒸着及びフオトリソグラフイ技術を用いて下部
くし形電極1を形成した。次に、くし形電極1をフオト
レジストで保護した上に、SiO2絶縁膜13をCVD法を用い
て1000Å形成した後、第7図に示す様にくし形電極上に
CVD法により、Si3N4層14をほぼ200Å形成し、化学エツ
チングによって幅0.5μmのストライプ形状とした。さ
らに、SiO2絶縁膜13′と同様にSiO2層1000Åを形成した
後、上部くし形電極2を形成し、前記レジストをリフト
オフすることによって素子を完成した。
The lower comb-shaped electrode 1 was formed on a normal # 7059 glass substrate (manufactured by Corning Incorporated) 5 using ordinary vacuum evaporation and photolithography techniques. Next, after protecting the comb-shaped electrode 1 with a photoresist, an SiO 2 insulating film 13 is formed at a thickness of 1000 ° by the CVD method, and then, as shown in FIG.
The Si 3 N 4 layer 14 was formed to a thickness of about 200 μm by the CVD method, and was formed into a stripe shape having a width of 0.5 μm by chemical etching. Further, after forming an SiO 2 layer 1000 ° similarly to the SiO 2 insulating film 13 ′, the upper comb-shaped electrode 2 was formed, and the resist was lifted off to complete the device.

こうして得られた素子は、SiO2とSi3N4及び上下電極
からなる層状構造となっており、第7図−cに示すよう
に、各層の端面が露出している。従って、この端面部分
に実施例1と同様の方法を用いて、Siの選択核成長を行
い、Si3N4部分にのみ、Si多結晶微粒子を成長させた。
The device thus obtained has a layered structure composed of SiO 2 , Si 3 N 4 and upper and lower electrodes, and the end faces of each layer are exposed as shown in FIG. 7-c. Therefore, selective nucleus growth of Si was performed on the end face portion by using the same method as in Example 1, and Si polycrystalline fine particles were grown only on the Si 3 N 4 portion.

こうして得られた電子放出素子の電子放出特性を測定
した結果、 実施例1及び実施例2と同様な良好な結果が得られ
た。
As a result of measuring the electron emission characteristics of the electron-emitting device thus obtained, the same good results as those of the first and second embodiments were obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように、電極間の絶縁体表面に複数の多
結晶微粒子が、互いに隣接する多結晶微粒子と離間して
分散配置されている素子構造とすることで、従来フオー
ミング処理を必要とした表面伝導型電子放出素子と比べ
次のような効果がある。
As described above, by forming an element structure in which a plurality of polycrystalline fine particles are dispersedly arranged on the insulator surface between the electrodes at a distance from the adjacent polycrystalline fine particles, the surface which conventionally required the forming process is formed. The following effects are obtained as compared with the conduction electron-emitting device.

1.多結晶微粒子を基板上に固定できるため、安定した電
子放出が得られる。
1. Stable electron emission can be obtained because the polycrystalline fine particles can be fixed on the substrate.

2.素子構造の最適化が容易である。2. Easy to optimize device structure.

3.素子特性の再現性が良好である。3. Good reproducibility of element characteristics.

【図面の簡単な説明】 第1図は一実施形態を示す模式図、 第2図は第1図A−B方向の模式的断面図、 第3図は本発明による一実施例を示す断面図、 第4図は第3図の上面図、 第5図は微粒子の大きさを制御した一実施形態を示す上
面図、 第6図は第5図に示す素子の上面図、 第7図−a,第7図−b,第7図−cは本発明を応用して実
施した素子の模式図、 第8図は従来の電子放出素子の平面図である。 1,2……Ni電極 3,10,12……多結晶微粒子 4……電子放出部 5,7……素子構成基板 6……Si3N4微小薄膜 8,13……絶縁薄膜 9,11……Siイオン注入層 21,22……電極 23……薄膜 24……基板 25……電子放出部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing one embodiment, FIG. 2 is a schematic cross-sectional view taken along the line AB in FIG. 1, and FIG. 3 is a cross-sectional view showing one embodiment according to the present invention. 4, FIG. 4 is a top view of FIG. 3, FIG. 5 is a top view showing one embodiment in which the size of fine particles is controlled, FIG. 6 is a top view of the element shown in FIG. 5, FIG. 7, FIG. 7-b and FIG. 7-c are schematic views of a device implemented by applying the present invention, and FIG. 8 is a plan view of a conventional electron-emitting device. 1,2 Ni electrode 3,10,12 Polycrystalline fine particles 4 Electron emission part 5,7 Device substrate 6 ... Si 3 N 4 micro thin film 8,13 Insulating thin film 9,11 ... Si ion implanted layer 21,22 ... Electrode 23 ... Thin film 24 ... Substrate 25 ... Emitting part

フロントページの続き (72)発明者 坂野 嘉和 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 鱸 英俊 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 横野 幸次郎 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭63−207028(JP,A) 特開 昭59−69495(JP,A) 特開 昭64−107440(JP,A) 特公 昭53−25632(JP,B2)Continuing on the front page (72) Inventor Yoshikazu Banno 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Hidetoshi Suzuki 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Kojiro Yokono 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (56) References JP-A-63-207028 (JP, A) JP-A-59-69495 (JP, A) JP-A-64-107440 (JP, A) JP-B-53-25632 (JP, B2)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電極間の絶縁体表面に複数の多結晶微粒子
が、互いに隣接する多結晶微粒子と離間して分散配置さ
れていることを特徴とする電子放出素子。
1. An electron-emitting device wherein a plurality of polycrystalline fine particles are dispersedly arranged on an insulator surface between electrodes so as to be spaced apart from adjacent polycrystalline fine particles.
【請求項2】前記多結晶微粒子が結晶成長により得られ
る特許請求の範囲第1項記載の電子放出素子。
2. The electron-emitting device according to claim 1, wherein said polycrystalline fine particles are obtained by crystal growth.
【請求項3】前記多結晶微粒子成長部位が非成長部位に
対して核形成密度が十分に大きい領域である特許請求の
範囲第2項記載の電子放出素子。
3. The electron-emitting device according to claim 2, wherein said polycrystalline fine particle growth site is a region where nucleation density is sufficiently higher than a non-growth site.
【請求項4】前記電極は、前記絶縁体表面に沿って並設
されている特許請求の範囲第1項〜第3項のいずれかに
記載の電子放出素子。
4. The electron-emitting device according to claim 1, wherein said electrodes are arranged side by side along said insulator surface.
【請求項5】前記電極は、前記絶縁体を介して積層され
ている特許請求の範囲第1項〜第3項のいずれかに記載
の電子放出素子。
5. The electron-emitting device according to claim 1, wherein said electrodes are stacked with said insulator interposed therebetween.
JP30729087A 1987-12-03 1987-12-03 Electron-emitting device Expired - Fee Related JP2632883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30729087A JP2632883B2 (en) 1987-12-03 1987-12-03 Electron-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30729087A JP2632883B2 (en) 1987-12-03 1987-12-03 Electron-emitting device

Publications (2)

Publication Number Publication Date
JPH01149335A JPH01149335A (en) 1989-06-12
JP2632883B2 true JP2632883B2 (en) 1997-07-23

Family

ID=17967352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30729087A Expired - Fee Related JP2632883B2 (en) 1987-12-03 1987-12-03 Electron-emitting device

Country Status (1)

Country Link
JP (1) JP2632883B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303308B2 (en) 2007-11-20 2009-07-29 シャープ株式会社 Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
JP4458380B2 (en) * 2008-09-03 2010-04-28 キヤノン株式会社 Electron emitting device, image display panel using the same, image display device, and information display device
US8299700B2 (en) 2009-02-05 2012-10-30 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
CN101814405B (en) 2009-02-24 2012-04-25 夏普株式会社 Electron emitting element, method for producing electron emitting element and each device using the same
JP4932873B2 (en) 2009-05-19 2012-05-16 シャープ株式会社 Self-light-emitting element, self-light-emitting device, image display device, self-light-emitting element driving method, and method of manufacturing self-light-emitting element
JP4732533B2 (en) 2009-05-19 2011-07-27 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP4777448B2 (en) 2009-05-19 2011-09-21 シャープ株式会社 Electron emitting device, electron emitting device, self-luminous device, image display device, blower device, cooling device, charging device, image forming device, and electron beam curing device
JP4732534B2 (en) 2009-05-19 2011-07-27 シャープ株式会社 Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
CN101930884B (en) 2009-06-25 2012-04-18 夏普株式会社 Electron emitting element and method for producing electron emitting element, electron emitting device, self luminescence device and image display device
JP4880740B2 (en) 2009-12-01 2012-02-22 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325632A (en) * 1976-08-21 1978-03-09 Sumitomo Metal Ind Pulverization method of melted blast furnace slag
JPS5969495A (en) * 1982-10-13 1984-04-19 Nippon Telegr & Teleph Corp <Ntt> Formation of silicon-single crystal film
JPS6238076A (en) * 1985-08-13 1987-02-19 Asahi Shinbunsha:Kk Overall photograph processing unit
JP2612567B2 (en) * 1987-02-23 1997-05-21 キヤノン株式会社 Electron-emitting device

Also Published As

Publication number Publication date
JPH01149335A (en) 1989-06-12

Similar Documents

Publication Publication Date Title
US5285129A (en) Segmented electron emission device
US5532544A (en) Electron-emitting device with electron-emitting region insulated from electrodes
JP2630988B2 (en) Electron beam generator
US5023110A (en) Process for producing electron emission device
JP2715304B2 (en) MIM type electron-emitting device
JPH0687392B2 (en) Method for manufacturing electron-emitting device
JP2632883B2 (en) Electron-emitting device
JP2608295B2 (en) Electron-emitting device
JP2632359B2 (en) Electron emitting device and method of manufacturing the same
JP2809078B2 (en) Field emission cold cathode and method of manufacturing the same
JPH01200532A (en) Electron emission element and manufacture thereof
JP2630983B2 (en) Electron-emitting device
JP2897671B2 (en) Field emission cold cathode
JP2727193B2 (en) Method for manufacturing electron-emitting device
JPS63184230A (en) Electron emission element
JP2678757B2 (en) Electron emitting device and method of manufacturing the same
JP2646235B2 (en) Electron emitting device and method of manufacturing the same
JP2646236B2 (en) Electron emitting device and method of manufacturing the same
JP3622406B2 (en) Cold electron-emitting device and manufacturing method thereof
JP2630984B2 (en) Method for manufacturing electron-emitting device
JP3595821B2 (en) Cold electron-emitting device and method of manufacturing the same
JPH0197354A (en) Electron emission element
JP2854224B2 (en) Method for manufacturing electron-emitting device
JP2622838B2 (en) Method for manufacturing electron-emitting device
JP3945049B2 (en) Method for manufacturing cold electron-emitting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees