JPH01112631A - Electron emitting element and its manufacture - Google Patents

Electron emitting element and its manufacture

Info

Publication number
JPH01112631A
JPH01112631A JP62269393A JP26939387A JPH01112631A JP H01112631 A JPH01112631 A JP H01112631A JP 62269393 A JP62269393 A JP 62269393A JP 26939387 A JP26939387 A JP 26939387A JP H01112631 A JPH01112631 A JP H01112631A
Authority
JP
Japan
Prior art keywords
electron
electrodes
electron emitting
emitting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62269393A
Other languages
Japanese (ja)
Inventor
Makiko Kobayashi
真起子 小林
Ichiro Nomura
一郎 野村
Yoshikazu Sakano
坂野 嘉和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62269393A priority Critical patent/JPH01112631A/en
Publication of JPH01112631A publication Critical patent/JPH01112631A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To enhance the preciseness of an electron emitting part forming position and secure wide versatility for a surface conductive electron emitting element by performing formation of the electron emitting part and supply of emission current by the sue of each electrode. CONSTITUTION:A film 8 consisting of metal, semiconductor, etc., is formed on a base board 5. A conductive metal is laminated on the two ends of this film 8 so as to form electrodes 1, 2. The central neck of the film 8 is heated by performing current supply between these electrodes 1, 2, which forms an electron emitting part 4, whose position is defined by the use of specified electrodes 1, 2, and there is no risk of formation unnecessarily in other parts. Then electrodes 6, 7 for supply of emission current are formed by lamination of conductive metal on the two sides of the electron emitting part 4. These electrodes 6, 7 cover the other parts of the film deteriorated by current supply to enable driving with a low voltage. This raises the degree of freedom for the shape of film 8 and increases versatility.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、電子放出素子及びその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to an electron-emitting device and a method for manufacturing the same.

[従来の技術] 従来、簡rpな構造で電子の放出が得られる素子として
、例えば、エム アイ エリンソン (M、r。
[Prior Art] Conventionally, as an element that can emit electrons with a simple structure, for example, MI Ellingson (M, R.

Elinson)等によって発表された冷陰極素子が知
られている[ラジオ エンジニアリング エ し クト
ロン フィジックス(Radio Eng、 Elec
tron。
The cold cathode device announced by E. Elinson and others is known.
tron.

Phys、)第10巻、 1290〜1296頁、 1
965年]。
Phys,) Volume 10, pp. 1290-1296, 1
965].

これは、基板りに形成された小面積の薄膜に、膜面にモ
行に電流を流すことにより、電子放出が生ずる現象を利
用するもので、一般には表面伝導形放出素子と呼ばれて
いる。
This device utilizes the phenomenon that electrons are emitted by passing a current through a small-area thin film formed on a substrate, and is generally referred to as a surface conduction type emission device. .

この表面伝導形放出素子としては、前記エリンソンTに
より開発された5n02(Sb)薄11Qを用いたもの
、A u 1.h Il’l’によるもの[ジー、ディ
トマー°゛スイン ソリド フィルムス” (G、Di
ttmer:  ”Th1nSolid Films 
” 、 9巻、317頁、 (1972年)]。
This surface conduction type emission device uses 5n02 (Sb) thin 11Q developed by Ellingson T., and A u 1. h by Il'l'
ttmer: ”Th1nSolid Films
”, vol. 9, p. 317, (1972)].

I To 7X、h IlqによるものCエム ハート
ウェル アンド シー ジー フォンスタッド“アイ 
イーイー イー トランス″イー デイ−コンフ(M、
Hartwell  and  C,G、Fonsta
d:  ”IEEE  Trans。
I To 7X, h Ilq by C M Hartwell and C G Fonstad “I
Eee Ee Trance''Ee Day Conf (M,
Hartwell and C, G, Fonsta
d: “IEEE Trans.

ED Conf、” )519頁、 (1975年)]
、カーボン薄膜によるもの[荒木久他:゛°真空″、第
26巻、第1号、22頁、 (1983年)]などが報
告されている。
ED Conf,” ) p. 519, (1975)]
, and those using carbon thin films [Hisashi Araki et al.: "Vacuum", Vol. 26, No. 1, p. 22, (1983)] have been reported.

これらの表面伝導形放出素子の典型的な素子構成を第3
図に示す。同図において、■および2は電気的接続を得
る為の電極、3は電子放出材料で形成される薄膜、4は
電子放出部、5は基板を示す。
Typical device configurations of these surface conduction type emitters are shown in the third section.
As shown in the figure. In the figure, 2 and 2 are electrodes for obtaining electrical connection, 3 is a thin film made of an electron-emitting material, 4 is an electron-emitting portion, and 5 is a substrate.

従来、これらの表面伝導形放出素子においては、電子放
出を行う前にあらかしめフォーミンクと呼ばれる通電加
熱処理によって電子放出部を形成する。即ち、前記電極
lと電極2の間に電圧を印加する!1丁により、薄膜3
に通電し、これにより発生するジュール熱で薄膜3を局
所的に破壊、変形もしくは変質せしめ、電気的に高抵抗
な状態にした電子放出部4を形成することにより電子放
出機能を得ている。
Conventionally, in these surface conduction type emitters, an electron emitting portion is formed by an electrical heating treatment called preforming before electron emission. That is, a voltage is applied between the electrode 1 and the electrode 2! With one knife, thin film 3
The electron emitting function is obtained by energizing the thin film 3 and locally destroying, deforming or deteriorating the thin film 3 by the Joule heat generated thereby to form an electron emitting portion 4 in an electrically high resistance state.

[発明が解決しようとしている問題点]しかしながら、
上記従来例では電子放出素子として応用する場合、次の
様な欠点があった。
[Problem that the invention seeks to solve] However,
The above conventional example has the following drawbacks when applied as an electron-emitting device.

(1)高電圧をかけてフォーミングを行うため、薄膜の
電子放出機能外の部分に電気伝導度の低下などの劣化が
見られる。
(1) Since forming is performed by applying a high voltage, deterioration such as a decrease in electrical conductivity is observed in parts of the thin film that do not have an electron-emitting function.

(2)フォーミングによって形成される電子放出部の位
置が素子によってばらつきがちである。
(2) The position of the electron emitting portion formed by forming tends to vary depending on the device.

(3)フォーミングの条件などにより、素子の形状が制
限される。
(3) The shape of the element is limited by forming conditions and the like.

以上の様な問題点があるため、表面伝導形放出泰子は、
素子構造が簡単である、電子放出効率が高いなどの利点
があるにもかかわらず、産業」二積極的に応用されるに
は至っていなかった。
Due to the above-mentioned problems, surface conduction type emissive Yasuko
Although it has advantages such as a simple device structure and high electron emission efficiency, it has not been actively applied in industry.

本発明の目的は、この様な従来の欠点を解決し、応用に
使い易い電子放出素子及びその製造方法を提供すること
である。
SUMMARY OF THE INVENTION An object of the present invention is to solve these conventional drawbacks and provide an electron-emitting device that is easy to use and a method for manufacturing the same.

[問題点を解決するための手段] 即ち、本発明は電子放出部を有する薄膜を基板」二に設
けた電子放出素子において1通電加熱処理によって電子
放出部を形成するための電極と電子放出部に放出電流を
供給するための電極とを有することを特徴とする電子放
出素子である。
[Means for Solving the Problems] That is, the present invention provides an electron-emitting device in which a thin film having an electron-emitting region is provided on a substrate. This is an electron-emitting device characterized by having an electrode for supplying an emission current to an electron-emitting device.

更に本発明は電子放出部を有する薄膜を基板上に設けた
電子放出素子を製造する方法において、薄膜の作成後に
電子放出部を形成するための電極を設け、通電加熱処理
によって電子放出部を形成し、更に電子放出部に放出電
流を供給するための電極を電子放出部の両側に設けるこ
とを特徴とする電子放出素子の製造方法である。
Furthermore, the present invention provides a method for manufacturing an electron-emitting device in which a thin film having an electron-emitting region is provided on a substrate, in which an electrode for forming the electron-emitting region is provided after the thin film is formed, and the electron-emitting region is formed by an electrical heating treatment. The method of manufacturing an electron-emitting device is further characterized in that electrodes for supplying an emission current to the electron-emitting region are provided on both sides of the electron-emitting region.

[実施例] 第1図(a)、(b)は本発明の電子放出素子の一例を
示すモ面図及び断面図であり、同図において1.2はフ
ォーミングを行うための電極、3は薄膜、4はフォーミ
ングによって形成される電子放出部、5は基板、6.7
は駆動用の電極である。
[Example] FIGS. 1(a) and 1(b) are a top view and a sectional view showing an example of an electron-emitting device of the present invention, in which 1.2 is an electrode for forming, and 3 is an electrode for forming. Thin film, 4 is an electron emission part formed by forming, 5 is a substrate, 6.7
is a driving electrode.

電極1.2間に電圧を印加することによって薄膜3内に
電子放出部4を形成し、その後蒸着した電極6.7間に
電圧を印加することによって電子放出部4から放出電流
を得る。
An electron emitting region 4 is formed in the thin film 3 by applying a voltage between the electrodes 1.2, and an emission current is then obtained from the electron emitting region 4 by applying a voltage between the deposited electrodes 6.7.

本例ではL1= 0.5mm 、 LH・= 30IL
m、 l = 0.3mm 。
In this example, L1=0.5mm, LH・=30IL
m, l = 0.3 mm.

W= 5mm、 ω=0.1mmとした。W = 5 mm, ω = 0.1 mm.

従来、基板としてソーダガラスを用いると電子放出部の
位置が素子によって犬きくばらついていた。ばらつきを
なくすために薄It!2不ツタ部分を短くするとフォー
ミングに要する熱がフォーミング用の電極に逃げるため
、更に電力増大が必要となり、ガラス基板の割れが生じ
る。そこで、歩留まりや再現性を考慮すると第1図にお
いて2:0.3mm 、 ω= 0.1mmが適当と思
われる。
Conventionally, when soda glass is used as a substrate, the position of the electron-emitting portion varies widely depending on the device. Thin It! to eliminate variations! If the 2-bump portion is shortened, the heat required for forming will escape to the forming electrode, which will require a further increase in power and cause cracks in the glass substrate. Therefore, considering yield and reproducibility, 2:0.3 mm and ω=0.1 mm in FIG. 1 seem to be appropriate.

薄膜材料としてSn02を用いネック部分の大きさを0
.3mm 、ω=0.1mmとした場合には薄膜ネック
部分の抵抗値はフォーミング前には約300Ωであるが
フォーミングによって高温になり、フォーミング後には
電子放出部分を除いて約1にΩ以上となり、電子放出部
は数10にΩとなる。この素子をそのまま駆動する従来
例では駆動電圧が高くなってしまうが、本発明により、
駆動電極を第1図において例えばL2=30Bとなる様
に1没置すると高抵抗化した7’、h Ilqのうち、
電子放出部の近傍以外の大部分を履うことかでき低い駆
動電圧で放出電子を得ることができる。
Using Sn02 as the thin film material, the size of the neck part is 0.
.. 3 mm, and ω = 0.1 mm, the resistance value of the thin film neck portion is approximately 300 Ω before forming, but it becomes high temperature due to forming, and after forming, the resistance value increases to approximately 1 Ω or more, excluding the electron emitting portion. The electron emitting portion has a resistance of several tens of Ω. In the conventional example where this element is driven as is, the driving voltage becomes high, but with the present invention,
For example, when the drive electrode is placed 1 in FIG. 1 so that L2=30B, the resistance becomes high among 7' and h Ilq.
Since most of the area other than the vicinity of the electron emitting part can be covered, emitted electrons can be obtained with a low driving voltage.

第2図(a)〜(d)は本発明の電子放出素子の製造方
法の一例を示す工程図である。まず基板5上に同図(a
)に示す形状の金属・半導体等からなる被膜8を形成す
る(第2図(a)参照)。
FIGS. 2(a) to 2(d) are process diagrams showing an example of the method for manufacturing the electron-emitting device of the present invention. First, place the same figure (a) on the board 5.
) A coating 8 made of metal, semiconductor, etc. is formed as shown in FIG. 2(a).

次いで、被膜8の両端部に導電性金属を積層することに
より、電極1.2を形成する(第2図(b)参照)。
Next, electrodes 1.2 are formed by laminating conductive metal on both ends of the coating 8 (see FIG. 2(b)).

その後、電極1.2間に通電処理を施すと、被膜8の中
央ネック部分が加熱されてフォーミングが起こり電子放
出部4が形成される(第2図(c)参照)。
Thereafter, when electricity is applied between the electrodes 1 and 2, the central neck portion of the coating 8 is heated and forming occurs, forming the electron emitting portion 4 (see FIG. 2(c)).

更に、電子放出部4の両側に導電性金属を積層すること
により電極6.7が形成され電子放出素子が得られる(
第2図(d)参照)。
Furthermore, electrodes 6.7 are formed by laminating conductive metal on both sides of the electron emitting part 4, and an electron emitting element is obtained (
(See Figure 2(d)).

本発明において、電子放出部を形成する薄膜の材料とし
ては、特に限定することなく、通常使用されている広範
囲のものを用いることができ、例えば5na2. In
2O3,PbO等の金属醸化物、 Au、 Ag等の金
属、カーボン、その他各種の半導体などいずれのものも
使用可能である。
In the present invention, the material of the thin film forming the electron-emitting region is not particularly limited, and a wide variety of commonly used materials can be used, such as 5na2. In
Any of metal compounds such as 2O3 and PbO, metals such as Au and Ag, carbon, and various other semiconductors can be used.

薄膜の膜厚は、通常の表面伝導型放出素子に用いられて
いる厚さであればよく、その具体例を示すと、使用され
る材料の種類により異なるが、通常0.O1〜5μl、
好ましくは0.01〜2涛■である。
The thickness of the thin film may be any thickness used in normal surface conduction type emitters, and specific examples thereof vary depending on the type of material used, but are usually 0. O1-5μl,
Preferably it is 0.01 to 2 hours.

また、電極部材としてはフォーミング用の電極、駆動用
の電極共に、特に限定されることなく通常使用されてい
る広範囲のものを用いることができ、例えばNi、 P
t、 Af、 Cu、 Au等の金属やその他の導電性
部材を使用することができる。
In addition, the electrode members for both forming electrodes and driving electrodes are not particularly limited, and a wide range of commonly used materials can be used, such as Ni, P, etc.
Metals such as T, Af, Cu, and Au and other conductive materials can be used.

なお、第1図におし)で、電子放出部の近傍を切り出す
ことにより、電子放出素子の小型化を実現でき、マルチ
化が可能となり応用範囲が広がる。
Note that by cutting out the vicinity of the electron-emitting portion (as shown in FIG. 1), the electron-emitting device can be miniaturized, making it possible to use multiple devices and widening the range of applications.

更に、電子放出部の近傍を切り出す位置の調整によって
、素子によってばらつきがちであった電子放出部の位置
を統一させることができる。
Furthermore, by adjusting the position at which the vicinity of the electron-emitting region is cut out, the position of the electron-emitting region, which tends to vary depending on the device, can be unified.

[発明の効果] 以上説明した様に、フォーミング後に新たに電極を設け
ることにより次の様な効果がある。
[Effects of the Invention] As explained above, the following effects can be obtained by newly providing an electrode after forming.

(1)従来は電極位置及び薄膜ネック部分の大きざをフ
ォーミングと駆動との兼ね合いから決定していたが、駆
動用の電極を新たに設けることによりフォーミング用の
電極位置、材料及び薄膜ネック部分の大きさをフォーミ
ングに最適に選ぶことができ、それによって素子の再現
性・歩留まりが向上する。
(1) Conventionally, the electrode position and the size of the thin film neck part were determined based on the balance between forming and driving, but by providing a new drive electrode, the electrode position for forming, material, and size of the thin film neck part were determined The size can be optimally selected for forming, thereby improving device reproducibility and yield.

(2)フォーミングによって電気伝導度の低下などの劣
化をした、薄膜の電子放出線以外の部分を駆動用の電極
で覆うことによつそ、従来例よりも低い電圧で駆動させ
ることができる。
(2) By covering the parts of the thin film other than the electron emission lines, which have deteriorated due to forming, such as a decrease in electrical conductivity, with a driving electrode, it is possible to drive the thin film at a lower voltage than in the conventional example.

(3)電子放出素子の形状の自由度が増す。(3) The degree of freedom in the shape of the electron-emitting device increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の電子放出素子の一例を
示す平面図及び断面図、第2図(a)〜(d)は本発明
の電子放出素子の製造方法の一例を示す工程図、第3図
は従来の電子放出素子の平面図である。 1.2・・・電極、     3・・・薄膜、4・・・
電子放出部、    5・・・基板。 6.7・・・電極、     8・・・被膜。 代理人  豊  1) 善  雄 隼1 図 党2図
FIGS. 1(a) and (b) are a plan view and a cross-sectional view showing an example of an electron-emitting device of the present invention, and FIGS. 2(a) to (d) are an example of a method for manufacturing an electron-emitting device of the present invention. The process diagram shown in FIG. 3 is a plan view of a conventional electron-emitting device. 1.2... Electrode, 3... Thin film, 4...
Electron emission part, 5... Substrate. 6.7... Electrode, 8... Coating. Agent Yutaka 1) Zen Yu Hayabusa 1 Zuto 2 Zu

Claims (1)

【特許請求の範囲】 1)電子放出部を有する薄膜を基板上に設けた電子放出
素子において、通電加熱処理によって電子放出部を形成
するための電極と電子放出部に放出電流を供給するため
の電極とを有することを特徴とする電子放出素子。 2)電子放出部を有する薄膜を基板上に設けた電子放出
素子を製造する方法において、薄膜の作成後に電子放出
部を形成するための電極を設け、通電加熱処理によって
電子放出部を形成し、更に電子放出部に放出電流を供給
するための電極を電子放出部の両側に設けることを特徴
とする電子放出素子の製造方法。
[Scope of Claims] 1) In an electron-emitting device in which a thin film having an electron-emitting region is provided on a substrate, an electrode for forming the electron-emitting region and a method for supplying an emission current to the electron-emitting region by energization heating treatment. An electron-emitting device characterized by having an electrode. 2) In a method for manufacturing an electron-emitting device in which a thin film having an electron-emitting portion is provided on a substrate, an electrode for forming the electron-emitting portion is provided after the thin film is formed, and the electron-emitting portion is formed by heating with electricity, A method for manufacturing an electron-emitting device, further comprising providing electrodes on both sides of the electron-emitting region for supplying an emission current to the electron-emitting region.
JP62269393A 1987-10-27 1987-10-27 Electron emitting element and its manufacture Pending JPH01112631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62269393A JPH01112631A (en) 1987-10-27 1987-10-27 Electron emitting element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62269393A JPH01112631A (en) 1987-10-27 1987-10-27 Electron emitting element and its manufacture

Publications (1)

Publication Number Publication Date
JPH01112631A true JPH01112631A (en) 1989-05-01

Family

ID=17471784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62269393A Pending JPH01112631A (en) 1987-10-27 1987-10-27 Electron emitting element and its manufacture

Country Status (1)

Country Link
JP (1) JPH01112631A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620581A2 (en) * 1993-04-05 1994-10-19 Canon Kabushiki Kaisha Method of manufacturing electron source, electron source manufactured by said method, and image forming apparatus using said electron sources
EP0683501A2 (en) * 1994-05-20 1995-11-22 Canon Kabushiki Kaisha An image forming apparatus and method for manufacturing the same
US6283813B1 (en) 1994-05-20 2001-09-04 Canon Kabushiki Kaisha Image forming apparatus and a method for manufacturing the same
US6626719B2 (en) 1994-07-20 2003-09-30 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device as well as electron source and image-forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620581A2 (en) * 1993-04-05 1994-10-19 Canon Kabushiki Kaisha Method of manufacturing electron source, electron source manufactured by said method, and image forming apparatus using said electron sources
EP0620581A3 (en) * 1993-04-05 1994-11-02 Canon Kabushiki Kaisha Method of manufacturing electron source, electron source manufactured by said method, and image forming apparatus using said electron sources
US5593335A (en) * 1993-04-05 1997-01-14 Canon Kabushiki Kaisha Method of manufacturing an electron source
EP0683501A2 (en) * 1994-05-20 1995-11-22 Canon Kabushiki Kaisha An image forming apparatus and method for manufacturing the same
EP0683501A3 (en) * 1994-05-20 1997-01-15 Canon Kk An image forming apparatus and method for manufacturing the same.
US6087770A (en) * 1994-05-20 2000-07-11 Canon Kabushiki Kaisha Image forming apparatus and a method for manufacturing the same
US6283813B1 (en) 1994-05-20 2001-09-04 Canon Kabushiki Kaisha Image forming apparatus and a method for manufacturing the same
US6626719B2 (en) 1994-07-20 2003-09-30 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device as well as electron source and image-forming apparatus

Similar Documents

Publication Publication Date Title
JPH06310043A (en) Electron emission device
JPH01112631A (en) Electron emitting element and its manufacture
JP2630983B2 (en) Electron-emitting device
JP2614048B2 (en) Method and apparatus for manufacturing electron-emitting device
JP2610143B2 (en) Electron emitting device and method of manufacturing the same
JP2727193B2 (en) Method for manufacturing electron-emitting device
JP2000200543A (en) Sealed panel device and its manufacture
JP2678757B2 (en) Electron emitting device and method of manufacturing the same
JP2631007B2 (en) Electron emitting element, method of manufacturing the same, and image forming apparatus using the element
JP2614047B2 (en) Method for manufacturing electron-emitting device
JP3023734B2 (en) Electron emitting device and image display device
JP2949639B2 (en) Electron emitting element, electron source, image forming apparatus, and method of manufacturing them
JP2617739B2 (en) Method of manufacturing electron-emitting device and electron-emitting device
JP2646235B2 (en) Electron emitting device and method of manufacturing the same
JP2850090B2 (en) Method of manufacturing electron-emitting device and electron source
JPH0272534A (en) Electron beam generator
JP2622838B2 (en) Method for manufacturing electron-emitting device
JP2835962B2 (en) Image forming device
JP2630984B2 (en) Method for manufacturing electron-emitting device
JPS6230780Y2 (en)
JP2002203479A (en) Manufacturing method for electron emission element, electron emission element, electron source and image formation device
JPH04363834A (en) Electron emission device
JPH07123022B2 (en) Method for manufacturing electron-emitting device
JPH11317179A (en) Image forming device and forming method of spacer used therefor
JPH01292727A (en) Electron emitting device