JPH0494032A - Electron emission element and image forming device using electron emission element - Google Patents

Electron emission element and image forming device using electron emission element

Info

Publication number
JPH0494032A
JPH0494032A JP2211808A JP21180890A JPH0494032A JP H0494032 A JPH0494032 A JP H0494032A JP 2211808 A JP2211808 A JP 2211808A JP 21180890 A JP21180890 A JP 21180890A JP H0494032 A JPH0494032 A JP H0494032A
Authority
JP
Japan
Prior art keywords
electron
electron emission
emitting
electrodes
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2211808A
Other languages
Japanese (ja)
Other versions
JP2949639B2 (en
Inventor
Rie Takahashi
理恵 高橋
Ichiro Nomura
一郎 野村
Yoshikazu Sakano
坂野 嘉和
Toshihiko Takeda
俊彦 武田
Tetsuya Kaneko
哲也 金子
Haruto Ono
治人 小野
Hidetoshi Suzuki
英俊 鱸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21180890A priority Critical patent/JP2949639B2/en
Publication of JPH0494032A publication Critical patent/JPH0494032A/en
Application granted granted Critical
Publication of JP2949639B2 publication Critical patent/JP2949639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Abstract

PURPOSE:To make the electron performance such as the electron emission amount and the electron emission efficiency controllable easily, and to obtain an electron emission element with little unevenness of performance between elements, by composing the part of difference in level of the element with a material whose heat conductivity is different from that of an insulating base, and positioning an electron emission member near the part of the difference in level of the element. CONSTITUTION:Between electrodes 33 and 34 on an insulating base 31, an electron emission regulating member 32 is provided projecting upward. The amount of the difference in level formed by the electron emission regulating member 32 is enough to be 0.1 to 1mum. And the width is enough to be 1/2 the interval of the electrodes. As the electron emission regulating member 32, a material whose thermal conductivity is different from that of the base 31. When a blue plate glass is used as the insulating base 31, for example, an insulating material such as alumina, or a metal material such as Au is used for the member 32. Then, by dispersing and spreading an organic metal between the electrodes and then baking it, a minute metallic particle membrane 35 is formed between the electrodes 33 and 34. By applying a current feeding process to the minute particle member 35, an electron emision member 36 is formed linearly along the part of the difference in level of the electron emission regulating member 32.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、冷陰極型の電子放出素子、及び該素子を用い
た画像形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cold cathode type electron-emitting device and an image forming apparatus using the device.

[従来の技術] 従来、簡単な構造で電子の放出が得られる素子として、
例えばエム アイ エリンソン(M。
[Prior Art] Conventionally, as an element that can emit electrons with a simple structure,
For example, MI Ellingson (M.

r、Elinson)等によって発表された冷陰極素子
が知られている[ラジオ エンジニアリング エレクト
ロン フィジックス(Radi。
The cold cathode device announced by E. R., Elinson et al. [Radio Engineering Electron Physics (Radi.

Eng、  Ele、ctron Phys、)第1.
0巻、1290〜1296頁、1965年コ。
Eng, Ele, ctron Phys,) 1st.
0, pp. 1290-1296, 1965.

これは、基板上に形成された小面積の薄膜に、膜内に平
行に電流を流すことにより、電子放出が生ずる現象を利
用するもので、一般には表面伝導形電子放出素子と呼ば
れている。
This device utilizes the phenomenon in which electrons are emitted by passing a current parallel to a small-area thin film formed on a substrate, and is generally referred to as a surface conduction electron-emitting device. .

この表面伝導形電子放出素子としては、前記エリンソン
等により開発された5no2 (Sb)薄膜によるもの
[ジー・ディトマー“スイン ソリド フィルムス” 
(G、Dittmer:“Th1n  5olid  
Films”)、9巻317頁、(1972年)]、I
TO薄膜によるもの[エム ハートウェル アンド ジ
−シーツオンスタッド “アイイーイーイートランス”
イーディーフンファレン(M、Hartwe 11an
d  C,G、Fonstad;  “I EEETr
ans、ED  Conf、”)519頁。
This surface conduction type electron-emitting device is based on the 5NO2 (Sb) thin film developed by Ellingson et al.
(G, Dittmer: “Th1n 5olid
Films”), Vol. 9, p. 317, (1972)], I
Using TO thin film [M. Hartwell and G.S.
Edie Hunfalen (M, Hartwe 11an)
d C, G, Fonstad;
ans, ED Conf,”) 519 pages.

(1975年)]、カーボン薄膜によるもの[荒木久他
: “真空”第26巻、第1号、22頁。
(1975)], by carbon thin film [Hisashi Araki et al.: “Vacuum” Vol. 26, No. 1, p. 22.

(1983年)]・などが報告されている。(1983)] etc. have been reported.

これらの表面伝導形電子放出素子の典型的な素子構成を
第1図に示す。同図において1および2は電気的接続を
得るための電極、3は電子放出材料で形成される薄膜、
4は基板、5は電子放出部を示す。
A typical device configuration of these surface conduction type electron-emitting devices is shown in FIG. In the same figure, 1 and 2 are electrodes for obtaining electrical connection, 3 is a thin film formed of an electron-emitting material,
4 is a substrate, and 5 is an electron emitting part.

従来、これらの表面伝導形電子放出素子においては、電
子放出を行う前に予めフォーミングと呼ばれる通電加熱
処理によって電子放出部を形成する。即ち、前記電極1
と電極2の間に電圧を印加する事により、薄膜3に通電
し、これにより発生するジュール熱で薄膜3を局所的に
破壊、変形もしくは変質せしめ、電気的に高抵抗な状態
にした電子放出部5を形成することにより電子放出材料
を得ている。
Conventionally, in these surface conduction type electron-emitting devices, an electron-emitting portion is formed in advance by an electrical heating process called forming before electron emission. That is, the electrode 1
By applying a voltage between the electrode 2 and the electrode 2, electricity is applied to the thin film 3, and the Joule heat generated thereby causes the thin film 3 to be locally destroyed, deformed, or altered in quality, resulting in electron emission in a state of high electrical resistance. By forming the portion 5, an electron-emitting material is obtained.

なお、電気的に高抵抗状態とは、薄膜3の一部に、0.
5μm〜5μmの亀裂を有し、かつ亀裂内が、いわゆる
海島構造を有する不連続状態膜をいう。海島構造とは一
般に数十人から数μm径の微粒子が基板4にあり、各微
粒子は空間的に不連続で電気的に連続な膜をいう。
Note that an electrically high resistance state means that a part of the thin film 3 has a resistance of 0.
It refers to a discontinuous film that has a crack of 5 μm to 5 μm and has a so-called sea-island structure inside the crack. The sea-island structure generally refers to a film in which fine particles with a diameter of several tens to several μm are present on the substrate 4, and each fine particle is spatially discontinuous but electrically continuous.

従来、表面伝導形電子放出素子は上述高抵抗不連続膜に
電極1.2により電圧を印加し、素子表面に電流を流す
ことにより、上述微粒子より電子を放出せしめるもので
ある。
Conventionally, a surface conduction type electron-emitting device is one in which a voltage is applied to the above-mentioned high-resistance discontinuous film through an electrode 1.2, and a current is caused to flow across the surface of the device, thereby causing the above-mentioned fine particles to emit electrons.

しかしながら、上記の様な従来の通電加熱によるフォー
ミング素子には次のような問題点があった。
However, the above-mentioned conventional forming element using electrical heating has the following problems.

1)電子放出部となる海島構造の設計が不可能なため、
素子の改良が難しく、素子間のばらつきも生じやすい。
1) Because it is impossible to design a sea-island structure that will become an electron emitting region,
It is difficult to improve the elements, and variations between elements are likely to occur.

2)フォーミング工程の際に生じるジュール熱が大きい
為、基盤が破壊しやすくマルチ化が難しい。
2) Because the Joule heat generated during the forming process is large, the base is easily destroyed and it is difficult to mulch.

3)島の材料が金、銀、SnO2,’ITO等に限定さ
れた仕事関数の小さい材料が使えないため、大電流を得
ることができない。
3) A large current cannot be obtained because the material of the island is limited to gold, silver, SnO2, 'ITO, etc., and materials with a small work function cannot be used.

以上のような問題点があるため、表面伝導形電子放出素
子は、素子構造が簡単であるという利点があるにもかか
わらず、産業上積極的に応用されるには至っていなかっ
た。
Due to the above-mentioned problems, surface conduction electron-emitting devices have not been actively applied in industry, despite having the advantage of a simple device structure.

本発明者等は上記問題点を鑑みて検討した結果、特願昭
63−1−7570号、特願昭63−11048号にお
いて、電極間に微粒子膜を配置しこれに通電処理を施す
ことにより電子放出部を設ける新規な表面伝導形電子放
出素子を提案した。この新規な電子放出素子の構成図を
第2図に示す。
As a result of studies in view of the above-mentioned problems, the present inventors proposed in Japanese Patent Application No. 63-1-7570 and Japanese Patent Application No. 63-11048 that by disposing a fine particle film between electrodes and subjecting it to energization treatment, We proposed a new surface conduction type electron-emitting device with an electron-emitting region. A block diagram of this new electron-emitting device is shown in FIG.

同図において、11及び12は電極、13は微粒子膜、
14は電子放出部、15は基板である。
In the figure, 11 and 12 are electrodes, 13 is a particulate film,
14 is an electron emitting section, and 15 is a substrate.

この電子放出素子の特徴としては次のようなことが挙げ
られる。
The characteristics of this electron-emitting device include the following.

1)微粒子膜13に非常に少ない電流を流すことで電子
放出部14を形成できるので素子劣化のない素子が形成
でき、さらに電極の形状を任意に設計できる。
1) Since the electron emitting portion 14 can be formed by passing a very small current through the particulate film 13, an element without element deterioration can be formed, and furthermore, the shape of the electrode can be arbitrarily designed.

2)微粒子膜を形成する微粒子自身が電子放出の構成材
となる為、微粒子の材料や形状等の設計が可能となり、
電子放出特性を変えることができる。
2) Since the fine particles that form the fine particle film themselves become constituent materials for electron emission, it is possible to design the material and shape of the fine particles.
Electron emission characteristics can be changed.

3)素子の構成材である基板15や電極の材料の選択性
が広がる。
3) The selection of materials for the substrate 15 and electrodes, which are the constituent materials of the element, is expanded.

[発明が解決しようとする課題] しかしながら、上記発明者等が先に提案した表面伝導形
電子放出素子においては、第2図に示す、電極間の微粒
子膜13内に電子放出部14が形成され、該電子放出部
14が電子の放出位置になっているが、実際には、電子
放出部14は0.01μm〜0,5μmの微細な範囲か
ら形成されており、その位置は、微粒子膜の形成条件や
通電処理の条件等によってばらつきが生じ;電極間の所
定の位置に正確に配置することが困難であった。
[Problems to be Solved by the Invention] However, in the surface conduction electron-emitting device previously proposed by the above inventors, the electron-emitting portion 14 is formed within the fine particle film 13 between the electrodes, as shown in FIG. , the electron emitting part 14 is the electron emitting position, but in reality, the electron emitting part 14 is formed from a fine range of 0.01 μm to 0.5 μm, and its position is in the fine particle film. Variations occur due to formation conditions, energization treatment conditions, etc.; it is difficult to accurately arrange them at predetermined positions between the electrodes.

第2図において、電子放出部は直線的に描かれているが
、実際には電極11及び12の間でかなり蛇行しており
、通電条件によりその形態はかなり変化し、電子放出部
の実効的な長さが設計できなかった。
In Fig. 2, the electron emitting part is drawn as a straight line, but in reality it meanderes considerably between the electrodes 11 and 12, and its shape changes considerably depending on the current supply conditions, so that the effective electron emitting part It was not possible to design a suitable length.

一般に、電極11と12の間隔は0.5μm〜50μm
であるが、電極間が広くなる程電子放出の位置を制御す
ることが難しかった。
Generally, the distance between electrodes 11 and 12 is 0.5 μm to 50 μm
However, the wider the distance between the electrodes, the more difficult it was to control the position of electron emission.

このような電子放出部の位置のばらつきは、電子放出と
して応用する場合、電子放出量にばらつきを生じ、特に
これらの素子を複数配置した面状電子源として応用する
場合には、場所によって電子放出量が変わるという問題
があった。
Such variations in the position of the electron-emitting portion cause variations in the amount of electron emission when used for electron emission, and especially when used as a planar electron source in which a plurality of these elements are arranged, the electron emission may vary depending on the location. There was a problem with the amount changing.

面状電子源の有効な応用として、特開昭56−2344
5号公報に記載しであるような、面状に展開した複数の
電子源と、この電子源から電子ビームの照射を各々受け
る蛍光体ターゲットとを、各々相対向させた薄形の画像
形成装置があるが、この画像形成装置の電子源として上
記表面伝導形電子放出素子を応用すると、各素子の電子
放出量が異なる為、場所によって蛍光体の蛍光輝度が異
なり表示むらを生じていた。
As an effective application of planar electron sources, Japanese Patent Application Laid-Open No. 56-2344
A thin image forming device as described in Publication No. 5, in which a plurality of planar electron sources and phosphor targets each receiving electron beam irradiation from the electron sources are opposed to each other. However, when the above-mentioned surface conduction type electron-emitting device is applied as an electron source of this image forming apparatus, the amount of electron emission of each device is different, so the fluorescence brightness of the phosphor differs depending on the location, causing display unevenness.

また、上述した通電加熱を施す従来の電子放出素子にお
いては、通電加熱に要するパワーが大きい為電子放出部
や基板の劣化が著しく、電子放出特性や電子放出部の位
置を制御することは不可能であった。
In addition, in the conventional electron-emitting device that uses electrical heating as described above, the large power required for electrical heating causes significant deterioration of the electron-emitting part and substrate, making it impossible to control the electron-emitting characteristics and the position of the electron-emitting part. Met.

すなわち、本発明の目的とするところは、上述のような
従来技術の問題点を解消した電子放出素子及び該素子を
用いた画像形成装置を提供することにある。
That is, an object of the present invention is to provide an electron-emitting device that solves the problems of the prior art as described above, and an image forming apparatus using the device.

[課題を解決するための手段及び作用]上述課題を解消
すべく達成された本発明の特徴とするところは、 第1に、段差部を有した絶縁性基板上に、該段差部を挾
み電気的に接続された微粒子から成る低抵抗部と該低抵
抗部に通電するための一対の電極を設けた電子放出素子
において、該素子の段差部が絶縁性基板と異なる熱伝導
率を有した部材から成り、かつ、該素子の電子放出部が
前記段差近傍に位置する電子放出素子としている点にあ
る。
[Means and effects for solving the problems] The features of the present invention, which has been achieved to solve the above problems, are as follows. In an electron-emitting device including a low-resistance portion made of electrically connected fine particles and a pair of electrodes for supplying current to the low-resistance portion, a step portion of the device has a thermal conductivity different from that of an insulating substrate. The electron emitting device is made of a material, and the electron emitting portion of the device is located near the step.

第2に、真空容器内に少なくとも、前記第1に述べた電
子放出素子を複数並べた電子源と、該電子源から放出さ
れた電子の照射により画像を形成する画像形成部材とを
有する画像形成装置としている点にある。
Second, image forming includes at least an electron source in which a plurality of the electron-emitting devices described in the first aspect are arranged in a vacuum container, and an image forming member that forms an image by irradiation with electrons emitted from the electron source. The point is that it is a device.

すなわち本発明は、対向する電極間に微粒子膜又は微粒
子を含む薄膜導電体を設け、その一部に絶縁性基板と熱
伝導率の異なる部材の段差部を設けることで、上述問題
点を解決するものである。
That is, the present invention solves the above-mentioned problems by providing a fine particle film or a thin film conductor containing fine particles between opposing electrodes, and providing a stepped portion between an insulating substrate and a member having a different thermal conductivity in a part thereof. It is something.

以下、本発明の構成要素及び作用について詳述する。Hereinafter, the components and functions of the present invention will be explained in detail.

本発明における微粒子膜は、粒径が十人から数μmの導
電性微粒子の膜であり、薄膜導電体としては導電性微粒
子膜やこれら導電性微粒子が分散されたカーボン薄膜が
挙げられる。そしてこれらの膜はガスデポジション法や
分散塗布法等により電極間に形成される。
The fine particle film in the present invention is a film of conductive fine particles having a particle size of 10 to several μm, and examples of the thin film conductor include a conductive fine particle film and a carbon thin film in which these conductive fine particles are dispersed. These films are formed between the electrodes by a gas deposition method, a dispersion coating method, or the like.

形状が定まった電子放出部の形成方法としては様々な方
法が考えられるが、その−例としては次のようなものが
ある。
Various methods can be considered for forming an electron emitting region with a fixed shape, examples of which are as follows.

第3図は本発明の一実施態様を示す素子構成図である。FIG. 3 is an element configuration diagram showing one embodiment of the present invention.

同図において、3Iは絶縁性基板、32は電子放出部規
定部材、33と34は電極、35は微粒子膜である。
In the figure, 3I is an insulating substrate, 32 is an electron emission part defining member, 33 and 34 are electrodes, and 35 is a fine particle film.

本発明の電子放出素子は、第2図で示す電子放出素子に
対し電子放出部規定部材32があることを特徴とする。
The electron-emitting device of the present invention is characterized in that an electron-emitting portion defining member 32 is provided in contrast to the electron-emitting device shown in FIG.

ここでいう電子放出部規定部材についての形状と材料に
ついて以下で説明する。
The shape and material of the electron emitting portion defining member mentioned here will be explained below.

電子放出部規定部材によって形成される段差の大きさは
、厚さが100人から十μmの間であればよく、0.1
μm〜1μmであれば更に良い。
The size of the step formed by the electron emission part defining member may be 0.1 to 10 μm in thickness.
It is even better if it is μm to 1 μm.

また幅は電極間隔より狭ければよく電極間隔の1/2以
下であれば更に良い。
Further, the width should be narrower than the electrode spacing, and even better if it is 1/2 or less of the electrode spacing.

電子放出部規定部材は基板と熱伝導率が異なる材料であ
れば良く、微粒子の材質、電極の間隔、電子放出部規定
部材の違いによって適当な材料を選択する必要がある。
The electron emitting part defining member may be made of a material having a thermal conductivity different from that of the substrate, and it is necessary to select an appropriate material depending on the material of the particles, the spacing between the electrodes, and the difference in the electron emitting part defining member.

効果としては絶縁性基板と少しでも熱伝導率の異なる材
料であればよい。好適条件としては熱伝導率が2倍以上
異なるものが望ましい。例えば、絶縁性基板に青板ガラ
スを用いたときはアルミナ等の絶縁材料、Au等の金属
材料を用いる。また、絶縁性基板と比べ熱伝導率の大小
を変えることにより電子放出部規定部材の上または側面
、又は規定部に沿う絶縁性基板上に電子放出部が形成で
きる。
As for the effect, it is sufficient to use a material whose thermal conductivity is even slightly different from that of the insulating substrate. As a preferable condition, it is desirable that the thermal conductivity differs by a factor of two or more. For example, when blue plate glass is used for the insulating substrate, an insulating material such as alumina or a metal material such as Au is used. Further, by changing the thermal conductivity compared to the insulating substrate, the electron emitting portion can be formed on the top or side of the electron emitting portion defining member, or on the insulating substrate along the defining portion.

電極33と34の間隔は0.1μm 〜100μmが望
ましく、一般には0.5μm 〜10LLmが実用的で
ある。また、電子数8部規定部材32の厚さはその材料
の種類にもよるが、通常数100人〜数μmが望ましく
、一般には0.1μm〜1μmが実用的である。
The distance between the electrodes 33 and 34 is preferably 0.1 μm to 100 μm, and generally 0.5 μm to 10 LLm is practical. Further, although the thickness of the 8-electron count regulating member 32 depends on the type of material, it is usually desirable to have a thickness of several hundred to several μm, and generally 0.1 μm to 1 μm is practical.

次に、電極間に有機金属を分散塗布し、その後焼成する
ことにより電極間に金属微粒子膜を形成する。金属微粒
子膜の微粒子の径は+λ〜数μmが好ましく、その材料
はP d + A g + A u + T 1等の金
属、Pdo、5n02等の酸化物導電体導電性材料であ
ればどれを用いても構わない。
Next, an organic metal is dispersed and coated between the electrodes, and then baked to form a metal fine particle film between the electrodes. The diameter of the fine particles of the metal fine particle film is preferably +λ to several μm, and the material thereof may be a metal such as P d + A g + A u + T 1, or an oxide conductor conductive material such as Pdo or 5n02. You may use it.

以上のような段差部に設けられた微粒子膜に通電処理を
施すと、第3図に示すように電子放出部規定部材段差に
沿って電子放出部36が直線上に形成され、上述従来例
のような電子放出部が蛇行することはない。かかる電子
放出部は通電の方向や微粒子材料の種類、電子放出部規
定部材の種類、厚さ等によって規定材の上側か下側ある
いは側面のいずれかに形成することができる。
When the fine particle film provided on the stepped portion as described above is energized, the electron emitting portion 36 is formed in a straight line along the step of the electron emitting portion defining member as shown in FIG. 3, unlike the conventional example described above. The electron emitting part does not meander like this. Such an electron emitting region can be formed on either the upper side, the lower side, or the side surface of the regulating member depending on the direction of current supply, the type of particulate material, the type and thickness of the electron emitting region defining member, and the like.

勿論、規定部材が曲線であれば電子放出部は部材に沿っ
て曲線に形成されるものである。
Of course, if the defining member is a curved line, the electron emitting portion is formed in a curved line along the member.

通電処理の方法は、微粒子膜を通電加熱によりその一部
を高抵抗化して電子放出を形成するものや、微粒子膜に
通電することによりその一部を低抵抗化して電子放出部
を形成するものがあるがいずれを用いても構わない。
Current treatment methods include one in which a part of the particulate film is made high in resistance by heating with electricity to form an electron emitting part, and another in which part of the part of the particulate film is made to have a low resistance by being energized to form an electron emitting part. There are two, but you can use either one.

かかる通電処理時に微粒子膜の構造が変わり、上述した
ような不連続な電子放出部が形成される。実際、段差3
2が構造変化にどのような役割を果たしているのかは不
明であるが、発明者等は電子放出部規定部材段差部近傍
で温度分布或は電界分布が不連続となり、それが原因で
電子放出部層定材に沿って電子放出部が形成されるもの
と推測している。また、単なる段差形状のものと比較し
て段差部材として熱伝導率の異なる材料を用いると、よ
り制御性が向上する。よって、電極間に基板と熱伝導率
のことなる材料を設ける以外にも温度と電界が不連続に
なる部材を設ければ同等な効果が得られるものと期待で
きる。
During this energization process, the structure of the fine particle film changes, forming discontinuous electron-emitting portions as described above. In fact, there are 3 steps
Although it is unclear what role No. 2 plays in the structural change, the inventors believe that the temperature distribution or electric field distribution becomes discontinuous near the stepped portion of the electron-emitting region defining member, which causes the electron-emitting region to change. It is assumed that the electron emitting portion is formed along the layered material. Further, controllability is further improved by using a material having a different thermal conductivity for the step member than that of a simple step member. Therefore, in addition to providing a material with a different thermal conductivity from the substrate between the electrodes, it can be expected that the same effect can be obtained by providing a member that makes the temperature and electric field discontinuous.

第5図〜第6図は、本発明の一実施態様を示す素子断面
図であるが電子放出部規定部材による段差の形状は上述
のような三角形段差37の他にも、第6図で示す階段上
段差38等様々なものが考えられ、上述第3図の凸型形
状と同等な作用効果がある。
5 and 6 are cross-sectional views of an element showing an embodiment of the present invention. In addition to the triangular step 37 described above, the shape of the step formed by the electron emitting portion defining member is as shown in FIG. 6. Various shapes such as the step 38 at the top of the stairs can be considered, and have the same effect as the convex shape shown in FIG. 3 above.

本発明の電子放出素子は、形状が定まった電子放出部と
電子放出部を挾み電気的に接続された微粒子膜と該電子
放出部と該微粒子膜に電流を通電するための電極を設け
るという素子構造であり、従来例と比較すれば電子放出
特性の制御が可能であるばかりでなく素子の再現性が得
られるようになる。
The electron-emitting device of the present invention includes an electron-emitting region having a fixed shape, a particulate film sandwiching the electron-emitting part and electrically connected to each other, and an electrode for passing a current through the electron-emitting part and the particulate film. Compared to conventional devices, this device structure not only makes it possible to control the electron emission characteristics but also improves the reproducibility of the device.

前述した複数の電子放出素子を設けた画像形成装置に於
いて、本発明の電子放出素子を用いれば、各素子の電子
放出量が同等となる為、表示むらがない良好な画像が形
成される。
If the electron-emitting device of the present invention is used in the image forming apparatus provided with the plurality of electron-emitting devices described above, the amount of electrons emitted from each device will be the same, so a good image without display unevenness will be formed. .

[実施例] 以下に、本発明を実施例を用いて更に詳述する。[Example] The present invention will be explained in more detail below using examples.

実1目乳↓ 第3図は、本実験例の素子構成図であり、第4図はその
製造方法を示した説明図である。
Fruit 1 eye milk ↓ Fig. 3 is a diagram of the element configuration of this experimental example, and Fig. 4 is an explanatory diagram showing its manufacturing method.

先ず、本実施例の電子放出素子の製造方法を概略的に説
明する。
First, a method for manufacturing the electron-emitting device of this example will be schematically explained.

■、絶縁性基板(石英基板)31を十分洗浄し通常良く
用いられる蒸着技術ホトリソ・エツチング技術を用いて
電極33及び34を形成する。電極の材料としては導電
性を有するものであればどのようなものであっても構わ
ないが、本実施例ではNi金属を用いて形成した。この
電極間隔は実用的には0.5um〜20μmに形成され
ることが望ましく、本実験例では5μmギャップに形成
した。
(2) The insulating substrate (quartz substrate) 31 is thoroughly cleaned, and electrodes 33 and 34 are formed using commonly used vapor deposition techniques such as photolithography and etching techniques. The electrode may be made of any material as long as it has conductivity, but in this example, it was formed using Ni metal. Practically speaking, it is desirable that the electrode spacing be set to 0.5 um to 20 um, and in this experimental example, it was set to a 5 um gap.

06次に通常よ(用いられる薄膜バターニングプロセス
により電子放出部規定部材32を形成する。部材はアル
ミナとし、幅は1μm、厚さは1μmとした。
06 Next, the electron emission part defining member 32 was formed by a conventional thin film buttering process.The member was made of alumina, and had a width of 1 μm and a thickness of 1 μm.

00次に有機パラジウムを電極33と34の間に分散塗
布する。有機パラジウムは奥野製薬(株)CCP−42
30を用いた。
00 Next, organic palladium is dispersed and coated between the electrodes 33 and 34. Organic palladium is Okuno Pharmaceutical Co., Ltd. CCP-42
30 was used.

微粒子を分散したくないところにはテープ又はレジスト
膜を設け、その後ディッピング法又はスピナー法で有機
パラジウムを塗布する。次に300℃で1時間焼成し有
機パラジウムを分散し、パラジウムと酸化パラジウムの
混合した微粒子膜を形成する。次にテープ又はレジスト
膜を剥離することにより所定の位置に微粒子膜35を作
成した。微粒子膜の幅W(第4図の断面に垂直方向)は
どのような値のものでも構わないが本実施例では1mm
とした。このとき、パラジウムと酸化パラジウムの微粒
子の径は共に10人〜150人であったが本発明はこれ
に限るものではない。
A tape or resist film is provided in areas where it is not desired to disperse fine particles, and then organic palladium is applied by a dipping method or a spinner method. Next, it is fired at 300° C. for 1 hour to disperse organic palladium and form a fine particle film containing a mixture of palladium and palladium oxide. Next, a particulate film 35 was created at a predetermined position by peeling off the tape or resist film. The width W of the fine particle film (in the direction perpendicular to the cross section in FIG. 4) may be of any value, but in this example, it is 1 mm.
And so. At this time, the diameters of the fine particles of palladium and palladium oxide were both 10 to 150, but the present invention is not limited to this.

■1次に電極33をマイナス側、電極34をプラス側と
なるように電源に接続し、微粒子膜35に通電処理を行
った。その結果、第3図に示すように電子放出部規定部
材32の段差に沿って電子放出部36が形成された。
(1) First, the electrode 33 was connected to a power source so that the electrode 34 was connected to the negative side and the electrode 34 was connected to the positive side, and the particulate film 35 was energized. As a result, an electron emitting section 36 was formed along the step of the electron emitting section defining member 32, as shown in FIG.

ここで通電処理前の微粒子膜の厚さは数十人から200
人が実用的であるがこれに限るものではない。尚、この
ときの微粒子膜のシート抵抗は103〜10I0Ω/口
程度である。又、微粒子膜35の膜厚は、規定部材32
の領域を含めて電極間でほぼ均一であると考えられる。
Here, the thickness of the fine particle film before energization treatment ranges from several tens to 200 mm.
People are practical but not limited to this. Incidentally, the sheet resistance of the fine particle film at this time is approximately 10 3 to 10 I0 Ω/mouth. Further, the thickness of the particulate film 35 is determined by the regulating member 32.
It is considered that the area is almost uniform between the electrodes, including the area of .

本実施例に於ける通電処理に於いて電流の流れる向きを
電極34から電極33側にしたが、このように設定する
ことにより再現良く上述した位置に電子放出部を形成で
きた。
In the energization process in this example, the current flow direction was from the electrode 34 to the electrode 33 side, and by setting in this way, the electron emitting portion could be formed at the above-mentioned position with good reproducibility.

本実施例の電子放出素子を電子放圧規定部材を設けてい
ない従来の電子放出素子と比較したところ、電子放出効
率に於いてはほぼ同等の値が得られた。つぎに電子放出
部の形状を比較すると従来の素子は1mmの幅にわたっ
て大きく蛇行しているにもかかわらず、本実施例の電子
放出素子は電子放出部規定部材32の段差に沿ってほぼ
直線的に電子放出部が形成できた。電子放出部の位置が
正確に設定できることは、応用を考えると非常に重要な
意味がある。例えば、素子から放出された電子を偏向及
び変調するにあたって、その正確な制御をする為には電
子放出部の位置が正確に配置されている必要がある。よ
って、本実施例の電子数8素子は位置設計が可能な表面
伝導形電子放出素子を提供するものである。
When the electron-emitting device of this example was compared with a conventional electron-emitting device not provided with an electron emission pressure regulating member, almost the same value was obtained in terms of electron emission efficiency. Next, a comparison of the shapes of the electron-emitting portion shows that although the conventional device has a large meandering shape over a width of 1 mm, the electron-emitting device of this embodiment has a substantially straight line along the step of the electron-emitting portion defining member 32. An electron emitting region was formed. Being able to accurately set the position of the electron-emitting region is extremely important when considering applications. For example, in order to accurately control the deflection and modulation of electrons emitted from an element, the position of the electron emitting portion must be accurately located. Therefore, the eight-electron device of this embodiment provides a surface conduction electron-emitting device whose position can be designed.

1五±1 第7図は本実施例の素子構成図である。15±1 FIG. 7 is an element configuration diagram of this embodiment.

本実施例は、実施例1とほぼ同等の形状を成すものであ
るが、微粒子膜35をガスデポジション法で作成したも
ので、電子放出部規定部材32の側面上の39は電子放
出部である。
This example has almost the same shape as Example 1, but the particulate film 35 was created by a gas deposition method, and 39 on the side surface of the electron emitting part defining member 32 is an electron emitting part. be.

次に本実施例の製造方法を説明する。Next, the manufacturing method of this example will be explained.

■、実施例1−■と同材質、同方法で作成する。(2) Made from the same material and by the same method as in Example 1-(2).

■、実施例1−■と同一 ■、実施例1−■と同一 03次に微粒子膜を所定の位置に形成する為に金属マス
クを電極33と34の間に配置し、ガスデポジション法
で微粒子膜35を作成した。その材質は、Au、Ag、
Ti、Sn、Pd等の金属またはその他のどのような導
電性微粒子を用いても構わないが、本実施例ではpbを
用いた。また、その粒径は50人〜150人であったが
本実施例はこれによるものではない。
■, Same as Example 1-■ ■, Same as Example 1-■ 03 Next, in order to form a fine particle film at a predetermined position, a metal mask is placed between the electrodes 33 and 34, and a gas deposition method is applied. A particulate film 35 was created. The material is Au, Ag,
Although metals such as Ti, Sn, and Pd or any other conductive fine particles may be used, pb was used in this example. Further, the particle size was 50 to 150 particles, but this example is not based on this.

■、実施例1−■と同一。■, Same as Example 1-■.

以上の工程により、本実施例の電子放出部39は、第8
図に示すように電子放出部規定部材32の段差側面に形
成された。これはガスデポジション法による微粒子の作
成法に基づくものと考えられる。本実施例ではガスデポ
ジション法で微粒子を基板とほぼ直角方向から吹き付け
ている為に段差部の側面で微粒子膜の厚さが薄(形成さ
れ、通電処理により規定部材32の側面に形成されたも
のと推測する。
Through the above steps, the electron emitting section 39 of this embodiment is
As shown in the figure, it is formed on the stepped side surface of the electron emission part defining member 32. This is thought to be based on the method of creating fine particles using the gas deposition method. In this example, since the particles are sprayed from a direction substantially perpendicular to the substrate using the gas deposition method, the thickness of the particle film is thin (formed) on the side surface of the stepped portion, and is formed on the side surface of the regulating member 32 by the energization process. I guess it is.

本実施例は、実施例1と同様な検討をした結果、同等な
効果があった。
As a result of the same study as in Example 1, this example had similar effects.

宜1d糺ユ 第8図は、本実施例の画像形成装置を示す構成図である
。本実施例の面状電子源は、実施例1の電子放出素子を
複数配列したもので、とくに電極33と電極34の間に
電子放出素子を並列に配置した線電子源を数本基板に規
則正しく設けたものである。
FIG. 8 is a block diagram showing the image forming apparatus of this embodiment. The planar electron source of this example is one in which a plurality of electron-emitting devices of Example 1 are arranged, and in particular, several line electron sources in which electron-emitting devices are arranged in parallel between electrodes 33 and 34 are arranged regularly on a substrate. It was established.

同図において、41はグリッド電極、42は電子通過孔
、43はガラス板、44は蛍光体、45はアルミニュム
材からなるメタルバック、46はフェースプレート、4
7は蛍光体の輝点である。
In the figure, 41 is a grid electrode, 42 is an electron passing hole, 43 is a glass plate, 44 is a phosphor, 45 is a metal back made of aluminum material, 46 is a face plate, 4
7 is a bright spot of the phosphor.

本実施例において、グリッド電極41は複数のライン電
極群からなり、面状電子源の電極群と直角方向に配置さ
れる。電子通過孔42は電子放出部36のほぼ鉛直上に
設けられ、グリッド電極41を信号電極、線電子源群を
走査電極として、XYマトリックス駆動を行い画像を形
成するものである。
In this embodiment, the grid electrode 41 consists of a plurality of line electrode groups and is arranged in a direction perpendicular to the electrode group of the planar electron source. The electron passing hole 42 is provided almost vertically above the electron emitting section 36, and uses the grid electrode 41 as a signal electrode and the line electron source group as a scanning electrode to form an image by performing XY matrix driving.

フェースプレート46は透明なガラス板43の上に蛍光
体44が一様に塗布され、さらにその上にメタルバック
45を設けたものである。
The face plate 46 has a transparent glass plate 43 coated with a phosphor 44 uniformly, and a metal back 45 provided thereon.

本実施例の画像形成装置に於いて、電極33と電極34
に14Vの電圧を印加することにより各電子放出部36
から電子を放出させ、グリッド電極41に適当な電圧を
印加することにより電子を引きだし蛍光体44に電子を
衝突させた。本画像形成装置は、当然ながら真空度lX
l0−’TorrXIX10−’Torrの環境下に置
かれ、蛍光体に500〜5000Vの電圧を印加した。
In the image forming apparatus of this embodiment, the electrode 33 and the electrode 34
By applying a voltage of 14V to each electron emitting part 36
By emitting electrons from the grid electrode 41 and applying an appropriate voltage to the grid electrode 41, the electrons were drawn out and collided with the phosphor 44. This image forming apparatus naturally has a vacuum degree of 1X.
It was placed in an environment of 10-'TorrXIX10-'Torr, and a voltage of 500 to 5000V was applied to the phosphor.

本実験において、電子放出部規定部材32(段差)のな
い同様な画像形成装置と比較したところ次のような結果
を得た。
In this experiment, a comparison was made with a similar image forming apparatus without the electron emitting section defining member 32 (step), and the following results were obtained.

1)本実施例は各電子放出部から放出される電子量が等
しいので明るさが均一な表示画面が得られた。
1) In this example, since the amount of electrons emitted from each electron emitting section was equal, a display screen with uniform brightness was obtained.

2)本実施例は各電子放出部の位置が正確に定まってい
るので蛍光体上の輝点もほぼ同一な形状で規則正しい配
列であった。
2) In this example, since the position of each electron emitting part was accurately determined, the bright spots on the phosphor had almost the same shape and were regularly arranged.

それに比べ段差部のない装置は、輝点の形状と輝点のピ
ッチが場所によって異なっていた。
In contrast, in the device without a step, the shape and pitch of the bright spots varied depending on the location.

このことから本実施例は、カラー画像、高精細画像を得
るのに効果がある。
Therefore, this embodiment is effective in obtaining color images and high-definition images.

また、電極間隔20umの素子に幅1μの電子放出部規
定部材を設けた場合の100素子のバラツキを目視によ
り評価した結果を以下に示す。
In addition, the results of visual evaluation of the dispersion of 100 elements in the case where an electron emission part defining member with a width of 1 μm is provided in elements with an electrode spacing of 20 μm are shown below.

以上、本実施例は画像形成装置についてのみ説明してき
たが、画像形成部材としては、蛍光体の他にレジスト材
や薄膜金属のような電子ビームが衝突することにより状
態が変化する全ての部材が含まれ、電子ビーム応用装置
としては、記録装置、記憶装置、電子ビーム描画装置等
の様々な装置があり、本発明は電子放出素子が複数配置
された面状電子源を用いた画像形成装置であれば同等の
効果がある。
In this embodiment, only the image forming apparatus has been described, but in addition to the phosphor, the image forming members include all members whose state changes when the electron beam collides with them, such as resist materials and thin film metals. There are various types of electron beam application devices, such as recording devices, storage devices, and electron beam lithography devices. If so, it will have the same effect.

夫1」引A 本実施例の素子構成は第9図で示したものである。Husband 1” Pull A The element configuration of this example is shown in FIG.

本実施例は、実施例1と製造方法、材質は同じであるが
、31絶縁性基板と32電子放出部規定部材の間にNi
の金属薄膜40を設けている′。この場合の電子放出部
36は実施例1.3と同様な位置に形成された。
This example uses the same manufacturing method and materials as Example 1, but Ni
A thin metal film 40 is provided. The electron emitting section 36 in this case was formed at the same position as in Example 1.3.

また、本実施例は実施1.2.3と同様な検討をした結
果、同等な効果があった。
Further, as a result of the same study as in Example 1.2.3, this example had similar effects.

[発明の効果] 以上説明したように、形状が定まった電子放出部を形成
することで電子放出素子あるいは画像形成装置として次
のような効果がある。
[Effects of the Invention] As explained above, by forming an electron emitting portion with a fixed shape, the following effects can be obtained as an electron emitting device or an image forming apparatus.

■、電子放出量や電子放出効率等の電子特性が制御でき
るだけでなく、素子間で特性のばらつきの少ない素子製
造が可能になった。
(2) Not only can electronic characteristics such as the amount of electron emission and electron emission efficiency be controlled, but it has also become possible to manufacture devices with less variation in characteristics between devices.

■9画像形成装置として均一な発光輝度の画像表示が得
られる。
(2) Image display with uniform luminance can be obtained as an image forming apparatus.

■、電子放出部の位置が正確に定まるので、画像形成装
置として蛍光体の輝点形状が均一な画像表示が得られる
ようになった。
(2) Since the position of the electron emitting part is accurately determined, it is now possible to display an image with a uniform bright spot shape of the phosphor in the image forming apparatus.

■、電子放出部の位置が正確に定まるので、画像形成装
置として変調電極の形状設計や制御系が簡易になる効果
がある。
(2) Since the position of the electron emitting portion is accurately determined, the shape design of the modulation electrode and the control system of the image forming apparatus are simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の通電加熱によって作成された電子放出
素子の構成図である。 第2図は、従来の微粒子膜及び微粒子を含む薄膜導電体
を通電処理することにより作成された電子放出素子の構
成図である。 第3図は、本発明の実施例1に於ける電子放出素子の構
成図である。 第4図は、本発明の実施例1に於ける電子放出素子の製
造方法を示した説明図である。 第5〜6図は、本発明の他の実施形態を示す素子段差部
の断面図であり、第6図は、実施例4に於ける電子放出
素子の構成図である。 第7図は、実施例2に於ける電子放出素子の構成図であ
る。 第8図は、実施例3に於ける画像形成装置の構成図であ
る。 第9図は、実施例4に於ける電子放出素子の断面図であ
る。 1.2,11,12,33.34・・・電極3・・・薄
膜 4.15・・・基板 5.14,36.39・・・電子数土部13.35・・
・微粒子膜 31・・・絶縁性基板(石英基板) 32.37.38・・・電子放出部規定部材40・・・
金属薄膜 41・・・グリッド電極 42・・・電子通過孔 43・・・ガラス体 44・・・蛍光体 45・・・メタルバック 46・・・フェースプレート 47・・・蛍光体の輝点 電子放出素子の典型的な構成図 第4図
FIG. 1 is a block diagram of an electron-emitting device produced by conventional electrical heating. FIG. 2 is a configuration diagram of an electron-emitting device produced by applying current to a conventional fine particle film and a thin film conductor containing fine particles. FIG. 3 is a configuration diagram of an electron-emitting device in Example 1 of the present invention. FIG. 4 is an explanatory diagram showing a method of manufacturing an electron-emitting device in Example 1 of the present invention. 5 and 6 are cross-sectional views of a device step portion showing other embodiments of the present invention, and FIG. 6 is a configuration diagram of an electron-emitting device in Example 4. FIG. 7 is a configuration diagram of an electron-emitting device in Example 2. FIG. 8 is a configuration diagram of an image forming apparatus in Example 3. FIG. 9 is a cross-sectional view of an electron-emitting device in Example 4. 1.2, 11, 12, 33.34... Electrode 3... Thin film 4.15... Substrate 5.14, 36.39... Electron number part 13.35...
- Particulate film 31... Insulating substrate (quartz substrate) 32.37.38... Electron emission part defining member 40...
Metal thin film 41...grid electrode 42...electron passing hole 43...glass body 44...phosphor 45...metal back 46...face plate 47...bright spot electron emission of phosphor Typical configuration diagram of the element Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)段差部を有した絶縁性基板上に、該段差部を挟み
電気的に接続された微粒子から成る低抵抗部と該低抵抗
部に通電するための一対の電極を設けた電子放出素子に
おいて、該素子の段差部が絶縁性基板と異なる熱伝導率
を有した部材から成り、かつ、該素子の電子放出部が前
記段差近傍に位置することを特徴とする電子放出素子。
(1) An electron-emitting device comprising, on an insulating substrate having a stepped portion, a low-resistance portion made of fine particles electrically connected across the stepped portion, and a pair of electrodes for supplying current to the low-resistance portion. An electron-emitting device characterized in that the step portion of the device is made of a member having a thermal conductivity different from that of the insulating substrate, and the electron-emitting portion of the device is located near the step.
(2)真空容器内に少なくとも、請求項1記載の電子放
出素子を複数並べた電子源と、該電子源から放出された
電子の照射により画像を形成する画像形成部材とを有す
ることを特徴とする画像形成装置。
(2) A vacuum container includes at least an electron source in which a plurality of electron-emitting devices according to claim 1 are arranged, and an image forming member that forms an image by irradiation with electrons emitted from the electron source. image forming device.
JP21180890A 1990-08-10 1990-08-10 Electron emitting element, electron source, image forming apparatus, and method of manufacturing them Expired - Fee Related JP2949639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21180890A JP2949639B2 (en) 1990-08-10 1990-08-10 Electron emitting element, electron source, image forming apparatus, and method of manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21180890A JP2949639B2 (en) 1990-08-10 1990-08-10 Electron emitting element, electron source, image forming apparatus, and method of manufacturing them

Publications (2)

Publication Number Publication Date
JPH0494032A true JPH0494032A (en) 1992-03-26
JP2949639B2 JP2949639B2 (en) 1999-09-20

Family

ID=16611943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21180890A Expired - Fee Related JP2949639B2 (en) 1990-08-10 1990-08-10 Electron emitting element, electron source, image forming apparatus, and method of manufacturing them

Country Status (1)

Country Link
JP (1) JP2949639B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035365A (en) * 2005-07-25 2007-02-08 Canon Inc Electron emission element, electron source using the same, image display device, information display/reproduction device, and manufacturing method of the same
US7544614B2 (en) 2005-02-24 2009-06-09 Seiko Epson Corporation Method of forming a coated film, method of forming an electronic device, and method of manufacturing an electron emission element
US8013509B2 (en) 2006-07-25 2011-09-06 Canon Kabushiki Kaisha Electron-emitting device, electron source, and image display apparatus, and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544614B2 (en) 2005-02-24 2009-06-09 Seiko Epson Corporation Method of forming a coated film, method of forming an electronic device, and method of manufacturing an electron emission element
JP2007035365A (en) * 2005-07-25 2007-02-08 Canon Inc Electron emission element, electron source using the same, image display device, information display/reproduction device, and manufacturing method of the same
US7988513B2 (en) 2005-07-25 2011-08-02 Canon Kabushiki Kaisha Electron-emitting device, electron source and display apparatus using the same device, and manufacturing methods of them
US8013509B2 (en) 2006-07-25 2011-09-06 Canon Kabushiki Kaisha Electron-emitting device, electron source, and image display apparatus, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2949639B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
JP2654571B2 (en) Electron-emitting device, electron-emitting device and light-emitting device using the same
JPH0320941A (en) Image display device and manufacture thereof
US5470265A (en) Multi-electron source, image-forming device using multi-electron source, and methods for preparing them
JP3323852B2 (en) Electron emitting element, electron source using the same, and image forming apparatus using the same
JP2000311582A (en) Electron emitting element, electron source used therewith and image forming device used therewith
JP2946140B2 (en) Electron emitting element, electron source, and method of manufacturing image forming apparatus
JPH0428139A (en) Manufacture of multi-electron source
JPH0494032A (en) Electron emission element and image forming device using electron emission element
JP2631007B2 (en) Electron emitting element, method of manufacturing the same, and image forming apparatus using the element
JP2946153B2 (en) Method for manufacturing electron-emitting film and electron-emitting device
JP3000467B2 (en) Multi-electron source and image forming apparatus
JP2916807B2 (en) Electron emitting element, electron source, image forming apparatus, and method of manufacturing them
KR100378103B1 (en) Electron source, image forming apparatus, and manufacture method for electron source
JP2916808B2 (en) Electron-emitting device, electron source, image forming apparatus, and manufacturing method thereof
JP2630989B2 (en) Electron-emitting device, electron-emitting device and light-emitting device using the same
JP2961524B2 (en) Electron emitting element, electron source and image forming apparatus
JP2961523B2 (en) Electron emitting element, electron source and image forming apparatus
JPH0465050A (en) Manufacture of surface conducting type electron emitting element
JP3416345B2 (en) Electron source and image forming device
JP3210129B2 (en) Electron source and image forming apparatus
JP3413192B2 (en) Method of manufacturing electron-emitting device and image forming apparatus
JPH01296532A (en) Surface conduction type electron emitting element and manufacture of this element
JPH06203741A (en) Electron emitting element, electron beam generator and image forming device
JP3131752B2 (en) Electron-emitting device, electron beam generator, image forming apparatus, and manufacturing method thereof
JP2715314B2 (en) Image forming apparatus and driving method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees