JPH0465050A - Manufacture of surface conducting type electron emitting element - Google Patents

Manufacture of surface conducting type electron emitting element

Info

Publication number
JPH0465050A
JPH0465050A JP2174407A JP17440790A JPH0465050A JP H0465050 A JPH0465050 A JP H0465050A JP 2174407 A JP2174407 A JP 2174407A JP 17440790 A JP17440790 A JP 17440790A JP H0465050 A JPH0465050 A JP H0465050A
Authority
JP
Japan
Prior art keywords
fine particle
particle film
metal fine
resistance
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2174407A
Other languages
Japanese (ja)
Inventor
Hisami Iwai
岩井 久美
Tetsuya Kaneko
哲也 金子
Ichiro Nomura
一郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2174407A priority Critical patent/JPH0465050A/en
Publication of JPH0465050A publication Critical patent/JPH0465050A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Abstract

PURPOSE:To form a fine particle film with uniform thickness by making the resistance of the metal fine particle film at least 10 times of the resistance of a final metal fine particle film obtained by applying an organometal compound solution containing an optional content of an organometal to this metal fine particle film and firing it. CONSTITUTION:A metal fine particle film is put in an electron emitting part 3. In this case, wettability between a solution and the surface of a substrate 4 is improved by coating the surface of the substrate 4 with the metal fine particles. At that time, the metal fine particle film formed on the surface is extremely thin and its conductivity is also extremely small, so that the film has infinite resistance as a devices resistance or resistance as high as about at least 10 times of the device' s resistance of the finally obtained fine particle film. Consequently, even if the thickness of the fine particle film is uneven, it does not directly affect on unevenness of the resistance of the finally obtained device. As a result, an organometal solution is applied to the substrate 4 uniformly and a metal fine particle film with uniform thickness and uniform film quality is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は表面伝導形量f放出素子の製造方法ムー二関す
るものであり、特に電子放出部に形成する金属微粒子膜
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a surface-conduction type f-emitting device, and particularly to a metal fine particle film formed in an electron-emitting region.

[従来の技術] 電極ギャップを隔てて位置する一対の電極を有する表面
伝導形電子放出素子の素子構成は第2図に示す通りであ
る。同第2図において、4は石英から成る基板であり、
1.2は4上に形成された電極。6は電極ギャップ、、
3は電子放出部を示す。従来、この電子放出素子におい
ては、基板4上に有機金属化合物溶液(奥野製薬工業製
ギヤタベーストccp)をスピンコータを用いて回転塗
布し、焼成を行うことにより、電極ギャップ6間の電子
放出部3に微粒子膜を形成し、電極ギャップ6間に所望
の抵抗値、すなわち素子抵抗値を得ていた。この微粒子
膜を光学顕微鏡で観察すると透過光景が異なる場所があ
り、膜厚のバラツキが見られた。また、この素子抵抗は
後述実施例で用いる電極ギャップ6の大きさと電極幅に
おいて、同一基板内の複数の素子間で2.5にΩ12に
Ωと広い範囲にわたっており、電極1と電極2の間に電
圧を印加することにより、この微粒子膜を局所的に破壊
・変形、もしくは変質せしめ、電気的に高抵抗な状態の
電子放出部3を形成した。これにより、電子放出機能を
得た表面伝導上電子放出素子から電子放出させることが
できる。このとき、表面伝導上電子放出素子から数mm
程度離れた空間上に蛍光体基板5を配置して1kVの電
圧を印加した場合、観測された同一基板内の複数の素子
間のエミッション電流値はIe=1.5μA±1μAと
ばらつきを生じた。
[Prior Art] The device configuration of a surface conduction electron-emitting device having a pair of electrodes located across an electrode gap is as shown in FIG. In FIG. 2, 4 is a substrate made of quartz;
1.2 is an electrode formed on 4. 6 is the electrode gap,
3 indicates an electron emitting section. Conventionally, in this electron-emitting device, an organometallic compound solution (Gyatabase CCP manufactured by Okuno Pharmaceutical Co., Ltd.) is spin-coated onto the substrate 4 using a spin coater and baked, thereby forming the electron-emitting portion 3 between the electrode gaps 6. A fine particle film was formed to obtain a desired resistance value between the electrode gaps 6, that is, the element resistance value. When this particulate film was observed with an optical microscope, there were areas where the transmitted view was different, and variations in film thickness were observed. In addition, this element resistance has a wide range of 2.5 to 12 to Ω between multiple elements on the same substrate in the size of the electrode gap 6 and the electrode width used in the examples described later, and between electrode 1 and electrode 2. By applying a voltage to the microparticle film, the fine particle film was locally destroyed, deformed, or altered to form an electron-emitting region 3 in an electrically high-resistance state. Thereby, electrons can be emitted from the surface conduction electron-emitting device which has an electron-emitting function. At this time, several mm from the electron-emitting device due to surface conduction.
When the phosphor substrates 5 were arranged in a space separated by a certain distance and a voltage of 1 kV was applied, the observed emission current values between multiple elements on the same substrate varied as Ie = 1.5 μA ± 1 μA. .

また、第3図は前述の電子放出素子を多数個並べた画像
形成装置を示すものである。7は電極配線、8は素子電
極、3は電子放出部、10はグリッド電極、11は電子
通過孔、12は画像形成板、13は蛍光体で電子が衝突
することにより発光する。14は蛍光体の輝点である。
Further, FIG. 3 shows an image forming apparatus in which a large number of the aforementioned electron-emitting devices are arranged. 7 is an electrode wiring, 8 is an element electrode, 3 is an electron emitting section, 10 is a grid electrode, 11 is an electron passing hole, 12 is an image forming plate, and 13 is a phosphor that emits light when electrons collide with it. 14 is a bright spot of the phosphor.

本画像形成装置は2つの電極配線7の間に素子を並列に
並べた線状電子源とグリッド電極10でXYマトリクス
駆動を行い、画像形成板12上の蛍光体13に電子を衝
突させることにより、画像形成を行う装置である。この
装置において用いられる表面伝導上電子放出素子のエミ
ッション電流値は上述のように素子間でバラツキが生じ
ることは言うまでもない。
This image forming apparatus performs XY matrix driving using a linear electron source in which elements are arranged in parallel between two electrode wirings 7 and a grid electrode 10, and causes electrons to collide with the phosphor 13 on the image forming plate 12. , is a device that performs image formation. Needless to say, the emission current values of the surface conduction electron-emitting devices used in this device vary between devices as described above.

[発明が解決しようとする課題] 以上のように最初から所望の素子抵抗値となる有機金属
化合物溶液を塗布し、焼成するという方法では金属微粒
子の均一な膜は得られなかった。
[Problems to be Solved by the Invention] As described above, a uniform film of metal fine particles could not be obtained by the method of applying an organometallic compound solution that gives a desired element resistance value from the beginning and firing it.

このために次のような問題が生じていた。This has caused the following problems.

1、電子放出部3に微粒子膜を有する表面伝導上電子放
出素子の素子抵抗は同一基板内の複数素子間でバラツキ
を生じ、他基板素子間でも同様のバラツキを生じる。
1. The element resistance of a surface conduction electron-emitting device having a fine particle film in the electron-emitting portion 3 varies among a plurality of devices on the same substrate, and a similar variation occurs between devices on other substrates.

2、電極ギャップ6間に電圧を印加して電子放出をさせ
た場合、エミッション電流値が同一基板内の複数素子間
でバラツキを生じる。
2. When a voltage is applied across the electrode gap 6 to cause electron emission, the emission current value varies among multiple elements on the same substrate.

3、画像形成装置においては、各素子からのエミッショ
ン電流値がばらつ(ため、蛍光体13の輝度ムラが生じ
る。
3. In the image forming apparatus, the emission current value from each element varies (this causes uneven brightness of the phosphor 13).

4、画像形成装置の蛍光体の各輝点14の光放出量がば
らつ(ため、表示にちらつきを生じる。
4. The amount of light emitted from each bright spot 14 of the phosphor of the image forming apparatus varies (this causes flickering in the display).

上記問題点は電子放出素子としてのみならず画像形成装
置としても致命的なものである。
The above-mentioned problems are fatal not only as an electron-emitting device but also as an image forming apparatus.

[課題を解決するための手段] 前記問題点を解決するために本発明では、電極ギャップ
6を隔てて位置する一対の電極1,2と該電極ギャップ
6に金属微粒子膜が配置された電子放出部3を有する表
面伝導上電子放出素子において、該金属微粒子膜の抵抗
値が、該金属微粒子膜上に任意の有機金属含有量の有機
金属化合物溶液を塗布・焼成することによって得られる
金属微粒子膜の最終的な抵抗値の10倍以上であること
を特徴とする表面伝導上電子放出素子の製造方法を提供
するものであり、さらには有機金属がPd有機金属、ま
たはAu有機金属、またはAg有機金属、またはRu有
機金属であることを特徴とする表面伝導上電子放出素子
の製造方法を提供するものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides an electron emitting device comprising a pair of electrodes 1 and 2 located across an electrode gap 6 and a metal fine particle film disposed in the electrode gap 6. In the surface-conduction electron-emitting device having part 3, the resistance value of the metal fine particle film is obtained by coating and baking an organic metal compound solution with an arbitrary organic metal content on the metal fine particle film. The present invention provides a method for manufacturing a surface conduction electron-emitting device characterized in that the resistance value is 10 times or more the final resistance value of the organic metal. The present invention provides a method for manufacturing a surface conduction electron-emitting device characterized by being made of metal or Ru organometallic.

以下、さらに詳しく本発明を説明すると、本発明の表面
伝導上電子放出素子は従来と同様、第2図に示すように
基板4上に形成されるもので、この基板4としてはガラ
ス、石英等の絶縁材料が用いられる。この上に形成され
る電極1,2は真空堆積法等で形成され、電極材料とし
てはNi+ AI2+ Cu、、Au、pt、Ag等の
金属やSnow’、Inz O3,ITO等の金属酸化
物等を用いることができる。電極ギャップ6は0. 1
〜100μmであれば良い。
The present invention will be explained in more detail below. The surface conduction electron-emitting device of the present invention is formed on a substrate 4 as shown in FIG. 2, as in the conventional case. Insulating materials are used. The electrodes 1 and 2 formed on this are formed by a vacuum deposition method, etc., and the electrode materials include metals such as Ni+AI2+Cu, Au, PT, Ag, and metal oxides such as Snow', Inz O3, ITO, etc. can be used. The electrode gap 6 is 0. 1
It is sufficient if it is ~100 μm.

また、本発明は第4図に示されるようなものでも良(、
基板4上に設けられた段差形成層18の段差部上下端に
一対の電極1,2の各端部が位置し、該電極1,2が該
段差部をはさんで対向して電極ギャップ6を有しており
、該電極ギャップ6である段差部側端面に電子放出部3
を形成してなり、電極1,2間に電圧を印加することに
より、電子放出部3から電子放出するという電子放出素
子の構造においても同様な効果を得ることができる。
Further, the present invention may be as shown in FIG.
The respective ends of a pair of electrodes 1 and 2 are located at the upper and lower ends of the step portion of the step forming layer 18 provided on the substrate 4, and the electrodes 1 and 2 face each other across the step portion to form an electrode gap 6. The electron emitting portion 3 is located on the side end surface of the stepped portion, which is the electrode gap 6.
A similar effect can be obtained in the structure of an electron-emitting device in which electrons are formed in the electron-emitting portion 3 and electrons are emitted from the electron-emitting portion 3 by applying a voltage between the electrodes 1 and 2.

上記段差形成層18としては、一般に絶縁材料を用いる
。例えば、5i02.MgO8T i 02 、Ta2
0s 、Af1203等及びこれらの積層物もしくはこ
れらの混合物でも良い。電極ギャップ6は、段差形成層
18の厚みと電極1゜2の厚みによって決定されるが、
数10人〜数μカ良い。その他の構成部旧は、前述した
ものと同様な材料、構成を用いることかできる。
As the step forming layer 18, an insulating material is generally used. For example, 5i02. MgO8T i 02 , Ta2
0s, Af1203, etc., a laminate thereof, or a mixture thereof may also be used. The electrode gap 6 is determined by the thickness of the step forming layer 18 and the thickness of the electrode 1°2,
Several 10 people to several μ are good. For the other components, materials and configurations similar to those described above may be used.

また、電子放出部3に形成する金属微粒子膜の材料どし
てはAu、Ag、Ru、Pd等の金属の微粒子を用いる
ことかできる。この微粒子は、得ようとする金属の有機
金属化合物溶液を例えばディッピングやスピンコード等
で基板4に塗布した後、焼成することによって得られる
Further, as the material of the metal fine particle film formed in the electron emitting section 3, fine particles of metal such as Au, Ag, Ru, Pd, etc. can be used. These fine particles are obtained by applying an organic metal compound solution of the metal to be obtained onto the substrate 4 by, for example, dipping or a spin cord, and then firing the solution.

なお、1回目に電子放出部に形成する金属微粒子膜を得
る方法としては、上記ディッピングやスピンコード以外
に金属材料の真空堆積法を用いることもできる。
Note that as a method for obtaining the metal fine particle film formed on the electron emitting portion in the first time, a vacuum deposition method of a metal material can also be used in addition to the above-mentioned dipping or spin cording.

このようにして電子放出部3を形成することができる。In this way, the electron emitting section 3 can be formed.

[作用] 本発明によれば、」二連した有機金属溶液が基板4上に
均一に塗布できるため、均一な膜厚と膜質の金属微粒子
膜を得ることかできる。
[Function] According to the present invention, since two consecutive organometallic solutions can be uniformly applied onto the substrate 4, a metal fine particle film with uniform thickness and quality can be obtained.

すなわち、初めに電子放出部3に金属微粒子膜を配置す
る。この際、金属微粒子で基板4表面を覆うことによっ
て基板4表面への溶液のぬれ性を向上させることができ
る。
That is, first, a metal fine particle film is placed in the electron emitting section 3. At this time, by covering the surface of the substrate 4 with metal fine particles, the wettability of the solution to the surface of the substrate 4 can be improved.

但し、この際基板4の表面材質や表面形状により金属微
粒子膜の@厚分布が大きく発生するやしかし、この表面
に形成された金属微粒子膜は、膜厚が非常に薄く、導電
性も非常に小さいため、素子の抵抗としては無限大か、
あいは最終的に得る微粒子膜の素子抵抗の10倍程度以
上の高抵抗しか示さない。従ってたとえ基板4も表面の
材質や形状によって微粒子膜の膜厚にバラツキが生じて
いても、最終的に得る素子抵抗のバラツキには直接影響
を与えない。
However, at this time, the thickness distribution of the metal fine particle film may be large depending on the surface material and surface shape of the substrate 4, but the metal fine particle film formed on this surface is very thin and has very low conductivity. Because it is small, the resistance of the element is infinite.
Ai exhibits only a high resistance of about 10 times or more than the element resistance of the final particulate film. Therefore, even if the thickness of the fine particle film varies depending on the material and shape of the surface of the substrate 4, this does not directly affect the variation in the final element resistance.

ここで初めに配置した金属微粒子膜の膜厚ムラがあった
としても、基板4は金属微粒子が覆った表面であるため
、以降の有機金属化合物溶液の塗布に対するヌレ性が非
常に良好になる。従って2度目以降の有機金属化合物溶
液の塗布においては、有機金属の含有率に関わらず、均
一なヌレ性で基板4へ塗布され、膜厚や膜質の均一な金
属微粒子膜を得ることがで参る。
Even if there is unevenness in the thickness of the metal fine particle film initially disposed, since the substrate 4 is a surface covered with metal fine particles, the wettability of the subsequent application of the organometallic compound solution will be very good. Therefore, when applying the organometallic compound solution for the second and subsequent times, it is applied to the substrate 4 with uniform wettability regardless of the content of the organometallic compound, making it possible to obtain a metal fine particle film with uniform film thickness and film quality. .

以後2回目以降の有機金属化合物溶液の塗布・焼成を行
い、最終的に所望の素子抵抗値になるように金属微粒子
膜を均一に形成することができる。
Thereafter, by applying and baking the organic metal compound solution for the second and subsequent times, it is possible to uniformly form a metal fine particle film so as to finally have a desired element resistance value.

2回目以降、所望の素子抵抗を得るために有機金属濃度
の高い溶液を1度塗布しても良いし、また、濃度の低い
溶液を多数回塗布しても良く、特に有機金属の濃度・回
転塗布の回数に制限はない。
From the second time onwards, in order to obtain the desired element resistance, a solution with a high organic metal concentration may be applied once, or a solution with a low concentration may be applied multiple times. There is no limit to the number of applications.

[実施例] 実施例1 第1図は本実施例を説明する概略的説明図である。[Example] Example 1 FIG. 1 is a schematic explanatory diagram illustrating this embodiment.

最初に、+分脱脂、洗浄を行った1inchx1.5i
nch角の石英基板4上に、通常よく用いられるフォト
リソグラフィ技術と真空成膜技術により一対の電極1.
2を5素子形成した。
First, 1inch x 1.5i which was degreased and washed for + minutes
A pair of electrodes 1. is formed on a nch-angle quartz substrate 4 using commonly used photolithography and vacuum film forming techniques.
Five elements of 2 were formed.

電極ギャップ6は2μm、電極幅は300 /Jmであ
る。
The electrode gap 6 is 2 μm, and the electrode width is 300/Jm.

電極材料は、膜厚50人のCrを下引咎とした膜厚95
0人のNiであり、真空堆積法により成膜を行った。
The electrode material has a film thickness of 95% with a film thickness of 50% Cr.
The film was formed using a vacuum deposition method.

この基板4上に有機パラジウム化合物を含む有機溶媒(
奥野製薬工業製キャタペーストCCP、Pd含有量2.
2g±0.5g/j2.以下A液と略す)をスピンコー
タを用いて回転塗布し、300℃−13分間の焼成を行
った。4:の後、該A液よりも有機Pd化合物の含有量
の多い有機溶媒(奥野製薬工業製キャタペーストCCP
、Pd含含有量22土±5/に以下B液と略す)をスピ
ンコータで回転塗布し、300℃−13分間の焼成を行
った。
An organic solvent containing an organic palladium compound (
Catapaste CCP manufactured by Okuno Pharmaceutical Industries, Pd content 2.
2g±0.5g/j2. A liquid (hereinafter abbreviated as liquid A) was spin-coated using a spin coater, and baked at 300°C for 13 minutes. After 4:, an organic solvent with a higher content of organic Pd compound than the liquid A (Catapaste CCP manufactured by Okuno Pharmaceutical Co., Ltd.) was used.
, a Pd content of 22°C ± 5% was coated with a spin coater (hereinafter referred to as liquid B), and baked at 300°C for 13 minutes.

こうして得られた素子の素子抵抗をテスターで測定した
ところ、2.5にΩ±0.5にΩとなり、従来の方法と
比べて素子抵抗値のバラツキが小さくなった。
When the element resistance of the thus obtained element was measured with a tester, it was 2.5Ω±0.5Ω, and the variation in the element resistance value was smaller than that in the conventional method.

また、この素子の電子放出特性を調べるため素子を真空
容器中に入れ、電極1,2間に14Vの電圧を印加し、
更に、素子から5mm沿直上に1kVの電圧を印加した
蛍光体基板5を設置して放出電流の測定を行った。
In addition, in order to investigate the electron emission characteristics of this device, the device was placed in a vacuum container and a voltage of 14V was applied between electrodes 1 and 2.
Further, a phosphor substrate 5 to which a voltage of 1 kV was applied was placed directly above the element along a 5 mm line, and the emission current was measured.

その結果、上記条件のもとてのエミッション電流Ieは
Ie=2.04zA±0.5μAとなった。素子抵抗値
と同様、従来の方法と比べてバラツキが小さくなったこ
とがわかる。以上説明したように本発明は同一基板およ
び他基板の複数の表面伝導形電子放出素子について素子
抵抗および特性のバラツキの小さい素子を提供すること
ができる。
As a result, the emission current Ie under the above conditions was Ie=2.04zA±0.5 μA. As with the element resistance value, it can be seen that the variation is smaller compared to the conventional method. As described above, the present invention can provide a plurality of surface conduction electron-emitting devices on the same substrate and on different substrates with small variations in device resistance and characteristics.

実施例2 電極ギャップ6にSiO□薄膜を応用したたて型構造の
素子を作製した。
Example 2 An element with a vertical structure was fabricated by applying a SiO□ thin film to the electrode gap 6.

第4図は本実施例を説明する為の概略的説明図である。FIG. 4 is a schematic explanatory diagram for explaining this embodiment.

第5図はその電子放出部3を説明する為の概略的断面図
である。
FIG. 5 is a schematic cross-sectional view for explaining the electron emitting section 3. As shown in FIG.

石英の基板4上に段差形成層18として、5i02の液
体コーテイング材(東京応化工業社製○CD)を塗布、
乾燥し、厚み3000人の5i02層を作成した。次に
、電子放出部3の平面形状となるように、段差形成層1
8をHFエツチング液によりパターンエッチし、段差部
を設けた。さらに、該段差部上へ、マスク真空蒸着法に
より、Niを厚み500人成膜し、電極1.2を実施例
1と同様の形状に形成した。この時、電極ギャップ6部
分には、成膜時のステップカバレージを悪くして、Ni
が堆積しないようにした。その後、前述実施例と同様に
して、微粒子を形成して、電極ギャップ6に電子放出部
3を配置した。
A liquid coating material of 5i02 (○CD manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied as a step forming layer 18 on the quartz substrate 4,
It was dried to form a 5i02 layer with a thickness of 3000. Next, the step forming layer 1 is shaped so that it has the planar shape of the electron emitting section 3.
8 was pattern-etched using an HF etching solution to provide a stepped portion. Furthermore, a 500 layer thick Ni film was formed on the stepped portion by mask vacuum evaporation, and the electrode 1.2 was formed in the same shape as in Example 1. At this time, in the electrode gap 6 part, the step coverage during film formation was deteriorated, and Ni
was prevented from accumulating. Thereafter, fine particles were formed in the same manner as in the previous example, and the electron emitting section 3 was placed in the electrode gap 6.

この後、実施例1と同様に本素子の電極ギャップ6部に
Pd微粒子膜を形成し、素子を完成した。
Thereafter, in the same manner as in Example 1, a Pd fine particle film was formed in the 6 portions of the electrode gap of this device, and the device was completed.

この素子について前述実施例同様の実験を行つたところ
、抵抗値R=1.5にΩ±0.5にΩ、エミッション電
流Ie=3.0±0.5μAとバラツキが小さくなった
When an experiment similar to the above-mentioned example was conducted on this element, the resistance value R was 1.5 to Ω±0.5 to Ω, and the emission current Ie was 3.0±0.5 μA, with small variations.

実施例3 実施例1と同様に十分脱脂洗浄を行った石英基板4上に
通常よく用いられるフォトリソグラフィ技術と真空成膜
技術により電極ギャップ6が2μm、電極幅300μm
の一対の電極1.2を5素子形成した。電極材料は下引
きとしてのCr(膜厚50人)、電極はNi(膜厚95
0人)とした。
Example 3 An electrode gap 6 of 2 μm and an electrode width of 300 μm were formed on a quartz substrate 4 which had been thoroughly degreased and cleaned in the same manner as in Example 1 using commonly used photolithography and vacuum film forming techniques.
Five elements of the pair of electrodes 1.2 were formed. The electrode material is Cr (film thickness 50mm) as an undercoat, and the electrode is Ni (film thickness 95mm).
0 people).

この基板4上に上述したA液をスピンコータを用いて回
転塗布し、300℃−13分間の焼成を行った。この後
、同様にして、さらにA液の塗布、焼成を2回行った。
The above-mentioned liquid A was spin-coated onto this substrate 4 using a spin coater, and baked at 300° C. for 13 minutes. Thereafter, in the same manner, application of liquid A and baking were performed twice.

このようにして作成した素子について前述実施例1と同
様の実験を行ったところ、抵抗値、エミッション電流と
も同様にそろった値を示した。
When the device thus produced was subjected to the same experiment as in Example 1, both the resistance value and the emission current showed similar values.

また、実施例2と同様の素子(第4図)についても実施
例2と同様にそろった値を示した。
Further, the same element as in Example 2 (FIG. 4) also showed similar values as in Example 2.

実施例4 実施例1と同様に、十分脱脂洗浄を行った石英基板4上
に通常よく用いられるフォトリソグラフィ技術と真空成
膜技術により電極ギヤ・ツブ6が2LLm、電極幅30
0 μmの一対の電極1,2を5素子形成した。電極材
料は下引きとしてのCr(膜厚50人)、電極はNi(
膜厚950人)とした。
Example 4 Similarly to Example 1, the electrode gear knob 6 was formed to 2 LLm and the electrode width was 30 mm using commonly used photolithography and vacuum film forming techniques on a quartz substrate 4 that had been sufficiently degreased and cleaned.
Five elements of a pair of electrodes 1 and 2 each having a diameter of 0 μm were formed. The electrode material is Cr (film thickness: 50 mm) as an undercoat, and the electrode is Ni (
The film thickness was 950 people).

この基板4を、初めに上述のA液に浸し、毎秒5mmの
速度でひきあげてディッピングコートを行い、300℃
−13分の焼成を行った。この後、A液よりも有機Pd
化合物の含有量の多いB液に浸し、同様にしてディッピ
ングを行い、300℃−13分間の焼成を行った。
This substrate 4 was first immersed in the above-mentioned liquid A, then pulled up at a speed of 5 mm per second to perform a dipping coat, and heated to 300°C.
- Baking was performed for 13 minutes. After this, organic Pd than liquid A
It was immersed in liquid B containing a large amount of compounds, dipping was performed in the same manner, and baking was performed at 300° C. for 13 minutes.

このようにして作成した素子について前述実施例1と同
様の実験を行ったところ、抵抗値、エミッション電流と
も同様にそろった値を示した。
When the device thus produced was subjected to the same experiment as in Example 1, both the resistance value and the emission current showed similar values.

また、実施例2と同様の素子(第4図)および、実施例
3と同様の塗布方法についても他の実施例と同様にそろ
った値を示した。
Furthermore, the same element as in Example 2 (FIG. 4) and the same coating method as in Example 3 also showed similar values as in the other examples.

[発明の効果] 以上説明したJ:うに、本発明は一対の相対向する電極
と該電極間に設りられた金属微粒子膜からなる表面伝導
形電子放出素子において、次のような効果がある。
[Effects of the Invention] As explained above, the present invention has the following effects in a surface conduction electron-emitting device consisting of a pair of opposing electrodes and a metal fine particle film provided between the electrodes. .

1 該微粒子膜を均一な厚さで形成することができる。1. The fine particle film can be formed with a uniform thickness.

2、素子を直線上にマルチに配置することにより、−様
な線状電子源を得るのに効果がある。
2. By arranging multiple elements in a straight line, it is effective to obtain a --like linear electron source.

3 特性のそろった素子ができるため、一定の規格にあ
った素子が多数得られ、画像形成装置として大面積化が
容易Iこなる。
3. Since elements with uniform characteristics can be produced, a large number of elements meeting a certain standard can be obtained, making it easy to increase the area of the image forming apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の特徴を示す説明図、第2図は実施例1
て作製した素子の平面図、第3図はS2図の素子をマル
チに直線上に配置した図、第4図は実施例2で作製した
素子の平面図、第5図は実施例2で作製した素子の断面
図である。 1.2、電極    3:電子放出部 4、基板      5:蛍光体基板 ・電極ギャップ :素子電極 1:電子通過孔 3・蛍光体 8:段差形成層 :配線電極 0ニゲリツド電極 2:画像形成板 4:蛍光体の輝点
Figure 1 is an explanatory diagram showing the features of the present invention, Figure 2 is Example 1
Figure 3 is a plan view of the device fabricated in Example 2, Figure 3 is a diagram showing the elements in Figure S2 arranged in multiple lines, Figure 4 is a plan view of the element fabricated in Example 2, and Figure 5 is a diagram of the element fabricated in Example 2. FIG. 1.2, Electrode 3: Electron emission part 4, Substrate 5: Phosphor substrate/electrode gap: Device electrode 1: Electron passing hole 3/phosphor 8: Step forming layer: Wiring electrode 0 Niger electrode 2: Image forming plate 4 : Bright spot of phosphor

Claims (1)

【特許請求の範囲】 1、電極ギャップを隔てて位置する一対の電極と該電極
ギャップに金属微粒子膜が配置された電子放出部を有す
る表面伝導形電子放出素子において、該金属微粒子膜の
抵抗値が、該金属微粒子膜上に任意の有機金属含有量の
有機金属化合物溶液を塗布・焼成することによって得ら
れる金属微粒子膜の最終的な抵抗値の10倍以上である
ことを特徴とする表面伝導形電子放出素子の製造方法。 2、有機金属がPd有機金属、またはAu有機金属、ま
たはAg有機金属、またはRu有機金属であることを特
徴とする請求項1記載の表面伝導形電子放出素子の製造
方法。
[Scope of Claims] 1. In a surface conduction electron-emitting device having an electron-emitting region including a pair of electrodes located across an electrode gap and a metal fine particle film disposed in the electrode gap, the resistance value of the metal fine particle film is 10 times or more the final resistance value of a metal fine particle film obtained by coating and baking an organic metal compound solution with a desired organic metal content on the metal fine particle film. A method for manufacturing a shaped electron-emitting device. 2. The method for manufacturing a surface conduction electron-emitting device according to claim 1, wherein the organic metal is a Pd organic metal, an Au organic metal, an Ag organic metal, or a Ru organic metal.
JP2174407A 1990-07-03 1990-07-03 Manufacture of surface conducting type electron emitting element Pending JPH0465050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174407A JPH0465050A (en) 1990-07-03 1990-07-03 Manufacture of surface conducting type electron emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174407A JPH0465050A (en) 1990-07-03 1990-07-03 Manufacture of surface conducting type electron emitting element

Publications (1)

Publication Number Publication Date
JPH0465050A true JPH0465050A (en) 1992-03-02

Family

ID=15978019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174407A Pending JPH0465050A (en) 1990-07-03 1990-07-03 Manufacture of surface conducting type electron emitting element

Country Status (1)

Country Link
JP (1) JPH0465050A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660359A2 (en) * 1993-12-22 1995-06-28 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device and image-forming apparatus
US5593335A (en) * 1993-04-05 1997-01-14 Canon Kabushiki Kaisha Method of manufacturing an electron source
US5674100A (en) * 1994-07-20 1997-10-07 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device
US5759080A (en) * 1987-07-15 1998-06-02 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated form electrodes
USRE40062E1 (en) * 1987-07-15 2008-02-12 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759080A (en) * 1987-07-15 1998-06-02 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated form electrodes
USRE40062E1 (en) * 1987-07-15 2008-02-12 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
US5593335A (en) * 1993-04-05 1997-01-14 Canon Kabushiki Kaisha Method of manufacturing an electron source
EP0660359A2 (en) * 1993-12-22 1995-06-28 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device and image-forming apparatus
EP0660359A3 (en) * 1993-12-22 1995-07-26 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device and image-forming apparatus
US6063453A (en) * 1993-12-22 2000-05-16 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device and image-forming apparatus comprising such devices
US5674100A (en) * 1994-07-20 1997-10-07 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device

Similar Documents

Publication Publication Date Title
JPH11500856A (en) Spacer structure for flat panel display and manufacturing method thereof
JPH0465050A (en) Manufacture of surface conducting type electron emitting element
US5597338A (en) Method for manufacturing surface-conductive electron beam source device
JPH0612997A (en) Electron emitting element and manufacture thereof and picture forming device using this electron emitting element
JPH01200532A (en) Electron emission element and manufacture thereof
JP3168353B2 (en) Image display device
JP2631007B2 (en) Electron emitting element, method of manufacturing the same, and image forming apparatus using the element
JP2946153B2 (en) Method for manufacturing electron-emitting film and electron-emitting device
KR100378103B1 (en) Electron source, image forming apparatus, and manufacture method for electron source
JP2805326B2 (en) Electron source and image forming apparatus using the same
JP2916807B2 (en) Electron emitting element, electron source, image forming apparatus, and method of manufacturing them
JP2923787B2 (en) Electron emitting element, electron source and image forming apparatus using the same
JP2949639B2 (en) Electron emitting element, electron source, image forming apparatus, and method of manufacturing them
JP2850014B2 (en) Image forming device
JPH09245625A (en) Surface conduction electron emitter, its manufacture, and electron source and image forming device each having the same
JP2981503B2 (en) Electron emitting element, electron source and image display device
JP2961523B2 (en) Electron emitting element, electron source and image forming apparatus
JPH01311534A (en) Surface conductive emitting element
KR100784511B1 (en) Appratus for Field Emission Display and Method for fabricating thereof
JP3210129B2 (en) Electron source and image forming apparatus
JP3450581B2 (en) Manufacturing method of wiring board and image forming apparatus
JPH01296531A (en) Surface conduction type electron emitting element and manufacture of this element
JP2916808B2 (en) Electron-emitting device, electron source, image forming apparatus, and manufacturing method thereof
JPH06203741A (en) Electron emitting element, electron beam generator and image forming device
JP2850013B2 (en) Image forming device