JPH01112632A - Electron emitting element and its manufacture - Google Patents

Electron emitting element and its manufacture

Info

Publication number
JPH01112632A
JPH01112632A JP62269394A JP26939487A JPH01112632A JP H01112632 A JPH01112632 A JP H01112632A JP 62269394 A JP62269394 A JP 62269394A JP 26939487 A JP26939487 A JP 26939487A JP H01112632 A JPH01112632 A JP H01112632A
Authority
JP
Japan
Prior art keywords
electron
electron emitting
forming
thin film
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62269394A
Other languages
Japanese (ja)
Other versions
JP2617739B2 (en
Inventor
Akira Miyake
明 三宅
Ichiro Nomura
一郎 野村
Tetsuya Kaneko
哲也 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26939487A priority Critical patent/JP2617739B2/en
Publication of JPH01112632A publication Critical patent/JPH01112632A/en
Application granted granted Critical
Publication of JP2617739B2 publication Critical patent/JP2617739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To enhance the electron emitting characteristic and facilitate manufacture of a surface conductive electron emitting element by sensing the current flowing in a film, controlling the impression voltage, and forming an electron emitting part. CONSTITUTION:A voltage is impressed on a film 3 on a base board 4 through electrodes 1, 2, and an electron emitting part 5 is formed. In this process, impression voltage is raised while the current flowing in the film 3 is sensed, and when the current value has decreased, the voltage is fixed for a certain period of time, and thereafter the processing is completed when the current value of amperage has taken a certain value. The emission efficiency of electron emitting element by this method is large, and the duration of emission is long. The time for forming the electron emitting part is short, and the power consumption is small. As manufacture can be made in optimum condition to suit the element, the allowance of shape and dimension at the time of forming the film becomes large.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は表面伝導形′電子放出素子及びその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a surface conduction type electron-emitting device and a method for manufacturing the same.

[従来の技術] 従来、簡単な構造で電子の放出が得られる素子として、
例えば、エム アイ エリンソン (M、1Elins
on)等によって発表された冷陰極素子が知られている
[ラジオ エンジニアリング エレクトロンフィジック
ス(Radio Eng、 Electron。
[Prior Art] Conventionally, as an element that can emit electrons with a simple structure,
For example, M, 1Elins
The cold cathode device announced by Radio Eng, Electron, etc. is known.

Phys、 )第10巻、 1290〜129G頁、 
1965年]。
Phys, ) Volume 10, pp. 1290-129G,
1965].

これは、基板上に形成された小面積の薄膜に、膜面に平
行に電流を流すことにより、電子放出が生ずる現象を利
用するもので、一般には表面伝導形放出素子と呼ばれて
いる。
This device utilizes the phenomenon that electrons are emitted when a current is passed through a small-area thin film formed on a substrate parallel to the film surface, and is generally called a surface conduction type emission device.

この表面伝導形放出素子としては、前記エリンソン等に
より開発された5n02(Sb)薄膜を用いたもの、A
u薄膜によるもの[ジー、ディトマー“シン ソリッド
 フィルムス” (G、Dittmer :”Th1n
 5olid Films” )、第9巻、317頁、
(1972年) ]  、 ITO薄膜によるもの[エ
ム ハートウェル アンド シー ジー フォンスタッ
ド“アイイー イー イー トランスパイ−デイ−コア
 7 (M、 Hartwell and C,G、F
onstad: ” IEEETrans、 ED C
onf、 ” )519頁、 (1975年)]、カー
ボン薄膜によるもの[荒木久他:゛真空“、第26巻、
第1号、22頁、 (1983年)]などが報告されて
いる。
This surface conduction type emission device uses the 5n02 (Sb) thin film developed by Ellingson et al.
u Thin film [G, Dittmer “Thin Solid Films” (G, Dittmer: “Th1n
5solid Films”), Volume 9, page 317,
(1972) ], ITO thin film [M, Hartwell and C, G, F.
onstad: ” IEEE Trans, ED C
onf, ”) p. 519, (1975)], by carbon thin film [Hisashi Araki et al.: “Vacuum”, Vol. 26,
No. 1, p. 22, (1983)].

これらの表面伝導層放出素子の典型的な素子構成を第4
図に示す。第4図において、11および12は電気的接
続を得るための電極、13は電子放出材料で形成される
薄膜、14は基板、15は電子放出部を示す。
Typical device configurations of these surface conduction layer emitting devices are shown in the fourth section.
As shown in the figure. In FIG. 4, 11 and 12 are electrodes for obtaining electrical connection, 13 is a thin film formed of an electron-emitting material, 14 is a substrate, and 15 is an electron-emitting portion.

従来、これらの表面伝導層放出素子においては、電子放
出を行なう前にあらかじめフォーミングと呼ばれる通電
加熱処理によって電子放出部を形成する。即ち、前記電
極11と電極12の間に一定の電圧、あるいは時間的に
一定の割合で増加する電圧を印加することにより、薄膜
13に通電し、これにより発生するジュール熱で薄膜I
3を局所的に破壊、変形もしくは変質せしめ、電気的に
高抵抗な状態にした電子放出部15を形成することによ
り電子放出機能を得ている。
Conventionally, in these surface conduction layer emitting devices, an electron emitting portion is formed in advance by an electrical heating process called forming before electron emission. That is, by applying a constant voltage or a voltage that increases at a constant rate over time between the electrodes 11 and 12, the thin film 13 is energized, and the Joule heat generated thereby causes the thin film I to
The electron emitting function is obtained by locally destroying, deforming, or altering the electron emitting part 3 to form an electron emitting part 15 that is in an electrically high resistance state.

[発明が解決しようとしている問題点]しかしながら上
記従来例では、一定の電圧を印加してフォーミングを行
った場合には電子放出部に損傷が生じ易く、電子放出効
率、寿命、放出電流の安定性などの特性が劣化し、素子
のばらつきも大きかった。また、これらの欠点を避ける
目的で、時間的に極めて小さな割合で印加電圧を上昇さ
せる方法でフォーミングを行った場合には、フォーミン
グ終了まで非常に長い時間を要し、それに伴いフォーミ
ングのための消費電力量も増大する欠点が生じていた。
[Problems to be solved by the invention] However, in the above conventional example, when forming is performed by applying a constant voltage, the electron emitting part is likely to be damaged, and the electron emission efficiency, lifespan, and stability of the emission current are affected. Characteristics such as these deteriorated, and variations among the elements were large. In addition, if forming is performed by increasing the applied voltage at an extremely small rate in order to avoid these drawbacks, it will take a very long time to complete forming, and the consumption for forming will increase accordingly. This also had the disadvantage of increasing the amount of electricity.

また、時間的に極めて小さな割合で印加電圧を上昇させ
るフォーミング条件が適正と云えるものではなかった。
Furthermore, forming conditions in which the applied voltage is increased at an extremely small rate over time cannot be said to be appropriate.

c問題点を解決するための手段コ 本発明は上記の点に鑑みてなされたものである。c Means to solve the problem The present invention has been made in view of the above points.

即ち、本発明は、薄膜の面内に電流を流すことによって
電子を放出する電子放出部を基板上に設けた電子放出素
子において、電子放出部が、薄膜に流れる電流値の検出
及びそれに基づいて印加する電圧の制御の下で通電加熱
処理することによって形成されたものであることを特徴
とする電子放出素子に係るものである。
That is, the present invention provides an electron-emitting device in which an electron-emitting section is provided on a substrate to emit electrons by passing a current in the plane of a thin film, in which the electron-emitting section detects the value of the current flowing through the thin film and detects the value of the current flowing through the thin film. The present invention relates to an electron-emitting device characterized in that it is formed by conducting an electrical heating treatment under control of applied voltage.

更に本発明は、通電加熱処理を行う際、薄膜に流れる電
流値を検出し、それに基いて印加する電圧を制御して通
電処理を行うことによって電子放出部を形成することを
特徴とする電子放出素子の製造方法に係るものである。
Furthermore, the present invention provides an electron-emitting device characterized in that, when carrying out current-heating treatment, the value of the current flowing through the thin film is detected, and the voltage applied is controlled based on the detected current value to form an electron-emitting region. This relates to a method of manufacturing an element.

[実施例] 第1図は本発明に係る電子放出素子の平面図である。図
中、l及び2はフォーミングを行うための電極、3は薄
膜、4は基板、5はフォーミングによって形成される電
子放出部を示す。
[Example] FIG. 1 is a plan view of an electron-emitting device according to the present invention. In the figure, 1 and 2 are electrodes for performing forming, 3 is a thin film, 4 is a substrate, and 5 is an electron emitting part formed by forming.

電極1,2は、特に限定されることなく通常使用されて
いる広範囲のものを用いることができ、例えばNi、 
Pt、 AI!、 Cu、 Au等の通常の金属やその
他の導電性材料を使用することができる。
The electrodes 1 and 2 are not particularly limited, and a wide range of commonly used electrodes can be used, such as Ni,
Pt, AI! , Cu, Au, and other conductive materials can be used.

薄膜3は、通常使用されている広範囲のものを用いるこ
とができ、例えばSnO,−、Inz03. PbO”
Jの全屈酸化物、 Au、 Ag等金属、カーボン、そ
の他各種の半導体などいずれも使用可能である。薄膜の
膜厚は、通常の表面伝導層放出素子に用いられている厚
さであればよく、その具体例を示すと、使用される材料
の種類により異なるが、通常0.01〜5ILm、好ま
しくは0.01〜0.5μmが望ましい。
The thin film 3 can be made of a wide variety of commonly used materials, such as SnO, -, Inz03. PbO”
A fully bent oxide of J, metals such as Au and Ag, carbon, and various other semiconductors can be used. The thickness of the thin film may be any thickness that is used in ordinary surface conduction layer emitting devices, and a specific example thereof is usually 0.01 to 5 ILm, preferably 0.01 to 5 ILm, although it varies depending on the type of material used. is preferably 0.01 to 0.5 μm.

基板4も通常使用されているものを用いることができ1
石英、青板ガラス、シリコン基板などが好適である。
The substrate 4 can also be a commonly used substrate 1
Quartz, blue plate glass, silicon substrate, etc. are suitable.

次に本発明に係る電子放出素子の製造例を示して、本発
明を具体的に説明する。
Next, the present invention will be specifically explained by showing an example of manufacturing an electron-emitting device according to the present invention.

石英基板上に第1図の形状(L=0.3mm 、W=0
.1mm ) テ5no2膜を100OA (7)厚さ
で蒸着した。次に第2図に示した回路を用いて真空中で
薄膜の通電加熱を行いフォーミング処理を行った。
The shape shown in Fig. 1 (L = 0.3 mm, W = 0
.. A 1mm) Te5no2 film was deposited at a thickness of 100OA(7). Next, using the circuit shown in FIG. 2, the thin film was electrically heated in a vacuum to perform a forming process.

第3図が本実施例におけるフォーミング処理の際の電1
F制御の手順を表すフローチャートである。■は薄膜に
印加する電圧、工は薄膜に流れる上流1+n、Yoはフ
ォーミング処理開始電圧、Tは待ち時間、ΔVは印加電
圧上昇のきざみ値である。薄膜に流れる電流Iを測定し
ながら印加電圧Vを一定の割合で上げてゆき、■が減少
したならば、そこでVを固定しである時間Tだけ待つ。
Figure 3 shows the electric power 1 during the forming process in this example.
It is a flowchart showing the procedure of F control. (2) is the voltage applied to the thin film, D is the upstream 1+n flowing through the thin film, Yo is the forming process start voltage, T is the waiting time, and ΔV is the step value of the applied voltage rise. While measuring the current I flowing through the thin film, the applied voltage V is increased at a constant rate, and when ■ decreases, V is fixed and a certain time T is waited.

Tだけ待ったのち工を再び測定し、それがある値、例え
ばTだけ待つ前の電流値工0の2分の1に減少したなら
ば、そこで処理終了とする。もし、電流値がそこまで減
少していなければ再びVをΔVだけ増加して同様の操作
をくりかえす。
After waiting for T, the current is measured again, and if it decreases to a certain value, for example, one-half of the current value 0 before waiting for T, the process is terminated. If the current value has not decreased to that extent, V is increased by ΔV again and the same operation is repeated.

例工Jf 上記(1)例ではVo 410V 、 ΔV
x30mV。
Example work Jf In the example (1) above, Vo 410V, ΔV
x30mV.

TN20秒とした場合、VZ20Vでフォーミング、処
理が完了し、この時フォーミングに要した処理時間は約
5分間であった。この様な条件でフォーミング処理を行
った時、素子特性のばらつきは最も少なく、放出電流の
ばらつきは±15%以内でフォーミングに要する時間も
各素子光んど同一で、従来素子毎に5分から1時間程度
かかっていたフォーミング処理が、短時間に制御性良く
処理できる様になった。
When the TN was 20 seconds, forming and processing were completed at VZ 20V, and the processing time required for forming at this time was about 5 minutes. When the forming process is performed under these conditions, the variation in device characteristics is the smallest, the variation in emission current is within ±15%, and the time required for forming is the same for each device. The forming process, which used to take a long time, can now be done in a short time and with good controllability.

この様にしてフォーミング処理を行った電子放出素子の
特性を測定すると、11りに流れる電流に対する放出電
流の比で定義される放出効率は約10−3で、従来例の
素子の放出効率10匂〜!o−6に比べ大幅に向上した
。寿命についても、従来例では数分から500時間時間
型子放出を行うと電子放出が起らなくなったのに比べ、
本実施例の素子では!000時間以上にわたって安定に
電子放出を起こすことができた。
When the characteristics of the electron-emitting device subjected to the forming treatment in this manner are measured, the emission efficiency defined as the ratio of the emission current to the current flowing in the 11th direction is about 10-3, which is about 10 degrees of the emission efficiency of the conventional device. ~! Great improvement compared to o-6. As for the lifespan, compared to the conventional example where no electron emission occurred after a few minutes to 500 hours of mold emission.
In the element of this example! Electron emission could be stably caused for over 1,000 hours.

即ち1本実施例の電子放出素子を従来のフォーミング法
により作成した電子放出素子と比較すると、素子の電子
放出効率、寿命、放出電流の安定性、素子特性の一様性
などの点で向上が認められ、またフォーミングに要する
時間、消費電力量も大幅に低減することができた。
In other words, when the electron-emitting device of this example is compared with an electron-emitting device fabricated by the conventional forming method, it is found that the electron-emitting device is improved in terms of electron-emitting efficiency, lifetime, stability of emission current, uniformity of device characteristics, etc. In addition, the time and power consumption required for forming were significantly reduced.

[発明の効果] 以上説明した様に、未発明の電子放出素子はフォーミン
グ処理時に、素子に合わせた最適の条件でフォーミング
することにより、従来問題であった素子の特性のばらつ
きが小さく、電子放出効率、寿命、放出電流の安定性な
どの特性が優れたものである。
[Effects of the Invention] As explained above, by forming the uninvented electron-emitting device under optimal conditions suited to the device during forming processing, the variation in device characteristics, which was a problem in the past, is reduced and electron-emitting devices are improved. It has excellent characteristics such as efficiency, life, and stability of emission current.

またフォーミング処理に要する時間を短縮でき、それに
伴いフォーミングのための消費電力量を低減させること
ができる。
Furthermore, the time required for forming processing can be shortened, and the amount of power consumed for forming can be reduced accordingly.

また、素子に合わせた最適の条件でフォーミングを行う
ことができるので薄膜を形成する際の形状、を法精度の
許容度が増し、製造が容易になる。
Furthermore, since forming can be performed under optimal conditions suited to the element, the tolerance for the precision of the shape when forming a thin film increases, making manufacturing easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電子放出素子の一例を示す平面図であ
り、第2図はフォーミング処理を行うための回路の結線
図であり、第3図はフォーミング処理を行う際の電圧制
御の手順を示すフローチャートであり、第4図は従来の
電子放出素子を示す平面図である。 1.11・・・電極部、    2.12・・・電極部
、3.13・・・薄膜、    4,14・・・基板、
5.15・・・電子放出部。 第1 図 第2区 第4区
FIG. 1 is a plan view showing an example of the electron-emitting device of the present invention, FIG. 2 is a wiring diagram of a circuit for performing forming processing, and FIG. 3 is a voltage control procedure when performing forming processing. FIG. 4 is a plan view showing a conventional electron-emitting device. 1.11... Electrode part, 2.12... Electrode part, 3.13... Thin film, 4,14... Substrate,
5.15...Electron emission part. Figure 1: Ward 2, Ward 4

Claims (2)

【特許請求の範囲】[Claims] (1)薄膜の面内に電流を流すことによって電子を放出
する電子放出部を基板上に設けた電子放出素子において
、電子放出部が、薄膜に流れる電流値の検出及びそれに
基づいて印加する電圧の制御の下で通電加熱処理するこ
とによって形成されたものであることを特徴とする電子
放出素子。
(1) In an electron-emitting device in which an electron-emitting part is provided on a substrate to emit electrons by passing a current in the plane of a thin film, the electron-emitting part detects the value of the current flowing through the thin film and applies a voltage based on the value of the current flowing through the thin film. 1. An electron-emitting device characterized in that it is formed by conducting electrical heating treatment under the control of:
(2)薄膜の面内に電流を流すことによって電子を放出
する電子放出部を基板上に設けた電子放出素子を製造す
る方法において、通電加熱処理を行う際、薄膜に流れる
電流値を検出し、それに基いて印加する電圧を制御して
通電処理を行うことによって電子放出部を形成すること
を特徴とする電子放出素子の製造方法。
(2) In a method for manufacturing an electron-emitting device in which an electron-emitting part is provided on a substrate to emit electrons by passing an electric current in the plane of the thin film, the value of the current flowing through the thin film is detected when performing energization heat treatment. A method for manufacturing an electron-emitting device, characterized in that an electron-emitting region is formed by controlling an applied voltage based on the voltage and performing an energization process.
JP26939487A 1987-10-27 1987-10-27 Method of manufacturing electron-emitting device and electron-emitting device Expired - Lifetime JP2617739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26939487A JP2617739B2 (en) 1987-10-27 1987-10-27 Method of manufacturing electron-emitting device and electron-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26939487A JP2617739B2 (en) 1987-10-27 1987-10-27 Method of manufacturing electron-emitting device and electron-emitting device

Publications (2)

Publication Number Publication Date
JPH01112632A true JPH01112632A (en) 1989-05-01
JP2617739B2 JP2617739B2 (en) 1997-06-04

Family

ID=17471796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26939487A Expired - Lifetime JP2617739B2 (en) 1987-10-27 1987-10-27 Method of manufacturing electron-emitting device and electron-emitting device

Country Status (1)

Country Link
JP (1) JP2617739B2 (en)

Also Published As

Publication number Publication date
JP2617739B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US5023110A (en) Process for producing electron emission device
JP2632359B2 (en) Electron emitting device and method of manufacturing the same
JPH01112632A (en) Electron emitting element and its manufacture
JP2630983B2 (en) Electron-emitting device
JP2727193B2 (en) Method for manufacturing electron-emitting device
JP2614048B2 (en) Method and apparatus for manufacturing electron-emitting device
JPS6084744A (en) Hot cathode
JP2678757B2 (en) Electron emitting device and method of manufacturing the same
JP2610143B2 (en) Electron emitting device and method of manufacturing the same
JPH01112631A (en) Electron emitting element and its manufacture
JPH0690018A (en) Light emitting element and its manufacture
JP2614047B2 (en) Method for manufacturing electron-emitting device
JP2598301B2 (en) Driving method of electron-emitting device
JP2622838B2 (en) Method for manufacturing electron-emitting device
JPH03261026A (en) Surface conduction type electron emitting element and image forming device
JP2646235B2 (en) Electron emitting device and method of manufacturing the same
JPH01279542A (en) Surface conductive emission element
JPH02247940A (en) Electron emission element and image formation apparatus using it
JPH0494032A (en) Electron emission element and image forming device using electron emission element
JPH01281646A (en) Surface conductive emission element
JP2727194B2 (en) Electron emitting device and electron beam light emitting device
JP2850090B2 (en) Method of manufacturing electron-emitting device and electron source
JPH0272534A (en) Electron beam generator
JP2933855B2 (en) Electron emitting element, electron beam generator using the same, and method of manufacturing image forming apparatus
JPH0410325A (en) Manufacture of surface conduction type electron emitting element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11