JPH01270354A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH01270354A
JPH01270354A JP9945788A JP9945788A JPH01270354A JP H01270354 A JPH01270354 A JP H01270354A JP 9945788 A JP9945788 A JP 9945788A JP 9945788 A JP9945788 A JP 9945788A JP H01270354 A JPH01270354 A JP H01270354A
Authority
JP
Japan
Prior art keywords
thin film
layer
type
sio2
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9945788A
Other languages
Japanese (ja)
Inventor
Takashi Shimobayashi
隆 下林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9945788A priority Critical patent/JPH01270354A/en
Publication of JPH01270354A publication Critical patent/JPH01270354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a MOS structure, which can be formed by a manufacturing method having a high degree of mass productivity using a low-cost glass substrate as an amorphous substrate and has a multiple structure, by a method wherein a semiconductor device is provided with at least one group of structures covering a structure wherein an insulating layer is pinched by semiconductor films of the same conductivity type as that of the insulating layer between them with a conductive thin film. CONSTITUTION:An N-type Si thin film first layer 2, an SiO2 thin film layer 3 for insulation and an N-type Si thin film second layer 4 are formed on a glass substrate 1 superposing on one another. Moreover, a non-doped Si thin film 5, an SiO2 thin film 6 capable of functioning as a gate oxide film and a gate electrode 7 are formed in a configuration covering the layers 2, 3 and 4. The layers 2 and 4 are formed by a method wherein an N-type Si thin film is adhered using a reduced CVD method and the formed thin film is processed insularly using a photolithography method. The electrode 7 is formed by a method wherein a metal thin film is adhered using a sputtering method and the metal thin film is processed insularly using a photolithography method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はフラット・デイスプレィ、SOI素子(Sem
1conductor on 1nsulator)等
に用いる半導体装置の構造及びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to flat displays, SOI devices (SEM
The present invention relates to the structure of a semiconductor device used in a semiconductor device (1 conductor on 1 insulator), etc., and a method for manufacturing the same.

[従来の技術] 従来、例えばConference Record o
f the 1985International D
isplay Re5earch Conferenc
e。
[Prior art] Conventionally, for example, a conference record
f the 1985 International D
isplay Research Conference
e.

p、9−13(1985)  のように、非晶質基板上
に多結晶半導体でMO5構造を形成する場合、導電性薄
膜を形成する方法としてイオン注入法を用い、平面的に
素子を形成するのが一般であった。
When forming an MO5 structure using a polycrystalline semiconductor on an amorphous substrate, as in p. 9-13 (1985), ion implantation is used as a method of forming a conductive thin film, and the element is formed in a planar manner. It was common.

[発明が解決しようとする課題] しかし前述の従来技術は、イオン注入法を用いてドーパ
ントの導入を行うため、高価なイオン注入装置の使用が
不可欠であり、またその処理能力も小さなものであった
。また、イオン注入後にドーパントを活性化するために
高温に保持する必要があるため、非晶質基板として高価
な石英ガラスの使用が不可欠であるうえ、活性化処理に
より、既に形成した構造が損傷を受けるため、素子を重
ねて形成することは回能であるという欠点を有していた
。そのため、素、子を重ねて配置することによる動作の
高速化、実装面積の縮小化等の効果を実現することがで
きなかった。
[Problems to be Solved by the Invention] However, the above-mentioned conventional technology uses an ion implantation method to introduce dopants, so it is essential to use an expensive ion implantation device, and its processing capacity is also small. Ta. Furthermore, since it is necessary to hold the dopant at high temperature after ion implantation to activate it, it is essential to use expensive quartz glass as the amorphous substrate, and the activation process can damage the already formed structure. For this reason, forming the elements in a stacked manner has the disadvantage of being redundant. Therefore, it has not been possible to realize effects such as speeding up the operation and reducing the mounting area by arranging the elements and elements one on top of the other.

そこで本発明は従来技術の欠点を解決するもので、その
目的とするところは、安価なガラス基板を非晶質基板に
用いて、量産、性に富む製造方法で形成可能な、多重構
造のM O’ S構造を提供するところにある。
SUMMARY OF THE INVENTION The present invention aims to solve the drawbacks of the prior art, and its purpose is to create a multi-layer structure that can be formed using an inexpensive glass substrate as an amorphous substrate and a manufacturing method that is mass-produced and highly flexible. It provides an O'S structure.

[課題を解決するための手段] 本発明は、M産性に富む減圧CVD法を用いてドーパン
トの導入を行い、高価で生産性の低いイオン注入装置を
使用せずにMO3構造の形成を行う。また、イオン注入
後にドーパントを活性化するために高温に保持する必要
がないため、非晶質基板として安価なガラス基板の使用
が可能になる。
[Means for Solving the Problems] The present invention introduces a dopant using a low-pressure CVD method with high M productivity, and forms an MO3 structure without using an expensive and low-productivity ion implantation device. . Furthermore, since there is no need to maintain the temperature at a high temperature to activate the dopant after ion implantation, an inexpensive glass substrate can be used as the amorphous substrate.

そして、半導体装置を重ねて配置するため、その占有面
積は著しく小さくなり、半導体装置の高密度実装が可能
になる。
Further, since the semiconductor devices are arranged one on top of the other, the area occupied by the semiconductor devices is significantly reduced, and high-density packaging of the semiconductor devices becomes possible.

[実施例] 第1図は本発明による構造を用いて作製したn−MO3
型素子を上方より眺めた図である。
[Example] Figure 1 shows n-MO3 produced using the structure according to the present invention.
FIG. 3 is a view of the mold element viewed from above.

ガラス基板1上にn型Si薄膜第1層2、絶縁用SiO
2薄膜層3、n型Si薄膜第2層4が重なって形成され
ている。さらにそれらを覆う形状に、ノンドープSi薄
膜5、ゲート酸化膜として機能しうるSiO2薄膜6、
ゲート電極7が形成されている。また、ゲート酸化膜と
して機能しうるSiO2薄膜6には、電気的にコンタク
トをとるための窓領域8が設けられている。また、n型
Si薄膜第1層2、n型Si薄膜第2層4には電源供給
電極9.10が設けられていて、n −MOS構造を構
成している。この素子は、高周波帯域にわたり安定な動
作が可能な、非常に良好な特性を得ることができた。
On a glass substrate 1, an n-type Si thin film first layer 2 and an insulating SiO
Two thin film layers 3 and an n-type Si thin film second layer 4 are formed in an overlapping manner. Furthermore, in a shape that covers them, a non-doped Si thin film 5, a SiO2 thin film 6 that can function as a gate oxide film,
A gate electrode 7 is formed. Further, the SiO2 thin film 6, which can function as a gate oxide film, is provided with a window region 8 for making electrical contact. Further, power supply electrodes 9 and 10 are provided on the n-type Si thin film first layer 2 and the n-type Si thin film second layer 4, forming an n-MOS structure. This device has very good characteristics that enable stable operation over a high frequency band.

第2図は、第1図の本発明による構造を用いて作製した
n−MO3構造のA−Bの線に沿った断面構造を示す図
である。
FIG. 2 is a diagram showing a cross-sectional structure along the line AB of an n-MO3 structure manufactured using the structure according to the present invention shown in FIG.

第3図は、第1図に示した半導体装置の製造工程の一例
を示す断面図である。
FIG. 3 is a cross-sectional view showing an example of the manufacturing process of the semiconductor device shown in FIG. 1.

第3図(a)の工程 ガラス基板1上に減圧CV、D法を用いてn型Si薄膜
を付着させ、フォトリソグラフィー法を用いて該形成薄
膜を島状に加工し、n型Si薄膜第1層2を形成する。
Step of FIG. 3(a) An n-type Si thin film is deposited on the glass substrate 1 using the low pressure CV and D method, and the formed thin film is processed into an island shape using the photolithography method. 1 layer 2 is formed.

第3図(b)の工程 常圧CVD法を用いてSiO2薄膜を付着させる。The process in Figure 3(b) A thin SiO2 film is deposited using atmospheric pressure CVD.

このSi0g薄膜は、絶縁用SiO2薄膜層3として機
能する。
This Si0g thin film functions as an insulating SiO2 thin film layer 3.

第3図(C)の工程 減圧CVD法を用いてn型Si薄膜を付着させ、フォト
リソグラフィー法を用いて該n型Si薄膜を島状に加工
し、n型Si薄膜第2層4を形成する。
Step of FIG. 3(C) An n-type Si thin film is deposited using a low pressure CVD method, and the n-type Si thin film is processed into an island shape using a photolithography method to form a second layer 4 of an n-type Si thin film. do.

第3図(d)の工程 減圧CVD法を用いてノンドープSi薄膜を付着させ、
フォトリソグラフィー法を用いて該ノンドープSi薄膜
を島状に加工し、ノンドープSi薄膜層5を形成する。
A non-doped Si thin film is deposited using a low pressure CVD method in the process shown in FIG. 3(d),
The non-doped Si thin film is processed into an island shape using a photolithography method to form a non-doped Si thin film layer 5.

第3図(e)の工程 常圧CVD法を用いてSiO2薄膜を付着させる。The process in Figure 3(e) A thin SiO2 film is deposited using atmospheric pressure CVD.

このSiO2薄膜は、SiO2薄膜6で、ゲート酸化膜
として機能する。そして、このSiO2薄膜6に、フォ
トリソグラフィー法を用いて窓領域8を設ける。
This SiO2 thin film is the SiO2 thin film 6, which functions as a gate oxide film. Then, a window region 8 is provided in this SiO2 thin film 6 using a photolithography method.

第3図(f)の工程 スパッタリング法を用いて金属薄膜を付着させ、フォト
リソグラフィー法を用いて該金属薄膜を島状に加工し、
ゲート電極7、電源供給電極9.10を形成する。
Step of FIG. 3(f) A metal thin film is deposited using a sputtering method, and the metal thin film is processed into an island shape using a photolithography method.
A gate electrode 7 and power supply electrodes 9 and 10 are formed.

以上の工程により、第1図に示した構造の半導体装置を
得ることができた。
Through the above steps, a semiconductor device having the structure shown in FIG. 1 could be obtained.

尚、第3図の製造法では導伝性の半導体薄膜としてn型
Si薄膜を用いたが、p型Si薄膜を用いてももちろん
構わない。
In the manufacturing method shown in FIG. 3, an n-type Si thin film is used as the conductive semiconductor thin film, but a p-type Si thin film may of course be used.

また、金属配線層の代わりに、n型もしくはp型Si薄
膜を用いても同様な効果を示すことはあきらかである。
Furthermore, it is clear that similar effects can be obtained by using an n-type or p-type Si thin film instead of the metal wiring layer.

[発明の効果] 本発明は以上述べたように、半導体装置を重ねて配置す
るため、その占有面積は著しく小さくなり、従来より半
導体装置の高密度実装が可能になるという効果をもたら
した。また、量産性に富む減圧CVD法を用いてドーパ
ントの導入を行っているため、高価で生産性の低いイオ
ン注入装置を使用せずにC−MO3構造の形成が可能で
あると言う特徴を有する。そして、イオン注入後にドー
パントを活性化するために高温に保持する必要がないた
め、非晶質基板として安価なガラス基板の使用が可能に
なった。
[Effects of the Invention] As described above, the present invention has the effect that since the semiconductor devices are arranged one on top of the other, the area occupied by the semiconductor devices is significantly reduced, and it is possible to package the semiconductor devices at a higher density than before. In addition, because the dopant is introduced using the low-pressure CVD method, which is highly suitable for mass production, the C-MO3 structure can be formed without using expensive and low-productivity ion implantation equipment. . Furthermore, since there is no need to hold the dopant at a high temperature to activate the dopant after ion implantation, it has become possible to use an inexpensive glass substrate as the amorphous substrate.

本発明が半導体技術の発展に寄与するところ大であると
確信する。
We are confident that the present invention will greatly contribute to the development of semiconductor technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による構造を用いて作製したn−MO3
型素子を上方より眺めた図である。 1・・・・・・ガラス基板 2・・・・・・n型Si薄膜第1層 3・・・・・・絶縁用SiO2薄膜層 4・・・・・・n型Si薄膜第2層 5・・・・・・ノンドープSil膜 6・・・・・・ゲート酸化膜として機能しつるSi○2
薄膜 7・・・・・・ゲート電極 8・・・・・・電気的にコンタクトをとるための窓領域
9.10・・・・・・電源供給電極 第2図は、第1図の本発明による構造を用いて。 作製したn−MO3構造のA−Bの線に沿った断面構造
を示す図である。 第3図(a)〜(f)は、第、1図に示した半導体装置
の製造工程の一例を示す断面図である。 第3図(a)の工程 n型Si薄膜第1層2を形成する工程。 第3図(b)の工程 絶縁用5iOa薄膜第1層3を付着させる工程。 第3図(c)の工程 n型Si薄膜第2層4を形成する工程。 第3図(d)の工程 ノンドープSi薄膜層5を形成する工程。 第3図(e)の工程 ゲート酸化膜用5iOz薄膜6を形成する工程、及び、
窓領域8を設ける工程。 第3図(f)の工程 ゲート電極7、電源供給電極9.10を形成する工程。 以  上 出願人 セイコーエプソン株式会社
Figure 1 shows n-MO3 produced using the structure according to the present invention.
FIG. 3 is a view of the mold element viewed from above. 1...Glass substrate 2...N-type Si thin film first layer 3...Insulating SiO2 thin film layer 4...N-type Si thin film second layer 5 ......Non-doped Sil film 6...Si○2 that functions as a gate oxide film
Thin film 7...Gate electrode 8...Window area for making electrical contact 9.10...Power supply electrode Figure 2 shows the present invention in Figure 1. Using the structure by. It is a figure which shows the cross-sectional structure along the line AB of the produced n-MO3 structure. FIGS. 3(a) to 3(f) are cross-sectional views showing an example of the manufacturing process of the semiconductor device shown in FIGS. Step of FIG. 3(a) A step of forming the n-type Si thin film first layer 2. Step of FIG. 3(b) Deposition of first layer 3 of 5iOa thin film for insulation. The step of FIG. 3(c) is a step of forming the n-type Si thin film second layer 4. Step of FIG. 3(d) A step of forming a non-doped Si thin film layer 5. Step of FIG. 3(e): Step of forming a 5iOz thin film 6 for gate oxide film, and
Step of providing window area 8. Step of FIG. 3(f) Step of forming gate electrode 7 and power supply electrode 9.10. Applicant: Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁層を同一の導伝型の半導体薄膜により挟持せ
しめ、該構造を導電性薄膜で覆った構造を、少なくとも
1組有することを特徴とする半導体装置。
(1) A semiconductor device characterized by having at least one structure in which an insulating layer is sandwiched between semiconductor thin films of the same conductivity type and the structure is covered with a conductive thin film.
(2)半導体薄膜の製造方法として、減圧CVD法を用
いることを特徴とする第1項記載の半導体装置の製造方
法。
(2) The method for manufacturing a semiconductor device according to item 1, wherein a low pressure CVD method is used as the method for manufacturing the semiconductor thin film.
JP9945788A 1988-04-22 1988-04-22 Semiconductor device and manufacture thereof Pending JPH01270354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9945788A JPH01270354A (en) 1988-04-22 1988-04-22 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9945788A JPH01270354A (en) 1988-04-22 1988-04-22 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01270354A true JPH01270354A (en) 1989-10-27

Family

ID=14247847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9945788A Pending JPH01270354A (en) 1988-04-22 1988-04-22 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01270354A (en)

Similar Documents

Publication Publication Date Title
KR940004420B1 (en) Thin film transistor
WO2017118096A1 (en) Display substrate and manufacturing method therefor, and display apparatus
JP2882410B2 (en) Method of fabricating MOS transistor gate with high germanium content
JPH05503812A (en) Semiconductor device and its manufacturing method
JPH01270354A (en) Semiconductor device and manufacture thereof
JP2653092B2 (en) Complementary thin film transistor and method of manufacturing the same
JPH01270355A (en) Semiconductor device and manufacture thereof
JPH0464249A (en) Manufacture of soi substrate
JP2854038B2 (en) Semiconductor element
JPS6336574A (en) Thin film transistor
JPS63312674A (en) Thin film semiconductor device
JPS6047478A (en) Josephson junction element
JPH0456168A (en) Thin-film transistor and its manufacture
JP2904095B2 (en) Method of manufacturing single electronic device
JPH01259555A (en) Semiconductor device and manufacture thereof
JPH04367828A (en) Production of active matrix board
JPH0225037A (en) Silicon thin film transistor and its manufacture
JPH0360064A (en) Semiconductor device and manufacture thereof
US5166091A (en) Fabrication method in vertical integration
JPS61231765A (en) Manufacture of thin film semiconductor device
JPH07115203A (en) Thin film, manufacture of the thin film and thin-film transistor using the thin film
JPH02189935A (en) Manufacture of thin-film transistor
JPH02207534A (en) Semiconductor device
JPH01265567A (en) Field effect transistor
JPH02130969A (en) Production of josephson junction