JPH01259555A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH01259555A
JPH01259555A JP63087013A JP8701388A JPH01259555A JP H01259555 A JPH01259555 A JP H01259555A JP 63087013 A JP63087013 A JP 63087013A JP 8701388 A JP8701388 A JP 8701388A JP H01259555 A JPH01259555 A JP H01259555A
Authority
JP
Japan
Prior art keywords
thin film
type
pressure cvd
cvd method
low pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63087013A
Other languages
Japanese (ja)
Inventor
Takashi Shimobayashi
隆 下林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63087013A priority Critical patent/JPH01259555A/en
Publication of JPH01259555A publication Critical patent/JPH01259555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable a C-MOS structure to be formed without using an ion implantation device which is expensive and low in productivity, by introducing a dopant by the low pressure CVD method. CONSTITUTION:An n-type Si thin film is adhered to a glass substrate 1 using the low pressure CVD method, an n-type Si thin film is machined in island shape, and an n-type Si thin film 2 is formed. Then, a p-type Si thin film is adhered using the low pressure CVD method, a p-type Si thin film is machined in island shape, and a p-type Si thin film 3 is formed. Then, using the low pressure CVD method, a undoped Si thin film is adhered, a undoped Si thin film 4 is formed, and an SiO2 thin film is adhered using the normal pressure CVD method, and a window area 6 is partially provided on the SiO2 thin film to form an SiO2 thin film 5. It allows a C-MOS structure to be formed without using an ion implantation device which is expensive and low in productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフラット・デイスプレィ、SOI素子(Sen
iconductar on 1nsulator)等
に用いる半導体装置の構造及びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to flat displays, SOI devices (Sen
The present invention relates to the structure of a semiconductor device used for a semiconductor device (iconductor on one insulator) and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、例えばConference Record o
f the 1985International  
Display  Re5earch Confere
nce、p。
Conventionally, for example, Conference Record o
f the 1985 International
DisplayRe5earchConfere
nce, p.

9−13(1985)のように、非晶質基板上に多結晶
半導体でCMO3lii造(相補型MO3構造)を形成
する場合、n型領域とp型頭域を異なる部分に形成する
方法として、イオン注入法が用いられるのが一般であっ
た。
9-13 (1985), when forming a CMO3lii structure (complementary MO3 structure) with a polycrystalline semiconductor on an amorphous substrate, the method of forming the n-type region and the p-type head region in different parts is as follows. Ion implantation was generally used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし前述の従来技術は、イオン注入法を用いてドーパ
ントの導入を行うため、高価なイオン注入装置の使用が
不可欠であり、またその処理能力も小さなものであった
。また、イオン注入後にドーパントを活性化するために
高温に保持する必要があるため、非晶質基板として高価
な石英ガラスの使用が不可欠であるという欠点を有して
いた。
However, in the above-mentioned conventional technology, the dopant is introduced using an ion implantation method, so it is essential to use an expensive ion implantation device, and its processing capacity is also small. Furthermore, since it is necessary to maintain the temperature at a high temperature in order to activate the dopant after ion implantation, it has the disadvantage that expensive quartz glass must be used as the amorphous substrate.

そこで本発明は従来技術の欠点を解決するもので、その
目的とするところは、安価なガラス基板を非晶質基板に
用いて、量産性に富む製造方法で形成可能なCMO3構
造を提供するところにある。
Therefore, the present invention solves the drawbacks of the prior art, and its purpose is to provide a CMO3 structure that can be formed by a manufacturing method that is highly suitable for mass production, using an inexpensive glass substrate as an amorphous substrate. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、量産性に富む減圧CVD法を用いてドーパン
トの導入を行い、高価で生産性の低いイオン注入装置を
使用せずにC−MO3m造の形成を行う、また、イオン
注入後にドーパントを活性化するために高温に保持する
必要がないため、非晶質基板として安価なカラス基板の
使用が可能になる。
The present invention introduces dopants using the low-pressure CVD method, which is highly suitable for mass production, and forms a C-MO3m structure without using expensive and low-productivity ion implantation equipment. Since there is no need to hold the material at a high temperature for activation, an inexpensive glass substrate can be used as the amorphous substrate.

〔実 施 例〕〔Example〕

第1図は本発明による構造を用いて作製したインバータ
(反転増幅器)を上方より眺めた図である。
FIG. 1 is a top view of an inverter (inverting amplifier) manufactured using a structure according to the present invention.

ガラス基板1上にn型Si薄膜2及びn型Si薄膜3が
島状に形成されており、そのあいだを橋渡しするように
形状でノンドープSi薄膜4が形成されている。それら
の上にはゲート酸化膜として機能しうるSiO2薄膜5
が形成されており、電気的にコンタクトをとるため、該
薄膜には一部窓領域6が設けられている。それらを金属
配線材料で結線して入力電極7、出力電極8、電源供給
電f!9.10が設けられテイテ、C−MO3構造を構
成している。このインバータは、高周波帯域にわたり安
定な動作が可能な、非常に良好な特性を得ることができ
た。
An n-type Si thin film 2 and an n-type Si thin film 3 are formed in the form of islands on a glass substrate 1, and a non-doped Si thin film 4 is formed in the shape of bridging between them. On top of them is a SiO2 thin film 5 that can function as a gate oxide film.
A window region 6 is provided in a portion of the thin film in order to make electrical contact. These are connected using metal wiring materials to form an input electrode 7, an output electrode 8, and a power supply f! 9.10 is provided and constitutes the C-MO3 structure. This inverter has very good characteristics that enable stable operation over a high frequency band.

第2図は、第1図の本発明による構造を用いて作製した
インバータ(反転増幅器)のA−8の線に沿った断面構
造を示す図である。
FIG. 2 is a diagram showing a cross-sectional structure taken along line A-8 of an inverter (inverting amplifier) manufactured using the structure according to the present invention shown in FIG.

第3図は、第1図に示した半導体装置の製造工程の一例
を示す断面図である。
FIG. 3 is a cross-sectional view showing an example of the manufacturing process of the semiconductor device shown in FIG. 1.

第3図(a)の工程 カラス基板1上に減圧CVD法を用いてn型Si薄膜を
付着させ、フォトリソグラフィー法を用いて該n型Si
薄膜を島状に加工し、n型Si薄膜2を形成する。
In the step of FIG. 3(a), an n-type Si thin film is deposited on the glass substrate 1 using the low pressure CVD method, and the n-type Si thin film is deposited on the glass substrate 1 using the photolithography method.
The thin film is processed into an island shape to form an n-type Si thin film 2.

第3図(b)の工程 減圧CVD法を用いてp型St薄膜を付着させ、フォト
リソグラフィー法を用いて該ρ型St薄膜を島状に加工
し、p型St薄WA3を形成する。
Step of FIG. 3(b) A p-type St thin film is deposited using a low pressure CVD method, and the ρ-type St thin film is processed into an island shape using a photolithography method to form a p-type St thin WA3.

第3図(c)の工程 減圧CVD法を用いてノンドープSi薄膜を付着させ、
フォトリソグラフィー法を用いて該ノンドープSi薄膜
を島状に加工し、ノンドープSi薄膜4を形成する。
A non-doped Si thin film is deposited using a low pressure CVD method in the process shown in FIG. 3(c),
The non-doped Si thin film is processed into an island shape using a photolithography method to form a non-doped Si thin film 4.

第3図(d)の工程 常圧CVD法を用いてSiO2薄膜を付着させ、フォト
リソグラフィー法を用いて該5in2薄膜に一部窓領域
6を設け、ゲート酸化膜として機能しうる5LO2薄膜
5を形成する。
Step of FIG. 3(d) A SiO2 thin film is deposited using the atmospheric pressure CVD method, and a partial window region 6 is formed in the 5in2 thin film using the photolithography method to form a 5LO2 thin film 5 that can function as a gate oxide film. Form.

第3図(e)の工程 スパッタリング法を用いて金属薄膜を付着させ、フォト
リソグラフィー法を用いて該金属薄膜を島状に加工し、
入力電極7、゛出力電極8、電源供給電極り、10を形
成する。
A metal thin film is deposited using the process sputtering method in FIG. 3(e), and the metal thin film is processed into an island shape using a photolithography method,
An input electrode 7, an output electrode 8, and a power supply electrode 10 are formed.

以上の工程により、第1図に示した構造の半導体装置を
得ることができた。
Through the above steps, a semiconductor device having the structure shown in FIG. 1 could be obtained.

尚、第3図の製造法ではn型Si薄膜2を形成してから
n型Si薄膜3を形成したが、この逆の順でももちろん
横わない。
Incidentally, in the manufacturing method shown in FIG. 3, the n-type Si thin film 2 is formed and then the n-type Si thin film 3 is formed, but of course the reverse order does not apply.

また、金属配線層の代わりに、n型もしくはp型St薄
膜を用いてら同様な効果を示すことはあきらかである。
Furthermore, it is clear that similar effects can be obtained by using an n-type or p-type St thin film instead of the metal wiring layer.

〔発明の効果〕〔Effect of the invention〕

本発明は以上述べたように、量産性に富む減圧CVD法
を用いてドーパントの導入を行っているため、高価で生
産性の低いイオン注入装置を使用せずにC−MO3m造
の形成が可能であると言う特徴を有する。また、イオン
注入後にドーパントを活性化するために高温に保持する
必要がないため、非晶質基板として安価なガラス基板の
使用か可能になった。
As described above, the present invention introduces dopants using the low-pressure CVD method, which is highly suitable for mass production, so it is possible to form C-MO3m structures without using expensive and low-productivity ion implantation equipment. It has the characteristics of Furthermore, since there is no need to hold the dopant at a high temperature to activate the dopant after ion implantation, it has become possible to use an inexpensive glass substrate as the amorphous substrate.

本発明が半導体技術の発展に寄与するところ大であると
確信する。
We are confident that the present invention will greatly contribute to the development of semiconductor technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による構造を用いて作製したインバータ
(反転増幅器)を上方より眺めた図である。 第2図は、第1図の本発明による構造を用いて作製した
インバータ(反転増幅器)のA−Bの線に沿った断面構
造を示す図である。 第3図(a)〜(e)は、第1図に示した半導体装置の
製造工程の一例を示す断面図である。 第3図(a)の工程 ガラス基板1上に減圧CVD法を用いてn型Si薄膜を
付着させ、フォトリソグラフィー法を用いて該n型Si
薄膜を島状に加工し、n型Si薄膜2を形成する工程。 第3図(b)の工程 減圧CVD法を用いてn型Si薄膜を付着させ、フォト
リソグラフィー法を用いて該p型SiR膜を島状に加工
し、n型Si薄膜3を形成する工程。 第3図(c)の工程 減圧CVD法を用いてノンドープSi薄膜を付着させ、
フォトリソグラフィー法を用いて該ノンドープSi薄膜
を島状に加工し、ノンドープSi薄膜4を形成する工程
。 第3図(d)の工程 常圧C’V D法を用いて5i02薄膜を付着させ、フ
ォトリソグラフィー法を用いて該Sin、薄膜に一部窓
領域6を設け、ゲート酸化膜として橘能しうる5i02
薄膜5を形成する工程。 第3図(e)の工程 スパッタリング法を用いて金属薄膜を付着させ、フォト
リソグラフィー法を用いて該金属薄j模を島状に加工し
、入力電極7、出力電極8、電源供給電極9.10を形
成する工程工程。 1・・・・・・ガラス基板 2・・・・・・n型Si薄膜 3・・・・・・n型Si薄膜 4・・・・・・ノンドープSi薄膜 5・・・・・・5i02薄膜 6・・・・・・窓領域 7・・・・・・入力電極 8・・・・・・出力電極 9.10・・・電源供給電極 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士 上 柳 雅 誉(他1名)葛 11g 冨 2 還
FIG. 1 is a top view of an inverter (inverting amplifier) manufactured using a structure according to the present invention. FIG. 2 is a diagram showing a cross-sectional structure along the line AB of an inverter (inverting amplifier) manufactured using the structure according to the present invention shown in FIG. 3(a) to 3(e) are cross-sectional views showing an example of the manufacturing process of the semiconductor device shown in FIG. 1. Step of FIG. 3(a) An n-type Si thin film is deposited on the glass substrate 1 using the low pressure CVD method, and the n-type Si thin film is deposited on the glass substrate 1 using the photolithography method.
A process of forming an n-type Si thin film 2 by processing the thin film into an island shape. Step of FIG. 3(b) A step of depositing an n-type Si thin film using a low pressure CVD method and processing the p-type SiR film into an island shape using a photolithography method to form an n-type Si thin film 3. A non-doped Si thin film is deposited using a low pressure CVD method in the process shown in FIG. 3(c),
A step of processing the non-doped Si thin film into an island shape using a photolithography method to form a non-doped Si thin film 4. In the step of FIG. 3(d), a 5i02 thin film is deposited using the normal pressure C'VD method, and a window region 6 is formed in the thin film using photolithography, and a window region 6 is formed as a gate oxide film. Uru5i02
Step of forming thin film 5. Process of FIG. 3(e) A metal thin film is deposited using a sputtering method, and the metal thin film is processed into an island shape using a photolithography method to form an input electrode 7, an output electrode 8, a power supply electrode 9. Process steps for forming 10. 1...Glass substrate 2...N-type Si thin film 3...N-type Si thin film 4...Non-doped Si thin film 5...5i02 thin film 6...Window area 7...Input electrode 8...Output electrode 9.10...Power supply electrode and above Applicant Seiko Epson Corporation Agent Patent attorney Kamiyanagi Masa Homare (1 other person) Kudzu 11g Tomi 2 return

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性基板の上にn型半導体の多結晶薄膜、及び
p型半導体の多結晶薄膜が重なって設置された構造を含
むことを特徴とする半導体装置。
(1) A semiconductor device characterized by including a structure in which a polycrystalline thin film of an n-type semiconductor and a polycrystalline thin film of a p-type semiconductor are placed overlappingly on an insulating substrate.
(2)半導体の多結晶薄膜の製造方法として、減圧CV
D法を用いることを特徴とする半導体装置の製造方法。
(2) Low pressure CV as a method for manufacturing polycrystalline thin films of semiconductors
A method for manufacturing a semiconductor device, characterized by using the D method.
JP63087013A 1988-04-08 1988-04-08 Semiconductor device and manufacture thereof Pending JPH01259555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087013A JPH01259555A (en) 1988-04-08 1988-04-08 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087013A JPH01259555A (en) 1988-04-08 1988-04-08 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01259555A true JPH01259555A (en) 1989-10-17

Family

ID=13903082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087013A Pending JPH01259555A (en) 1988-04-08 1988-04-08 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01259555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232580A (en) * 1996-02-21 1997-09-05 Samsung Electron Co Ltd Transistor and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232580A (en) * 1996-02-21 1997-09-05 Samsung Electron Co Ltd Transistor and manufacture thereof

Similar Documents

Publication Publication Date Title
US5540785A (en) Fabrication of defect free silicon on an insulating substrate
US3922705A (en) Dielectrically isolated integral silicon diaphram or other semiconductor product
CA2066193A1 (en) Method of producing a thin silicon-on-insulator layer
US4868140A (en) Semiconductor device and method of manufacturing the same
KR960005898A (en) Semiconductor substrate and manufacturing method
JPH01259555A (en) Semiconductor device and manufacture thereof
JPH01243572A (en) Semiconductor device and manufacture thereof
JPH02219252A (en) Manufacture of semiconductor device
JPH01270355A (en) Semiconductor device and manufacture thereof
JPS6254477A (en) Manufacture of semiconductor pressure sensor
KR960015929B1 (en) Method for manufacturing bipolar transistor
JPH0393273A (en) Manufacture of thin film semiconductor device
JPS63250178A (en) Manufacture of thin film semiconductor device
JPS63272037A (en) Treatment of semiconductor substrate
JPH01270354A (en) Semiconductor device and manufacture thereof
JPS61231765A (en) Manufacture of thin film semiconductor device
JPS62262431A (en) Manufacture of semiconductor device
JPH02130969A (en) Production of josephson junction
JP3272908B2 (en) Method for manufacturing semiconductor multilayer material
JPH0221663A (en) Manufacture of thin film transistor
JP2590607B2 (en) Manufacturing method of liquid crystal display device
JP2546650B2 (en) Method of manufacturing bipolar transistor
JPH06296016A (en) Semiconductor device
JPH01272146A (en) Semiconductor device
JPH01265567A (en) Field effect transistor